
Comparative analysis of exhaustive searching on
a massive finger-vein database over

multi-node/multi-core and multi-GPU platforms

Sebastián Guidet1 , Ruber Hernández-Garćıa2 , Fernando Emmanuel
Frati1 , and Ricardo J. Barrientos2,3

1 Department of Basic and Technological Sciences,
Universidad Nacional de Chilecito, Chilecito, La Rioja, Argentina

sguidet@undec.edu.ar, fefrati@undec.edu.ar
2 Laboratory of Technological Research in Pattern Recognition (LITRP),

Faculty of Engineering Sciences, Universidad Católica del Maule, Talca, Chile
rbarrientos@ucm.cl, rhernandez@ucm.cl

3 Department of Computer Science and Industries, Faculty of Engineering Science,
Universidad Católica del Maule, Talca, Chile

Abstract. When searching on unstructured data (video, images, etc.),
response times are a critical factor. In this work we propose an implemen-
tation on two types of multi-GPU and multi-node/multi-core platforms,
for massive searches. The presented method aims to reduce the time in-
volved in the search process by solving simultaneous queries over the
system and a database of millions of elements. The results show that the
multi-GPU approach is 1.6 times superior to the multi-node/multi-core
algorithm. Moreover, in both algorithms the speedup is directly propor-
tional to the number of nodes reaching 156x for 4 GPUs, and 87x in the
case of the hybrid multi-node/multi-core algorithm.

Keywords: High Performance Computing, identification of individuals,
Local linear binary pattern, Finger veins, GPU.

1 Introduction
The volume of data in the world is growing exponentially. According to some
estimates by the united nations, 90% of the world’s data has been created in
the last two years and is predicted to grow at 40% per year. In 2020, 64.2
zettabytes of data were created, a 314% increase over 2015 [7]. Most of this
data is unstructured (videos, images, etc.), so by needing to perform a search
it cannot be treated in the same way as traditional databases. In multimedia
databases it is not possible to perform exact searches, because the information
is not always stored in the same way. Two images may look the same, but when
compared pixel by pixel they are totally different. In this type of databases,
similarity search is used, which consists of retrieving all those objects within a
database that are similar according to a given query.

Similarity searches are mathematically modeled through metric spaces using
a distance function [1]. The distance function is responsible for determining the

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 12 -

degree of similarity between two objects. As the size of the database increases, the
system must perform more distance calculations. Consequently, the performance
of similarity searches is largely conditioned by the distance function computation
and the size of the database, which influences the total processing time.

Due to the computational load involved in the search process and its impact
on the processing time, it is necessary to search for alternatives to speed up the
computation involved in solving queries on the multimedia database. One of the
most widely used methods in the literature to reduce costs in terms of time is
through parallel processing. Although the parallelization of algorithms is not a
new topic, the emergence of GPU coprocessors nowadays allows a high level of
parallelism at a very low cost.

In this paper, we propose a comparison between multi-node/multi-core and
multi-GPU parallel methods, applying an exhaustive search algorithm to solve
k-NN queries in metric spaces. As a case study we use a database of finger vein
images composed of 40,000,000 images, preprocessed by the CLAHE (limited
contrast histogram adaptive histogram equalization) algorithm and the vertical
LLBP (vertical linear local binary pattern) descriptor. In the experiments per-
formed we used the Hamming distance to measure the similarity between two
images.

2 Background on similarity search
The search for objects in a database that are similar to a given query object is
a problem that has been extensively studied in recent years. The solutions are
based on two criteria: the first one determines how the selection of the solution
set will be performed when searching; the second one refers to the way in which
the database is traversed to apply the first criterion.

For the selection of the solution set, the model of metric spaces [1] is used.
A metric space (X, d) consists of a universe of valid objects X and a distance
function d : XxX → R+ defined between them. The distance function deter-
mines the similarity between two given objects. The finite subset U ⊂ X with
size n = |U |, is called the database and represents the collection of objects in
the search space. There are two main queries of interest, kNN and range queries.

Range query[1]: the objective is to retrieve all objects u ∈ U within a radius
r of the query q.

The k nearest neighbors (kNNN)[2]: the goal is to recover the set
kNNN(q) ⊆ U such that |kNNN(q)| = k and forallu ∈ kNN(q); v ∈ U −
kNN(q); d(q, u) ≤ d(q, v).

