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Abstract The aim of this study was to examine the

influence of dietary fat on lipid composition, as well as on

the steroidogenic function of interstitial cells isolated from

Wistar rats that had been fed semi-synthetic diets con-

taining four different commercial oils (S soybean, O olive,

C coconut, and G grape seed). Steroidogenic enzyme

activities, lipid composition, and androgen production were

measured in testicular interstitial cells. Lipid analysis

included measurement of the contents of major lipid sub-

classes (neutral lipids, polar lipids, free and esterified

cholesterol), as well as principal polar and neutral lipid

fatty acyl compositions. Significant differences in lipid

composition were observed among the groups, most of

them reflecting the specific fatty acyl composition of the

diet tested. Testosterone concentration was higher in O and

C groups compared with S or G. In agreement with this

observation, the activity of both key enzymes involved in

testosterone biosynthesis (3-b-HSD and 17-b-HSD) was

higher in O and C groups with significant differences

between them (O [ C). A significant negative correlation

was found between cellular testosterone production and

cellular cholesterol ester content. Additionally, testosterone

concentration directly correlated with cholesterol levels.

We conclude that dietary oils qualitatively and quantita-

tively modified the lipid composition of interstitial cells,

producing either a direct or indirect regulatory effect on

testicular steroidogenic function.
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Abbreviations

C Coconut

FC Free cholesterol

CE Esterified cholesterol

DBI Double bond index

FA Fatty acids

FAME Fatty acid methyl esters

G Grape seed

3b-HSD 3b-Hydroxysteroid dehydrogenase

17b-HSD 17b-Hydroxysteroid dehydrogenase

HPLC High performance liquid chromatography

LH Luteinizing hormone

MUFA Monounsaturated FA

NL Neutral lipids

O Olive

PL Polar lipids (phospholipids)

PUFA Polyunsaturated FA

Rf Relative chromatographic mobility

RIA Radioimmunoassay

S Soybean

SFA Saturated FA

T Testosterone

TL Total lipids

TLC Thin layer chromatography

TAG Triacylglycerides

Introduction

It has long been known that changes in dietary fat [1–3]

and/or cholesterol intake [4, 5] modify membrane
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phospholipid composition in many tissues and cell types,

thus influencing normal cell function. In the testis, it has

been demonstrated that lipids strongly influence the his-

tology and physiology of this tissue [6–8]. Different

situations, such as essential fatty acid deficiency [9, 10] or

alterations in fatty acid metabolism under diabetic condi-

tions [10, 11], have been associated with testicular

malfunction. Regarding androgen biosynthesis, it has been

demonstrated that feeding rats with rapeseed oil rich in

polyunsaturated fatty acids (PUFA) was associated with a

high level of testosterone [12]. In contrast, decreased

androgen concentration was measured in rats fed palm oil,

which is rich in saturated fatty acids [12]. Total fat intake

was also related to the level of sex steroid hormones. Some

studies on men and rats have revealed that there was an

increase in plasma androgen concentration after being fed a

high-fat diet [13, 14]. In contrast, a reduction in total fat

intake caused a decrease in plasma testosterone concen-

tration [15]. Most studies on the relationship between

dietary fat and testicular steroidogenesis have been carried

out by analyzing the lipid composition of the whole testes.

Additionally, we are unaware of any information con-

cerning the possible relationship(s) between androgen

production and a particular change in the lipid composition

of interstitial cells. Therefore, the aim of this study was to

evaluate the effect of diet supplementation, using four oils

commercially available world wide, on lipid composition

of interstitial cells and their impact on steroidogenic

function.

Materials and Methods

Chemicals

Solvents (HPLC grade) were provided by Carlo Erba

(Milano, Italy). Other chemicals were from Sigma Chem.

Co. and Fluka Chemie AG (Buenos Aires, Argentina). Lipids

used as standards were from the Serdary Research Lab

(London, ON, Canada) or from Nu-Check-Prep (Elysian,

MN). Collagenase was obtained from Worthington, Free-

hold, NJ. The commercially available oils that were added

to the diets were from Molinos Rı́o de La Plata SAIC and

Platafarm SA (La Plata, Argentina).

Diets and Animal Treatment

Male Wistar rats weighing 180 ± 10 g with had been cer-

tified as specific-pathogen free (Laboratory Animal Care

and Supply Facilities, Veterinary Medical School, UNLP)

were used. Upon arrival, the rats were allowed to accli-

matize for a week before starting the experiments. Rats

were housed individually and maintained under controlled

conditions at a temperature of 25 ± 2 �C with a normal

photoperiod of 12 h dark and 12 h light. They were fed with

standard Purina chow (Cargill type ‘‘C’’) from Ganave Co.

(Santa Fe, Argentina) and water ad libitum throughout

gestation and lactation. Clinical examinations together with

body weight evaluation were performed every week during

the experiment. Male pups (47 ± 4 g/animal) were divided

into four groups of ten animals each, and fed specific diets

ad libitum. Isocaloric diets (Table 1) were prepared in an

identical manner, except for the lipid source, which was

added as commercial oil (70 g/kg diet): soybean (S), olive

(O), coconut (C), or grape seed (G). The fatty acyl com-

position of each diet is detailed in Table 2. Rats were fed

according to the American Institute of Nutrition [16].

Animal maintenance and handling were conducted as rec-

ommended by NIH guidelines [17]. All procedures were

approved by the local Laboratory Animal Committee,

Facultad de Ciencias Médicas, UNLP, Argentina.

