
Recommendations for Resilient App Development

Leonardo Corbalán1[0000-0001-9026-8059], Juan Fernández Sosa1[0000-0002-0482-3392], Fernando

Tesone1[0000-0001-9499-3127], Sebastián Dapoto1[0000-0001-7593-0198], Federico Cristina1[0000-

0003-3838-417X], Pablo Thomas1[0000-0001-9861-987X] and Patricia Pesado1[0000-0003-0000-3482]

1 Computer Science Research Institute LIDI (III-LIDI)

School of Computer Science, National University of La Plata,

La Plata, Buenos Aires, Argentina
{corbalan, jfernandez, ftesone, sdapoto, fcristina, pthomas,

ppesado}@lidi.info.unlp.edu.ar

Abstract. Applications for mobile devices tend to face a greater number of ad-

verse situations derived from the very nature of mobility. In this context, improv-

ing resilience becomes relevant. Here we present some recommendations, based

on preliminary studies, to increase resilience to the performance drop and power

consumption increase caused by increased computational load.

Keywords: Resilient Mobile Applications, Performance, Battery Consumption,

3D Mobile Applications, Mobile Applications with High Computational Load.

1 Introduction

Etymologically, the term resilience comes from the Latin resilīre, which means 'to jump

back, to bounce back', 'to withdraw' [1]. Applied to different areas of knowledge and

human activities, this term has been redefined in different ways, incorporating nuances

specific to each discipline. In biology, it refers to the capacity of a living being to adapt

to a disturbing agent or adverse situation. In physics, it describes the capacity of a ma-

terial, mechanism or system to recover its initial state when the perturbation to which

it had been subjected has ceased. In psychology, resilience is the capacity of a person

to adapt positively to adverse situations, overcoming the trauma they may have caused.

In engineering disciplines, resilience is understood as the capacity of a system to

resist and recover from a failure in some critical component in order to maintain its

operation and services in an acceptable manner [2]. The amount of recovered function-

ality and the time invested in the recovery are relevant parameters to determine the

degree of resilience of a system in a given adverse situation. These statements also

apply to software systems.

Software failures can arise from unforeseen situations, adverse circumstances, ran-

dom events or malicious attacks. In the latter case, the ability of a system to withstand

a cyber-attack is known as cyber resilience. Regardless of the origin of the failures,

resilient software will be able to recover to a degree and period of time previously de-

termined according to the requirements and particularities of the system.

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 81 -

In the case of software applications for mobile devices (apps), the resilience analysis

must consider the very nature of mobility. This confers certain distinctive features that

expose apps to a set of potentially adverse situations that are not present in other types

of applications.

In this short paper we present a set of preliminary results from which we derive a

series of recommendations for the development of apps that are resilient to the drop in

performance and the increase in energy consumption caused by the increase in compu-

tational load.

The rest of this paper is organized as follows: section 2 describes adverse scenarios

and strategies to improve app resilience, section 3 presents some results on app perfor-

mance and energy consumption, section 4 presents a series of recommendations to in-

crease app resilience, and finally, section 5 presents conclusions and future work.

2 Resilience in Apps

The development of applications for mobile devices must consider how to increase the

degree of resilience of apps in order to cope with a greater number of stress situations

to which they are often subjected. Battery drain, total or partial loss of connectivity that

comes with mobility, increased risk of cyber attacks, partly due to the typical behavior

of mobile device users, are just a few examples of such stress situations.

It is possible to recommend the implementation of a series of strategies to increase

the degree of resilience depending on the type of adversity to which an app may be

subjected.

2.1 Resilience of Apps to Connection Loss

It is common for apps to have a strong dependency on Internet connection to access

and communicate with services deployed in the cloud. To build resilient apps, connec-

tion failures should not be considered exceptional and the offline experience should be

considered as just another state of the application. In this way, when a connection is

lost, the app will continue to operate with some limitation, but avoiding crashes, blank

screens or alert messages that generate frustration and abandonment by users [3].

Upon loss of connection, the app must be able to capture the user's intent, executing

the required action as far as possible and completing it later when the connection has

been re-established. This type of design is referred to as "offline-first" solutions [4].

While there is no connection to the network, in the absence of the most recent data,

the local memory of the device will provide the data obtained in the last stable connec-

tion. PWA, Progressive Web Applications, are mobile web applications that use this

methodology to generate an offline experience. For this purpose, web technologies such

as Service Workers and caching, among others, are used [5].

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 82 -

2.2 Resilience of Apps in the Face of Connection Instability

In case the connection is unstable, resilient behavior can be achieved by implementing

two well-known design patterns: the Retry Pattern [6] and the Throttling Pattern [7].

Retry Pattern allows handling transient failures in the connection to a network ser-

vice by retrying a failed operation. This strategy is based on the assumption of two

premises: i) failures are of short duration and ii) the previously failed request may suc-

ceed in a subsequent attempt. It is necessary to define the maximum number of attempts

to be made and the waiting time between each of them, being able to opt for a fixed or

incremental waiting time.