When working with large databases, even if the radius is small, range queries
provide large solution sets [4]. Therefore, in these cases the most commonly used
and efficient query method is k-nearest neighbor queries. However, when applying
the k-nearest neighbors method, it is necessary to calculate the distance between
the query and each element belonging to the database. For this calculation,
the Hamming distance similarity function is used, whose effectiveness has been
proven by other authors in the literature [8].

When performing the database traversal to resolve similarity queries in metric
spaces, the most trivial but costly (in time and/or resources) method is the brute

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 13 -

force method. An alternative is the index-based methods [3], but they have the
disadvantage of losing efficiency as the size of the database increases, in addition
to presenting problems in shared memory systems [2].

3 Searching process on a massive database
The identification of individuals consists of an exhaustive 1:N search in the
database, this procedure returns a list of 32 records sorted by similarity score in
ascending order. We only get the first 32 results because it is the lowest perfect
recognition rank for LLBPv with the best [6] precision performance.

This process must be performed for each query received by the system. Thus,
the system workload increases with a high rate of queries per unit time, and the
volume of data to be processed increases significantly, so the response time must
be reduced.

3.1 Multi-node/multi-core searching algorithm

The presented approach attempts to reduce the computation time of 1:N sim-
ilarity comparisons by achieving a significant speedup for an exhaustive search
process on a massive database. For this, a hybrid multi-node/multi-core parallel
version was implemented in order to distribute the tasks among the different
nodes of the cluster. Therefore, each node computes the similarity tests on a
partition of the database. Each node handles its tasks by applying the Round
Robin (dist − round − Robins) distribution scheme [6]. Each query is solved
with 8 threads, as each node has 36 available threads, each node of the algorithm
can process up to 4 queries in parallel.

Once all the processes have completed their tasks in parallel, a single array is
generated with the 32 elements of smallest distances in increasing order. Finally,
each node sends its 32 shortest distance results (local results) to the master
node, which computes the final 32 results.

3.2 Multi-GPU searching algorithm

In order to process a larger amount of items in the shortest possible time, a
multi-GPU algorithm is implemented, where a multi-threaded session is started
on the CPU to handle each GPU (one GPU per thread). The algorithm divides
the database into parts, each part will be processed by a different GPU until the
number of items in the database is completed. It should be noted that each GPU
processes its portion of the database by implementing the algorithm described
in [5], where each query is solved with a different CUDA block. Finally, the
quicksort algorithm is used to sort and return the 32 smallest distances of the
process. It should be noted that each GPU of the multi-GPU platform can
only process 56 simultaneous queries due to the occupancy factor of the model
used [5].

4 Experimental results

The experimental environment is composed of 4 servers (or nodes), and each
node with 2 Intel Xeon Gold 6140 CPUs @ 2.30 GHz, totaling 36 physical cores,
24.75 MB of L3 cache and 126 GB of RAM. In addition, one of these servers

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 14 -

has 4 GPU model NVIDIA GeForce GTX 1080 TI, CUDA Cores: 3584, GPU
Memory: GDDR5X 11GB.

To evaluate the ability of the proposed algorithm to respond to simultaneous
queries in adequate time, the BigFVDB dataset generated in previous work is
used [6], using 4,000,000 samples for these experiments.

The experiments were performed by increasing the number of processing
nodes in both architectures up to 4 nodes. To obtain an unbiased result and
ensure the stability of the results, the time measurements were averaged by
repeating each test 100 times. In addition, it was verified that in all experiments
the same results were obtained for the same comparisons.

Figure 1 (a) summarizes the results obtained. It should be noted that for the
experiments the number of simultaneous queries was set to 56 in order not to
exceed the occupancy factor of the GPUs used. As can be seen in both cases the
processing times decrease as the number of nodes in the system increases, with
the multi-GPU algorithm being 1.6 times faster than the multi-node/multi-core
algorithm.

1 1.5 2 2.5 3 3.5 4
20

40

60

80

100

120

140

Number of NODOS / GPU

P
ro

ce
ss

in
g

tim
e

multi−GPU
multi−node/multi−core

(a) Processing time (seconds).