Experimental Design

Rats were sacrificed after being fed with the diets for

60 days. In order to avoid individual differences among

animals, all rats were fasted for 24 h on day 59, giving

access to the appropriate diet for 2 h, and killed by

decapitation 12 h after the re-feeding period. Food intake,

Table 1 Composition of basal AIN-93 diet

Ingredients (g/kg)

Casein, high protein 250.0

Sucrose 100.0

Corn starch 397.4

Cellulose 50.0

Commercial oil 70.0

Mineral mixturea 35.0

Sodium phosphate, monobasic 8.9

Potassium phosphate, monobasic 8.8

Calcium carbonate 12.5

Calcium phosphate–2H2O 6.3

tert-Butylhydroquinone 0.014

Vitamin mixtureb 10.0

Choline bitartrate 2.5

L-Cystine 3.0

a Contained (g/kg mix.): NaCl 184, K2SO4 136, C6H5O7 (K)3 576,

MgO 63, MnCO3 9.2, ferric citrate 17, ZnCO3 4.2, CuCO3 1,

ammonium molybdate 0.03, Na2SeO3–5H2O 0.03, CrK(SO4)–12H2O

1.0, KIO4 0.05, delipidated casein 8.09
b Contained (g/kg mix): thiamine hydrochloride 0.5, riboflavin

hydrochloride 0.5, niacin 0.5, pyridoxine 0.5, Ca-pantothenate 2.6,

biotin 0.12, choline hydrochloride 50, folic acid 0.1, nicotinamide

1.26, p-aminobenzoic acid 0.5, inositol 50, Vitamin B12 0.006,

Vitamin A 0.06, D-calciferol 0.01, a-tocopherol 1.5, menadione 2.5,

ascorbate 6.0, L-methionine 2.0, delipidated casein 986.7
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water consumption, and body weight were individually

registered during the feeding period. After sacrifice, testes

were removed, weighed, and used for the isolation of

interstitial cells.

Interstitial Cell Isolation

The technical procedure for interstitial cell isolation was

described in detail in a previous report [18]. Briefly, cells

were removed from the interstitial space of the testicular

tissue by mechanical shaking with collagenase in a

metabolic incubator, at 34 �C, according to the method of

Suescun et al. [19]. Cells were suspended in Krebs-Ringer

bicarbonate glucose (KRBG 0.1%), albumin (0.1%), pH

7.4, examined for viability (85–90%) by exclusion of trypan

blue [20], and counted in a hemocytometer to adjust cell

concentration. Aliquots of cell suspensions were subjected

to protein determination by the micromethod of Bradford

[21]. Interstitial cell preparations consisted of Leydig

cells (70%) and of spermatids, spermatocytes and small

cytoplasmic fragments (21%). The homogeneity of cell

preparations was assessed by means of observation of

smears fixed in acetone and stained with hematoxylin-eosin.

Lipid Analysis of Diets and Interstitial Cells

The fatty acid compositions of the diets were routinely

checked by gas-liquid chromatography after derivatization

by methanolic boron trifluoride as described below for lipid

cell isolation and analysis. Total cell lipids were extracted

using the Folch procedure [22]. Neutral (NL) and phos-

pholipids (PL) were isolated from the total lipid extract by

silicic acid microchromatography [23]. Absolute content of

the major lipid subclasses was obtained using commercial

silicagel G-60 TLC plates (Merck, Darmstadt, Germany) as

previously described [24]. The total amount of lipids in

each fraction was determined by either inorganic phos-

phorous quantification [25] or gravimetrically [26]. Lipids

separated by TLC were visualized and identified using the

method of Nakamura and Handa [27]. Rf values were as

reported previously [24]. Individual lipid components

were quantified densitometrically [28]. Cholesterol content

(FC) was enzymatically measured [29]. Triacylglyceride

content (TAG) was assayed using a kit from the Wienner

Lab (Rosario, Argentina). Total fatty acyl methyl esters

(FAME) were prepared by transesterification with metha-

nolic boron trifluoride [30] and analyzed by capillary gas-

liquid chromatography (c-GLC) in a Hewlett Packard HP

6890, with a terminal computer integrator system. FAMEs

were identified by comparison of their relative retention

times with authentic standards.

Steroidogenic Enzyme Activities

Sonicated interstitial cells were centrifuged (10,000g, 15 min,

1–2 �C). Aliquots of supernatants were employed to deter-

mine 3-b-hydroxysteroid-dehydrogenase (3-b-HSD) and

17-b-hydroxysteroid-dehydrogenase (17-b-HSD) enzyme

activities using the method of Marugesan et al. [31].

Hormone Measurement

For the determination of testosterone levels in cells,

interstitial cell suspensions were washed twice with cold

Table 2 Fatty acid composition of diets

Fatty acid Diets

S O C G

6:0 1.3 ± 0.1

8:0 12.5 ± 0.3

10:0 8.0 ± 0.2

12:0 48.9 ± 1.1

14:0 0.2 ± 0.0a 14.7 ± 0.3b 0.2 ± 0.0

15:0 0.1 ± 0.0

16:0 11.5 ± 0.5a 15.5 ± 0.3a 6.9 ± 0.1b 7.5 ± 0.3b

16:1(n-7) 0.1 ± 0.0a 2.3 ± 0.1b 0.1 ± 0.0a 0.1 ± 0.0a

18:0 16.5 ± 0.4a 5.0 ± 0.1b 2.0 ± 0.1c 9.8 ± 0.2d

18:1(n-9) 9.7 ± 0.3a 68.5 ± 1.3b 4.0 ± 0.1c 16.8 ± 0.4d

18:1(n-7) 0.1 ± 0.0 0.1 ± 0.0

18:2(n-6) 55.1 ± 1.9a 8.2 ± 0.3b 1.3 ± 0.0c 65.1 ± 2.0d

18:3(n-6) 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0

18:3(n-3) 6.8 ± 0.1a 0.1 ± 0.0b 0.1 ± 0.0b

20:0 0.2 ± 0.0

20:2(n-6) 0.1 ± 0.0

20:3(n-6) 0.1 ± 0.0

20:4(n-6) 0.1 ± 0.0 tr

20:5(n-3) 0.1 ± 0.0

Analytical parameters

RSFA 28.0 ± 0.7a 20.7 ± 0.3b 94.6 ± 0.9c 17.6 ± 0.7d

RMUFA 9.8 ± 0.2a 70.8 ± 0.9b 4.1 ± 0.1c 17.0 ± 0.9d

RPUFA 62.2 ± 1.8a 8.4 ± 0.2b 1.3 ± 0.0c 65.5 ± 1.8a

DBI 141.6 ± 3.3a 87.8 ± 1.4b 8.0 ± 0.2c 148.3 ± 4.4a

R(n-6)/

R(n-3)