On the other hand, Throttling Pattern consists of relaxing some requirements to re-

duce the demand for resources while avoiding compromising response times or the

overall performance of the app. This allows the system to continue to function, in a sub-

optimal manner, in the face of difficulty in fully accessing a resource. Some actions to

take are: limit the number of requests per user, keep essential services in the first in-

stance and prioritize the distribution of requests.

2.3 Resilience of Apps against Cyber Attacks

Resilience to cyber attacks is known as cyber resilience. It is defined as the ability to

anticipate, resist, recover from, and adapt to attacks or compromises in systems that use

cyber resources [8]. Compromised systems must absorb the impacts of attacks, and re-

spond quickly and flexibly to ensure the operational continuity of their critical compo-

nents.

In recent years, mobile devices have become an essential tool for the operation and

activities of companies, but, at the same time, they represent a new medium through

which criminals can attack and access a company's resources. Malware attacks, social

engineering, access to insecure wireless networks, weak passwords, incorrect use or

careless user behavior are just some of the potential risks associated with the use of

mobile devices in companies. Loss or theft of the device is also a security issue that can

facilitate access to company resources by unauthorized third parties.

Some recommendations for the development of cyber resilient mobile apps [9] are:

i) web services communication should use SSL/TLS (Secure Sockets Layer / Transport

Layer Security), ii) URLs launched by an application should use the HTTPS protocol,

iii) encrypt the information handled by the application, iv) the number of login attempts

should be limited and v) development frameworks should be updated.

2.4 Resilience of Apps to Increased Computational Load

A high computational load increases energy demand and affects battery life. In addition,

depending on the computational capacity of the device, it can delay app response time,

which is perceived as a performance drop that degrades the user experience. As an ex-

ample, consider 3D mobile applications whose processing demands can easily exceed

the capacity of the devices on which they run.

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 83 -

In order to increase resilience to performance loss and rapid battery depletion, it is

necessary to monitor response speed and power consumption in real time. In this way,

measures can be taken to reduce the computational requirement (Throttling Pattern),

extending the device's battery life and improving the app's response time.

3 Study of Performance and Power Consumption in Apps with

High Computational Load

For this analysis it is necessary to consider the development frameworks used because

they impact the efficiency with which the apps consume or use the available resources.

The performance and power consumption of apps built with the following development

frameworks were studied: Android SDK (native), Cordova, Titanium, NativeScript,

Xamarin, and Corona. [10]. The best response times and most efficient power consump-

tion, during processing-intensive tests, were obtained by applications developed with

Cordova, Titanium, and NativeScript (see Table 1).

Table 1. Intensive processing app

Framework
Power (mWh) CPU charge (%)

Duration

(s)

�̅� SE �̅� SC �̅� ST

Cordova 1.597 0.136 35.924 2.571 8.467 0.679

Titanium 1.692 0.096 37.480 2.395 8.355 0.643

NativeScript 1.792 0.176 33.357 2.217 9.109 1.789

Xamarin 3.036 0.185 32.072 1.768 17.891 0.973

Android SDK 3.463 0.149 32.468 1.332 18.568 2.938

Corona 7.304 0.189 44.347 54.793 38.877 1.492

With respect to 3D applications for mobile devices, 2 of the most currently used devel-

opment frameworks were evaluated: Unity and Unreal Engine [11]. The characteristics

of a 3D application that have the greatest impact on performance and energy consump-

tion on a mobile device were identified. It was observed that applications developed

with Unity consume less energy, but at the same time present a greater performance

degradation, compared to Unreal Engine, when the complexity of the scene to be visu-

alized increases drastically (see Table 2).

Clearly, the factors that most affect performance and power consumption in both

frameworks are the display of complex objects (high number of polygons) and the sim-

ultaneous use of different particle systems (e.g. smoke, sparks, explosion, etc.).

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 84 -

Table 2. Performance and consumption of 3D mobile applications

Scene characteris-

tics

Performance as scene complexity increases

of the scene with increasing number of objects (FPS)

Consumption

 (mAh)

Unity Unreal Unity Unreal

Simple objects 60 60 60 60 60 47 16 04 60 61 60 58 40 28 10 08 19.8 51.53

Complex objects 40 34 17 08 05 05 04 04 08 08 08 08 08 08 08 08 27.18 61.06

Lights and shadows 60 60 60 60 59 40 15 04 60 60 60 59 42 30 10 08 20.73 37.4

Textures 60 60 60 60 60 47 13 04 60 60 61 56 37 29 12 08 20.23 47.48

Particles 60 60 46 14 04 03 00 00 19 19 16 11 08 08 08 08 15.94 21.78

Physics 60 60 60 60 60 45 03 03 60 60 60 58 42 30 10 08 18.36 18.65

4 Recommendations. Preliminary Results

A series of recommendations are presented here to improve the resilience of apps to

performance drops (longer response times) and increased energy consumption caused

by increased computational load.