1 2 3 4
0

20

40

60

80

100

120

140

160

S
pe

ed
 −

 u
p

Number of Nodes/GPUs

multi−GPU
multi−node/multi−core

(b) Speed-up

Fig. 1: Processing time and speed-up when solving kNN queries (k=32) for the
multi-GPU algorithm versus the multi-node/multi-core algorithm for 56 simul-
taneous queries and 4,000,000 items. The X-axis shows the number of nodes and
also the number of GPUs.

Figure 1b shows the speed-up for the multi-GPU and multi-node/multi-
core algorithms. It should be clarified that for the calculation of the speed-up
(Time(Sequential)/Time(Parallel)), the execution time of the sequential version
on CPU was taken as a reference. From the results obtained it is observed that
the Speed-up increases as the number of nodes increases for both cases, for 4 pro-
cessing nodes the multi-GPU algorithm has a Speed-up of 159.428x and 87.057x
for the multi-node/multi-core algorithm. The detailed values are expressed in
Table 1 along with processing time values in seconds of the algorithms.

5 Conclusions
This paper proposes an implementation on two types of multi-GPU and multi-
node/multi-core platforms, for massive searches on unstructured databases. The
presented method aims to reduce the time involved in the search process when
faced with a large number of simultaneous queries on the system.

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 15 -

Table 1: Processing time (Tp) in seconds and speed-up (Sp) of multi-GPU and
multi-node/multi-core algorithms.

Nodes/GPU
muti-GPU multi-node/multi-core
Tp Sp Tp Sp

1 77,097 43,893 134,974 25,071

2 39,344 86,011 68,045 49,732

3 39,687 85,267 49,530 68,322

4 21,226 159,428 38,871 87,057

Experimental validation shows that the multi-GPU approach is 1.6 times su-
perior to the multi-node/multi-core algorithm in solving 56 simultaneous queries.
Moreover, in both algorithms the speedup is directly proportional to the number
of nodes (number of GPUs) reaching 156x for 4 GPUs and 87x in the case of
the hybrid multi-node/multi-core algorithm.

In future work, we plan to increase the number of elements in the database,
with the goal of reaching 16 million individuals. Using a database of this size
brings with it the problem of the overall memory capacity of the GPU, being
necessary to explore a multi-node/multi-GPU approach. Also, we will explore
others distribution strategies for the multi-core platform algorithm.

References

1. Barrientos, R.J., Gómez, J.I., Tenllado, C., Prieto Matias, M., Marin, M.: Range
query processing on single and multi GPU environments. Computers & Electrical
Engineering 39(8), 2656–2668 (Nov 2013), http://www.sciencedirect.com/science/
article/pii/S0045790613001560

2. Barrientos, R., Gómez, J., Tenllado, C., Prieto, M., Marin, M.: knn query processing
in metric spaces using gpus. In: 17th International European Conference on Parallel
and Distributed Computing (Euro-Par 2011). Lecture Notes in Computer Science,
vol. 6852, pp. 380–392. Springer, Bordeaux, France (September 2011)

3. De Battista, A., Pascal, A., Gutiérrez Retamal, G.A.: Un nuevo ı́ndice métrico-
temporal: el historical FHQT (2007), http://hdl.handle.net/10915/22138

4. Gil-Costa, V., Marin, M., Reyes, N.: Parallel query processing on distributed
clustering indexes. Journal of Discrete Algorithms 7(1), 3–17 (Mar 2009), http:
//www.sciencedirect.com/science/article/pii/S1570866708000749

5. Guidet, S., Barrientos, R.J., Hernández-Garćıa, R., Frati, F.E.: Exhaustive similar-
ity search on a many-core architecture for finger-vein massive identification. Journal
of Physics: Conference Series 1702(1), 012012 (Nov 2020), https://doi.org/10.1088/
1742-6596/1702/1/012012, publisher: IOP Publishing

6. Hernández-Garćıa, R., Guidet, S., Barrientos, R.J., Frati, F.E.: Massive finger-vein
identification based on local line binary pattern under parallel and distributed sys-
tems. In: 2019 38th International Conference of the Chilean Computer Science So-
ciety (SCCC). pp. 1–7. IEEE (2019)

7. Nations, U.: Macrodatos para el desarrollo sostenible | Naciones Unidas,
https://www.un.org/es/global-issues/big-data-for-sustainable-development, pub-
lisher: United Nations

8. Rosdi, B.A., W.Shing, C., Suandi, S.A.: Finger vein recognition using local line
binary pattern. Sensors 11, 11357–11371 (2011)

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 16 -