7.9 ± 0.2a 83.0 ± 2.0b �c 654.0 ± 18d

Different letters on the same row indicate values significantly dif-

ferent (P \ 0.01) as determined by one-way ANOVA and Tukey’s

post hoc test

Means below 0.1% are indicated as ‘‘tr’’

Results are expressed as moles % (mean ± 1 SD; n = 6)

S soybean oil, O olive oil, C coconut oil, G grapeseed oil

c-GLC of the FAME was performed as indicated in ‘‘Materials and

Methods’’

R sum of: SFA saturated fatty acids, MUFA monounsaturated fatty

acids, PUFA polyunsaturated fatty acids, DBI double bond index
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PBS and centrifuged (4,000g, 5 min). Pelleted cells were

resuspended and homogenized by sonication (three 30-s

bursts at 50% output in a Heat Systems Ultrasonic

sonicator model W-220F from Plainview, NY) in 65 mM

Tris–HCl buffer (pH 7.0) containing 10% sucrose and

antiprotease inhibitor cocktail (from Sigma Chem. Co.,

Buenos Aires, Argentina) at the concentration recom-

mended by the manufacturer. Cellular and plasma

testosterone and plasma luteinizing hormone concentra-

tions were determined by radioimmunoassay (RIA) using

a commercial kit from Radim (Ponenzia, Italy).

Statistics

Statistical significance of data values was analyzed by one-

way ANOVA followed by Tukey’s test with the aid of

Systat (Version 8.0 for Windows) from SPSS Science

(Chicago, IL). Results were also plotted and analyzed using

Sigma Scientific Graphing Software (Version 8.0) from

Sigma Chem. Co. (St Louis, MO). Multivariable regression

analysis was performed as described by Kleinbaum and

Kupper [32].

Results

Fatty Acid Composition of Diets

Significant differences in fatty acyl composition were

observed among diets (Table 2). Saturated fatty acids

(SFA) represent approximately 95% of the total fatty acid

(FA) content of Diet C and are mainly comprised of short

or medium carbon chain fatty acids. Diet O was charac-

terized by the highest content of monounsaturated fatty

acids (MUFA), mainly oleic acid. Polyunsaturated fatty

acid (PUFA) levels were high in both Diets S and G, with

linoleic acid being the predominant FA. a-Linolenic acid

was found in very low levels in all diets, except S

(approximately 7%). As concerns the n-6/n-3 ratios, they

were varied widely among diets. We observed that the

relative proportion of n-6 versus n-3 fatty acyl chains

decreased in the order C [ G [ O [ S. In agreement with

the fatty acyl composition of each diet, the corresponding

double bond index (DBI) decreased in the order

G = S [ O [ C.

Influence of Diets on Growth Parameters

The influence of diets on feeding parameters is listed in

Table 3. Diets did not significantly influence water con-

sumption (approximately 15 g/day). Initial body weights

were similar in all groups. However, final body weights,

rate of body weight gain, and food efficiency ratio were

significantly elevated in Group C when compared with the

others. Both absolute and relative testicular weights were

significantly higher in Group O when compared to the

other groups.

Changes Induced by Diets on Major Lipid Subclasses

Table 4 shows the effects caused by the diets on the

absolute amount of major lipid subclasses of interstitial

cells. Rats fed on Diets C and O displayed major amounts

of total lipids compared with Groups S and G. The highest

concentrations of phospholipids (PL) were present in

Group O and those of the neutral lipids (NL) in Group C.

The NL/PL ratio was three times higher in Group C with

respect to those ratios observed in the other experimental

groups. Group C was enriched in triacylglycerides, as well

as in free cholesterol (FC). Esterified cholesterol (CE) was

present in relatively small amounts in all groups. When

comparing the FC/CE ratios, we observed similar values in

Groups C and O, which were approximately five times

higher than those calculated for the other groups.

The influence of dietary lipids on the main phospholipid

subclasses is shown in Table 5. Interstitial cells from rats

fed on Diet O exhibited significantly higher concentrations

of PC, PE, and PI than in the other groups. Other phos-

pholipids such as phosphatidylserine, sphingomyelin,

phosphatidic acid, and phosphatidylglycerol, were present

in similar amounts in all groups.

Dietary Effect on Fatty Acyl Composition of Lipid

Subclasses

The relative distribution of fatty acids in PC, PE, and TAG

lipids of interstitial cells is shown in Tables 6, 7, 8,

respectively. We observed significant differences among

groups. One of the most important changes occurred in

phosphatidylcholine (PC) (Table 6) from Group C, of

which 73% was composed of SFA, mainly 16:0 and 18:0,

with minor amounts of short and medium carbon chain

fatty acids (14:0 and 15:0). This group also showed the

lowest level of both MUFA and PUFA. Group O was

characterized by the highest MUFA content, mainly oleic

acid, as well as the lowest levels of SFA (16:0 and 18:0).

PUFA levels were similar to those observed in Groups S

and C. Cells isolated from grape seed-oil fed rats were

characterized by the highest amount of PUFA (45%),

mainly 18:2, 20:4, and 22:5 acids of the n-6 series, with

relatively low levels of SFA and MUFA. Group S was

characterized by its high content of SFA followed by

PUFA, especially 20:4 and 22:5 acids from the n-6 series.