The first aspect that must be taken into account to improve resilience is the app's

ability to offer resistance to the adversity it faces. For this purpose, development frame-

works should be used to obtain apps that better manage energy consumption and com-

putational load.

It is recommended to use the multiplatform development frameworks Cordova, Ti-

tanium and NativeScript for general-purpose applications with high computational

load.

For the development of 3D applications with medium or low complexity scenes, it

is recommended to use Unity. Unreal Engine can process more powerful and realistic

graphics than Unity but with higher power consumption. For the case of very complex

scenes, Unreal Engine should be considered because the performance of apps generated

with this framework does not degrade as much as the performance of apps developed

with Unity.

The second important aspect to improve resilience is to increase the capacity to re-

cover from a stressful situation. In this sense, an effective strategy is to use the Throt-

tling Pattern. For this it is necessary to monitor the response speed and energy con-

sumption in real time. In 3D applications this can be achieved by reducing the com-

plexity of the scene to be visualized. According to the data analyzed, and due to the

impact they have on performance and energy consumption, it is recommended to reduce

some or several of these factors that affect the complexity of the scene: i) Number of

polygons in the scene, ii) particle systems to visualize, iii) dynamic lights and shadows

of the objects and iv) complex textures or materials of the objects.

5 Conclusions and Future Work

In this short paper we have analyzed, from a resilience perspective, some experiments

on the impact of development frameworks on the energy efficiency of the apps built.

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 85 -

From this analysis, a series of recommendations have been made to improve the resili-

ence of apps to the performance drop and energy consumption increase caused by the

increased computational load. Recommendations were made for the development of

general-purpose applications and for 3D mobile applications.

As future work, we plan to extend the experiments to other frameworks, and also to

study the behavior of the developed apps in the event of partial or total loss of connec-

tivity. We also intend to incorporate the analysis of using local DBs with cloud syn-

chronization to mitigate the loss of connectivity.

Finally, we will seek to expand the analysis of resilience aspects in 3D Apps, from

the incorporation of Virtual Reality (VR).

References

1. Real Academia Española. Resiliencia. En Diccionario de la lengua española, 23.ª ed., ver-

sión en línea. Recuperado de https://dle.rae.es/resiliencia.

2. Murray, A., Mejias, M., & Keiller, P. (2017). Resilience methods within the software devel-

opment cycle. In Proceedings of the International Conference on Software Engineering Re-

search and Practice (SERP) (pp. 62-65). The Steering Committee of The World Congress in

Computer Science, Computer Engineering and Applied Computing (WorldComp).

3. Lazar, J., Jones, A., Hackley, M., & Shneiderman, B. (2006). Severity and impact of com-

puter user frustration: A comparison of student and workplace users. Interacting with Com-

puters, 18(2), 187-207.

4. Vanhala, J. (2017). Implementing an Offline First Web Application.

5. Aguirre, V., Delía, L., Thomas, P., Corbalán, L., Cáseres, G., & Sosa, J. F. (2019, October).

PWA and TWA: Recent Development Trends. In Argentine Congress of Computer Science

(pp. 205-214). Springer, Cham.

6. Retry pattern - Azure Architecture Center | Microsoft Docs https://docs.microsoft.com/en-

us/azure/architecture/patterns/retry.

7. Throttling pattern - Azure Architecture Center | Microsoft Docs https://docs.mi-

crosoft.com/en-us/azure/architecture/patterns/throttling

8. Ross, R., Pillitteri, V., Graubart, R., Bodeau, D., & McQuaid, R. (2021). Developing cyber

resilient systems: a systems security engineering approach (No. NIST Special Publication

(SP) 800-160 Vol. 2). National Institute of Standards and Technology. available free of

charge from: https://doi.org/10.6028/NIST.SP.800-160v2r1

9. Jaramillo, H. D., Romero, G. K., & Ramos, C. (2021). Framework de seguridad para desa-

rrollo de aplicaciones móviles y su aporte a la CiberResiliencia. Revista Ibérica de Sistemas

e Tecnologias de Informação, (E42), 452-468.

10. Corbalán, L., Thomas, P., Delía, L., Cáseres, G., Sosa, J. F., Tesone, F., & Pesado, P. (2019,

June). A study of non-functional requirements in apps for mobile devices. In Conference on

Cloud Computing and Big Data (pp. 125-136). Springer, Cham.

11. Cristina, F., Dapoto, S. H., Thomas, P. J., Pesado, P. M., Perez Altamirano, J., & De la Canal

Erbetta, M. (2020). Aplicaciones Móviles 3D: un estudio comparativo de performance y

consumo de energía. In XXVI Congreso Argentino de Ciencias de la Computación

(CACIC)(Modalidad virtual, 5 al 9 de octubre de 2020).

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 86 -

https://dle.rae.es/resiliencia
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.microsoft.com/en-us/azure/architecture/patterns/throttling
https://docs.microsoft.com/en-us/azure/architecture/patterns/throttling
https://doi.org/10.6028/NIST.SP.800-160v2r1