DBI calculated from PC fatty acyl compositional data

decreased in the order G [ O [ S [ C. Despite the fact

that PE fatty acyl composition (Table 7) differs from that
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of PC, the distribution pattern among different diets was

similar. In summary, according to analytical parameters,

SFA were the predominant fatty acids in Group C, MUFA

were the most abundant acyl chains in Group O, and PUFA

enriched the glycerolipids isolated from Groups S or G

derived cells. Table 8 shows the fatty acyl composition of

triacylglycerides (TAG) of interstitial cells. Group C

exhibited the highest levels of SFA, as well as the lowest

amount of MUFA. Group O was characterized by the

highest levels of MUFA and the lowest levels of SFA. In

Groups S and G, SFA amounts were quite similar. Group G

exhibited the highest level of PUFA, similar to that of

Group O, followed by Groups S and C. However, the DBI

in TAG decreased in the order O [ G = S [ C.

Dietary oils also influenced the fatty acyl composition of

cholesterol esters (CE) (Table 9). In this case, the com-

position of the diet exerted a complex influence on the

analytical profile, which did not reflect the relative abun-

dance of the acyl chains in the oil. For example, the

proportion of SFA was similar among groups and even less

abundant (considering stearic acid level) in Group C, which

was fed the most saturated oil. MUFA content was elevated

in the olive-supplemented group, however, the other groups

had similar proportions of oleic and palmitoleic acids. The

Table 3 Main feeding parameters associated to diets

Parameters Diets

S O C G

Initial body weight (g) 40.5 ± 0.3 41.1 ± 0.4 40.0 ± 0.2 42.3 ± 0.6

Final body weight (g) 162.6 ± 5.5a 160.1 ± 4.0a 188.9 ± 4.1b 159.7 ± 5.3a

Body weight gain (g) 122.1 ± 3.3a 119.0 ± 3.7a 148.9 ± 3.1b 117.4 ± 3.5a

Rate of body weight gain (g/day) 2.1 ± 0.1a 2.0 ± 0.1a 2.5 ± 0.1b 2.0 ± 0.1a

Food efficiency ratioa 8.5 ± 0.2a 7.9 ± 0.3a 9.5 ± 0.2b 8.5 ± 0.2a

Absolute testicular weight (g) 1.7 ± 0.1a 2.0 ± 0.1b 1.8 ± 0.2a 1.6 ± 0.1a

Relative testicular weight (mg/g)b 7.6 ± 0.4a 10.5 ± 0.3b 8.9 ± 0.5a 8.0 ± 0.4a

Different letters on the same row indicate values significantly different (P \ 0.01) as determined by one-way ANOVA and Tukey’s post hoc test

Values represent the mean ± 1 SD (n = 10)

S soybean oil, O olive oil, C coconut oil, G grapeseed oil
a Food efficiency ratio = [body weight gain (g)/food intake (g)] 9 102

b Relative testicular weight = testis weight (mg)/body mass (g)

Table 4 Effect of dietary lipids on the absolute amount of the major lipid subclasses of interstitial cells

Lipid subclass Diets

S O C G

Total Lipidsa 86.5 ± 4.2a 107.6 ± 5.2b 128.1 ± 4.4c 80.0 ± 3.1a

Phospholipids (PL)b 55.5 ± 3.0a 72.3 ± 2.3b 44.1 ± 3.2c 59.3 ± 3.1a

Neutral lipids (NL)c 29.3 ± 1.5a 36.2 ± 3.1b 79.5 ± 2.3c 33.3 ± 2.1a

Triacylglyceridesd 12.4 ± 0.6a 16.1 ± 1.4a 39.7 ± 1.1b 9.5 ± 0.3c

Free cholesterol (FC)e 17.8 ± 0.8a 23.8 ± 0.8b 31.1 ± 1.0c 15.3 ± 0.5a

Esterified cholesterol (CE)e 2.0 ± 0.1a 0.8 ± 0.1b 1.1 ± 0.1b 2.7 ± 0.2c

NL/PL 0.53 ± 0.02a 0.50 ± 0.03a 1.80 ± 0.08b 0.56 ± 0.02a

FC/CE 8.9 ± 0.2a 29.8 ± 0.5b 28.3 ± 0.7b 5.7 ± 0.2c

S soybean oil, O olive oil, C coconut oil, G grapeseed oil

Results represent the mean ± 1 SD, of four independent determinations assayed in triplicate

Different letters on the same row indicate values significantly different (P \ 0.01) as determined by one-way ANOVA and Tukey’s post hoc test
a pg/mg protein
b pmol inorganic phosphate/mg protein
c pmol tripalmitin/mg protein
d pmol linoleoyl-cholesterol/mg protein
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content of arachidonate (20:4n-6) was increased in Diet C,

which was depleted in linoleic acid, while it was decreased

in the other diets, especially those rich in MUFA (O). The

content of 22:6n-3 fatty acid was approximately constant

among groups and independent of the diet composition,

while the amount of 22:5n-6 was significantly different and

not associated with the acyl composition of the dietary oil.

For example, Group C had a 22:5n-6 level similar to that of

Group G. The changes observed in the relative amounts of

PUFA agreed with the DBI values calculated for each diet.

Table 5 Effect of dietary lipids on the main phospholipid subclasses from interstitial cells

Lipid subclass S O C G

Phosphatidylcholinea 25.3 ± 1.8a 34.4 ± 2.0b 21.0 ± 2.1c 29.7 ± 1.7a

Phosphatidylethanolaminea 18.6 ± 1.4a 23.5 ± 1.7b 11.1 ± 1.1c 18.0 ± 2.0a

Phosphatidylserine 5.5 ± 0.4 5.9 ± 0.2 5.5 ± 0.3 5.0 ± 0.2

Sphingomyelin 3.3 ± 0.2 4.0 ± 0.1 3.4 ± 0.2 3.1 ± 0.1

Phosphatidic acid 0.8 ± 0.1 0.7 ± 0.1 0.6 ± 0.0 0.9 ± 0.1

Lysophospholipids 1.7 ± 0.1a 2.2 ± 0.1b 1.5 ± 0.1a 2.2 ± 0.1a

Phosphatidylinositol 2.3 ± 0.2a 3.8 ± 0.2b 1.5 ± 0.2c 2.1 ± 0.2a

Phosphatidylglycerol 0.6 ± 0.0 0.7 ± 0.1 0.4 ± 0.0 0.5 ± 0.1

S soybean oil, O olive oil, C coconut oil, G grapeseed oil

Main phospholipid subclasses separated by HP-TLC as described in ‘‘Materials and Methods’’

Values represented pmol of inorganic phosphate/mg cellular protein (mean ± 1 SD, n = 6)

Different letters on the same row indicate values significantly different (P \ 0.01) as determined by one-way ANOVA and Tukey’s post hoc test
a These fractions include plasmanyl- and plasmenyl-species

Table 6 Effect of dietary lipids on the fatty acyl composition of phosphatidylcholine (PC) from interstitial cells

Fatty acids S O C G

14:0 tr a tr a 3.1 ± 0.1b 0.1 ± 0.0a

15:0 tr a tr a 0.2 ± 0.0b tr a

16:0 44.4 ± 1.9a 29.9 ± 2.1b 64.1 ± 2.0c 33.3 ± 2.5b

16:1(n-7) 1.8 ± 0.2a 1.6 ± 0.1a tr b 1.0 ± 0.2a

18:0 4.1 ± 0.1a 3.0 ± 0.1b 5.5 ± 0.1c 4.6 ± 0.0a

18:1(n-9) 18.0 ± 0.6a 37.5 ± 1.4b 2.0 ± 0.1c 15.1 ± 0.4a

18:2(n-6) 3.0 ± 0.1a 2.5 ± 0.1a 0.1 ± 0.0b 12.8 ± 2.2a

18:3(n-3) 0.2 ± 0.0a tr b tr b 0.1 ± 0.0c

20:3(n-6) 0.7 ± 0.1a 0.5 ± 0.1a tr b 0.8 ± 0.1a

20:4(n-6) 11.5 ± 0.6a 10.0 ± 0.5a 4.3 ± 0.1b 15.5 ± 0.5c

22:4(n-6) 0.5 ± 0.0 0.1 ± 0.0b tr c 1.0 ± 0.1d

22:5(n-6) 14.0 ± 1.0a 14.6 ± 0.7a 20.6 ± 0.6b 13.9 ± 0.4a

22:6(n-3) 0.6 ± 0.1a 0.3 ± 0.0b 0.1 ± 0.0c 0.7 ± 0.1a

Analytical parameters

RSFA 48.5 ± 1.8a 32.9 ± 1.2b 72.9 ± 2.0c 38.0 ± 2.1b

RMUFA 19.8 ± 0.9a 39.1 ± 1.9b 2.0 ± 0.1c 16.1 ± 1.2a

RPUFA 30.5 ± 2.0a 28.0 ± 2.2a 25.1 ± 1.0a 44.8 ± 1.8b

DBI 139.5 ± 10.0a 160.8 ± 9.5b 121.0 ± 11.2c 186.3 ± 5.3d

R(n-6)/R(n-3) 37.1 ± 1.5a 92.3 ± 1.8b 251.0 ± 3.3c 55.0 ± 1.2d

S soybean oil, O olive oil, C coconut oil, G grapeseed oil

c-GLC of PC-FAME was performed as described in ‘‘Materials and Methods’’

Values are expressed as mol% (mean ± 1 SD, n = 6)

Different letters on the same row indicate values significantly different (P \ 0.01) as determined by one-way ANOVA and Tukey’s post hoc test

Means below 0.1% are indicated as ‘‘tr’’

Some minor components have been omitted; R sum of: SFA saturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated

fatty acids, DBI double bond index
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Influence of Dietary Lipids on Steroidogenic Function

and Testosterone Production of Interstitial Cells

The activities of the two key enzymes for testosterone bio-

synthesis, 3-b-hydroxysteroid-dehydrogenase (3-b-HSD)

and 17-b-hydroxysteroid-dehydrogenase (17-b-HSD), were

significantly affected by the diets tested. Both enzyme

activities were significantly decreased in interstitial cell

homogenates from rats fed Diets S and G compared

with the levels observed in Group O or C preparations

(Fig. 1).

Testosterone concentrations in interstitial cell homo-

genates are shown in Fig. 2a. The highest androgen

concentrations were found in cells from Groups O and C.

The decrease in cellular testosterone concentration was in

the order, O = C [ S = G. Figure 2b shows the plasmatic

levels of free testosterone and luteinizing hormone. The

highest levels of testosterone were observed when the rat

diet was supplemented with Oils O or C. In Groups S or G,

plasma testosterone concentration was significantly lower.

Luteinizing hormone followed the opposite trend (Fig. 2b)

with Groups S and G containing the highest levels and

Groups O and C the lowest.

In Fig. 3 we have represented the linear correlation

coefficient (r2) between testosterone production and free or

esterified cholesterol. Therefore, testosterone concentration

directly correlated with free cholesterol (Fig. 3a). Addi-

tionally, a significantly negative correlation was found

between cellular testosterone production and CE content

(Fig. 3b).

Discussion

The control of testicular function is a complex process that

requires the functional integrity of the seminiferous tubules

and Leydig cells with a suitable multihormonal stimula-

tion. The steroidogenic capacity of Leydig cells is essential

for spermatogenesis. However, not only hormonal aspects

are important in testis physiology; lipid composition is also

crucial. Several factors have demonstrated that nutrition is

an environmental factor of major importance [33]. Other

Table 7 Effect of dietary lipids on the fatty acyl composition of phosphatidylethanolamine (PE) from interstitial cells

Fatty acids S O C G

14:0 0.1 ± 0.0a tr a 3.1 ± 0.1b 0.1 ± 0.0a

15:0 0.2 ± 0.0a tr b 0.2 ± 0.0a tr b

16:0 30.4 ± 2.1a 21.5 ± 2.2a 39.4 ± 2.3b 23.7 ± 2.2c

16:1(n-7) 0.8 ± 0.1a 1.1 ± 0.1a tr b 0.9 ± 0.1a

18:0 9.8 ± 0.3a 7.0 ± 0.4a 18.3 ± 0.7b 7.6 ± 0.2a

18:1(n-9) 10.3 ± 0.4a 26.6 ± 0.5a 1.2 ± 0.1b 12.2 ± 0.5c

18:2(n-6) 2.5 ± 0.2a 3.0 ± 0.1a 0.1 ± 0.0b 6.2 ± 0.7c

18:3(n-3) 0.4 ± 0.0a 0.1 ± 0.0b tr c 0.2 ± 0.0d

20:3(n-6) 1.0 ± 0.2a 0.6 ± 0.1b 0.1 ± 0.1c 0.9 ± 0.1a

20:4(n-6) 15.2 ± 0.5a 12.0 ± 0.4b 11.1 ± 0.2b 17.2 ± 2.3a

22:4(n-6) 1.1 ± 0.1a 0.7 ± 0.3b 0.1 ± 0.0c 1.5 ± 0.1a

22:5(n-6) 20.3 ± 1.8a 23.8 ± 1.1a 25.1 ± 1.2b 21.0 ± 0.5a

22:6(n-3) 3.2 ± 0.2a 2.1 ± 0.1b 1.0 ± 0.0c 2.7 ± 0.1d

Analytical parameters

RSFA 40.5 ± 1.8a 28.5 ± 1.0b 57.7 ± 2.0c 31.4 ± 1.0b

RMUFA 11.1 ± 0.5a 27.7 ± 1.1b 1.2 ± 0.1c 13.1 ± 0.4a

RPUFA 43.7 ± 1.2a 42.3 ± 2.1a 37.5 ± 1.3b 49.7 ± 1.3c

DBI 214.8 ± 10.0a 221.4 ± 9.0a 178.7 ± 7.7b 238.0 ± 9.3c

R(n-6)/R(n-3) 11.1 ± 1.1a 18.2 ± 0.7b 36.5 ± 1.1b 13.0 ± 0.5c

S soybean oil, O olive oil, C coconut oil, G grapeseed oil

c-GLC of PC- FAME was performed as described in ‘‘Materials and Methods’’

Values are expressed as mol% (mean ± 1 SD, n = 6)

Different letters on the same row indicate values significantly different (P \ 0.01) as determined by one-way ANOVA and Tukey’s post hoc test

Means below 0.1% are indicated as ‘‘tr’’

Some minor components have been omitted; R sum of: SFA saturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated

fatty acids, DBI double bond index
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authors have demonstrated that dietary fats can modulate

steroidogenic function of mammalian testis [12, 34].

However, little is known about the changes induced by

dietary oils on lipid composition of interstitial cells and

their eventual correlation with testosterone biosynthesis.

In this study, we demonstrated that commercial oils

added to diets were able to affect lipid composition of

interstitial cells, mainly Leydig cells, and that they mark-

edly influenced their androgen biosynthesis capacity. The

oils tested were selected by taking into account their

massive consumption over the world and also because they

were obtained from vegetable sources where cholesterol

was absent. Differences among oils reflected their charac-

teristics as a source of precursor FA, which, in turn, were

then metabolized to MUFA and PUFA of the different fatty

acid series.

Despite the fact that Oils S and G had the highest con-

tent of linoleic and/or linolenic acids they differed in the

relative proportion of n-6 and n-3 fatty acid components. It

was demonstrated that the ratio n-3/n-6 was important not

only for cardiovascular disease prevention but also for a

normal spermatogenesis [6]. However, the relationship

between this analytical parameter and the androgenic

capacity of interstitial cells is a matter that is still unsolved.

We clearly demonstrated that oil-supplemented diets

strongly modified interstitial cell lipid composition. Espe-

cially important were the differences produced in the

absolute amount of NL and PL, and in the ratios of FC/CE.

Moreover, FA patterns of these major lipids strongly dif-

fered in their fatty acyl chains being SFA, MUFA and

PUFA, concentrated in Groups C, O and S/G, respectively.

Changes observed in the major lipid subclasses induced by

the commercial oils were in accordance with those found

for tissues other than testis [35].

The importance of the FA modifications observed in the

main lipid subclasses is their capacity to influence the

androgen metabolism. Testicular lipids have an active

metabolism, and they arise from both dietary sources and

from the processes of synthesis, elongation, desaturation,

interconversion, esterification, and oxidation by the testic-

ular tissue itself. Moreover, it is known that dietary fats can

affect the testicular fatty acid composition in a similar way

to that seen in hepatic tissue [7]. Also, certain dietary fats

can modulate not only fatty acyl composition of testicular

lipids, but also testosterone metabolism. It was demon-

strated that diets rich in PUFAs depress Leydig cell

function in rats [12]. In agreement with this report, our data

demonstrated that diets supplemented with Oils S and G

caused reductions in 3b- and 17b-HSD enzyme activities

compared with Oils O and C. Decreased enzyme activities

Table 8 Effect of dietary lipids

on the fatty acyl composition of

triacylglycerides (TAG) from

interstitial cells

S soybean oil, O olive oil, C
coconut oil, G grapeseed oil

c-GLC of PC- FAME was

performed as described in

‘‘Materials and Methods’’

Values are expressed as mol%

(mean ± 1 SD, n = 6)

Different letters on the same

row indicate values significantly

different (P \ 0.01) as

determined by one-way

ANOVA and Tukey’s post hoc

test

Means below 0.1% are indicated

as ‘‘tr’’

Some minor components have

been omitted; R sum of: SFA
saturated fatty acids, MUFA
monounsaturated fatty acids,

PUFA polyunsaturated fatty

acids, DBI double bond index

Fatty acids S O C G

12:0 tr a 0.5 ± 0.1b

14:0 0.8 ± 0.1a 0.4 ± 0.0b 2.4 ± 0.2c

15:0 0.1 ± 0.0a tr b 0.1 ± 0.0 tr

16:0 28.8 ± 1.6a 22.9 ± 1.4b 44.8 ± 3.5c 25.3 ± 2.2b

16:1(n-7) 6.0 ± 0.2a 3.9 ± 0.1b 0.7 ± 0.1c tr d

18:0 5.1 ± 0.2a 4.8 ± 0.2a 14.2 ± 0.6b 5.3 ± 0.1a

18:1(n-9) 19.7 ± 0.8a 24.7 ± 2.0b 8.0 ± 0.3c 21.1 ± 1.5a

18:1(n-7) 0.2 ± 0.0a tr b 0.6 ± 0.1c 0.1 ± 0.0a

18:2(n-6) 10.0 ± 0.5a 11.1 ± 0.5b 5.1 ± 0.2c 21.0 ± 0.8d

18:3(n-6) tr a 0.1 ± 0.0a tr a 0.3 ± 0.0b

18:3(n-3) 0.2 ± 0.0a tr b tr b tr b

20:2(n-6) tr a 0.3 ± 0.0b 1.0 ± 0.1c 0.9 ± 0.1c

20:3(n-6) 0.3 ± 0.0a 2.5 ± 0.2b 0.1 ± 0.0a 1.3 ± 0.1c

20:4(n-6) 4.3 ± 0.1a tr b 2.5 ± 0.1c 8.0 ± 0.2d

22:4(n-6) 3.1 ± 0.1a 2.8 ± 0.1a 0.2 ± 0.0b 4.5 ± 0.1c

22:5(n-6) 19.2 ± 1.1a 24.6 ± 0.9b 18.1 ± 1.9a 11.7 ± 0.4c

22:6(n-3) 1.1 ± 0.1a 1.0 ± 0.1a 0.4 ± 0.0b 0.2 ± 0.0c

Analytical parameters

RSFA 34.8 ± 2.0a 28.1 ± 1.7b 62.0 ± 3.3c 30.6 ± 2.1b

RMUFA 25.9 ± 1.5a 28.6 ± 1.3b 9.3 ± 0.8c 21.2 ± 1.1d

RPUFA 38.2 ± 2.3a 42.4 ± 2.5b 27.4 ± 1.8c 47.9 ± 3.0b

DBI 178.7 ± 10.1a 199.4 ± 8.0b 125.5 ± 7.7c 184.8 ± 5.9a

R(n-6)/R(n-3) 28.5 ± 2.2a 42.4 ± 1.9b 68.5 ± 3.0c 239.5 ± 5.2d
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were in agreement with an inhibition in testosterone pro-

duction by Leydig cells. This pattern of response was also

reflected in peripheral plasma [34].

We also observed that Diets C and O had the best

comparative performance in testosterone production

despite their very different fatty acyl composition. The role

of SFA and MUFA in steroidogenic function is a contro-

versial issue. Oleic acid was provided predominantly by

olive oil. This fatty acid has regulatory functions in many

tissues [36–41] and it is accepted that its endogenous

biosynthesis is insufficient for normal cell function. Thus,

this acid must be obtained from dietary lipids [42]. How-

ever, previous reports have suggested that excessive oleic

acid supplementation appears to inhibit testosterone syn-

thesis by decreasing cholesteryl esterase activity [43]. This

finding contradicts previous experimental evidence, indi-

cating a stimulating effect of MUFA and an inhibitory

effect exerted by n-3 PUFA [44]. Similar controversial

results were observed in the relative amount of saturated

fatty acids [45]. Other researchers have also reported that

FA could inhibit steroidogenesis at one of the steps pre-

ceding the conversion of cholesterol to pregnenolone [46].

Taking into account all these previous results, it is likely

that both excessive PUFA and/or MUFA may be deleteri-

ous for testosterone production. However, our findings

indicate that a diet enriched in MUFA (olive oil) may be

important to keep androgenic synthesis within the normal

values whereas PUFA diets appear to depress Leydig cell

function. Such a conclusion denotes the importance of

dietary lipids in Leydig cell function.

The availability of free cholesterol from cholesterol

esters is influenced not only by the quantity and quality of

FA but also by hormonal levels. In rat Leydig cells, the

cholesterol side-chain cleaving enzyme is subjected to LH

regulation in a complex way, which depends on both the

time and the intensity of the gonadotrophic stimulus [47].

Table 9 Effect of dietary lipids on the fatty acyl composition of cholesterol esters (CE) from interstitial cells

Fatty acids S O C G

14:0 2.3 ± 0.1a 1.9 ± 0.2a 4.5 ± 0.2b 1.0 ± 0.1c

15:0 1.0 ± 0.3 0.8 ± 0.2 0.7 ± 0.2 0.7 ± 0.1

16:0 17.6 ± 1.0a 18.4 ± 0.7a 19.2 ± 0.9a 13.3 ± 0.5b

16:1 (n-7) 0.3 ± 0.1a 1.5 ± 0.1b 0.4 ± 0.1a 0.3 ± 0.0a

18:0 23.0 ± 1.2a 25.4 ± 1.2b 19.9 ± 0.8c 21.8 ± 0.9a

18:1 (n-9) 15.3 ± 0.5a 20.0 ± 1.0b 13.0 ± 0.2c 14.4 ± 0.3c

18:2 (n-6) 1.1 ± 0.1a 1.2 ± 0.3a 0.8 ± 0.1a 3.8 ± 0.1b

18:3 (n-3) 0.3 ± 0.1a tr b tr b tr b

20:3 (n-6) 1.5 ± 0.1a 1.3 ± 0.2a 1.0 ± 0.2a 3.1 ± 0.1b

20:4 (n-6) 8.6 ± 0.6a 5.1 ± 0.2b 12.3 ± 0.4c 11.7 ± 0.8c

22:2 (n-6) 1.6 ± 0.1a 1.8 ± 0.1a 0.8 ± 0.1b 1.3 ± 0.1a

22:3 (n-6) 0.1 ± 0.0a tr a 0.1 ± 0.0a 0.2 ± 0.0b

22:4 (n-6) 0.9 ± 0.1a 0.1 ± 0.0b 0.5 ± 0.0c 0.7 ± 0.1a

22:5 (n-6) 13.8 ± 0.8a 9.5 ± 0.5b 16.7 ± 1.0c 16.2 ± 0.5c

22:5 (n-3) 0.2 ± 0.0a 0.2 ± 0.0a tr b 0.1 ± 0.0b

22:6 (n-3) 12.0 ± 1.4 12.5 ± 0.8 10.1 ± 0.7 11.2 ± 1.0

Analytical parameters

RSFA 43.9 ± 1.2a 46.5 ± 1.1a 44.3 ± 1.3a 36.8 ± 1.1a

RMUFA 15.6 ± 1.0a 21.5 ± 0.7b 13.4 ± 0.3c 14.7 ± 0.5a

RPUFA 40.1 ± 1.3a 31.7 ± 1.5b 42.3 ± 1.1a 48.3 ± 1.0c

DBI 205.8 ± 8.1a 175.7 ± 6.0b 185.2 ± 9.9c 233.1 ± 8.4d

R(n-6)/R(n-3) 2.2 ± 0.2a 1.5 ± 0.1b 3.1 ± 0.2c 3.3 ± 0.1c

S soybean oil, O olive oil, C coconut oil, G grapeseed oil

c-GLC of PC-FAME was performed as described in ‘‘Materials and Methods’’

Values are expressed as mol% (mean ± 1 SD, n = 6)

Statistical analyses were performed as indicated in ‘‘Materials and Methods’’

Different letters on the same row indicate values significantly different (P \ 0.01) as determined by one-way ANOVA and Tukey’s post hoc test

Means below 0.1% are indicated as ‘‘tr’’

Some minor components have been omitted; R sum of: SFA saturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated

fatty acids, DBI double bond index
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As described in our paper, LH levels were elevated in Diets

S and G compared to the other experimental groups. This

stimulation may adversely affect the activity of the cho-

lesteryl-side chain cleavage enzyme, and consequently, it

may contribute to the inhibition of androgen production by

decreasing the concentration of the precursor.

We also observed that the side chain of the esterified

cholesterol is strongly influenced by the type of lipid

present in the diet. This finding was in agreement with

previous experimental evidence indicating that the com-

position of the cholesteryl esters in testis is more strongly

affected than that of the other lipid subclasses [7].

The lipid changes we observed could also be involved in

other mechanism(s) of action which depend on the physi-

cochemical properties of interstitial cell membranes. It is

well known that alterations in lipid proportions and/or fatty

acyl chains acylated to complex lipids strongly influence

several processes that occur in the cytoplasm and in the

inner cell membranes, such as mitochondrial membranes

[48–51]. Receptor-mediated signal transduction and even

free cholesterol transport to the inner mitochondrial

membrane are examples of processes that should be

affected by lipid composition. It is well documented that

the phospholipid content and the type of fatty acids acyl-

ated to phospholipids were both influenced by dietary

manipulation and caused alterations on membrane-medi-

ated gonadotropin action in testicular tissues [7].

Previous reports from other laboratories have described

the stimulating effect of arachidonyl-CoA or free arachid-

onate on the activity of StAR protein and cholesterol

transport into the mitochondria for androgen production

[52]. Arachidonate involved in these regulatory processes

would be obtained from the cholesteryl ester pool via the

ACS4/Acot2 system [53] without the intervention of

phospholipase A2 [54]. The proportion of arachidonyl-side

chains within the esterified cholesterol pool would proba-

bly regulate the proportion of free cholesterol available for

testosterone biosynthesis. This speculation was not evident

Fig. 2 Hormonal levels measured by RIA methodology for interstitial

cells (a) or plasma (b) from rats fed different diets (S soybean, O olive,

C coconut, and G grape-seed oil-supplemented diet). Values of free

testosterone for interstitial cells were expressed as ng/mg cellular

protein, and they were the mean ± SD of ten independent determina-

tions. Bars of b correspond to the concentration of LH (black mUI/mL)

or free testosterone (gray nmol/L) in peripheral plasmas and they are

the mean ± SD of ten independent determinations. Statistical analyses

were performed as indicated in ‘‘Materials and methods’’. In all cases

different superscript letters indicate values significantly different

(P \ 0.01) as determined by one-way ANOVA and Tukey’s post hoc

test

Fig. 1 Activities of the two key enzymes for testosterone biosyn-

thesis: 3-beta-hydroxysteroid-dehydrogenase (3b-HSD) and 17-beta-

hydroxysteroid dehydrogenase (17b-HSD) in interstitial cells from

rats fed different diets (S soybean, O olive, C coconut, and G grape-

seed oil-supplemented diet). Results presented as mean ± 1 SD,

n = 10. Different superscript letters indicate values significantly

different (P \ 0.01) as determined by one-way ANOVA and Tukey’s

post hoc test
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from the compositional data. However, we demonstrated

that the level of esterified cholesterol increased in the order

O [ C [ S [ G, while the level of the acylated cholesterol

increased in the opposite way (G [ S [ C [ O). More-

over, a positive linear correlation between androgen

production and FC was evident, while this correlation

became negative when CE was considered as the inde-

pendent variable.

Data obtained form other laboratories also provide

substantial support for the hypothesis that fat ingestion is

sexually differentiated in humans. The regulatory stimuli

controlling the consumption of fat arise from oral, gastric,

intestinal, hepatic, and adipose sites [55]. However, envi-

ronmental factors may modify this physiological behavior.

In the past decades, a progressively significant worldwide

decline in semen quality and androgenic performance was

reported [56–59]. Within the environmental factors that

determine this phenomenon, increasing pollutants for

example [59–61], we think that lipid composition of the

diet should be considered as one of the most important.

Future research in this area may contribute to the under-

standing of the mechanism(s) involved and also the

prevention of the damage induced by an inadequate diet.
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