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Thermodynamic diagrams for the copper/molten potassium nitrate system have been calculated and 
expressed either as potential/pO 2-, potential/pO~ or potential/pO~- diagrams. They exhibit the 
corresponding immunity, active dissolution, passivity and transpassivity regions. 

1. Introduction 

Thermodynamic diagrams of different metal/ 
molten alkaline nitrate systems have been 
calculated on the basis of the Lux-Flood acid- 
base theory applied to molten nitrates, on the 
assumption that the following equilibrium 
occurs : 

N 0 ~  = N 0 ~ + + 0  2- (1) 

This equilibrium involves the existence of 0 E- 
and NO + ions together with N0~ ion as the 
main ionic species in the nitrate melts [1]. 
The application of E/p02 diagrams to the in- 
terpretation of metal corrosion in nitrate melts 
has already been discussed [2-4]. Nevertheless, 
according to recent electrochemical investiga- 
tions there is no clear evidence of equili- 
brium (Equation 1) in these melts, so that 
instead of those ionic species the occurrence of 
other ions, such as 02  and 02-  , have been 
determined [5-7]. 

The concentrations of the various oxygen 
ionic species in the alkaline nitrate melts de- 
crease in the order [02]> [02-]> [02-]. This 
fact suggested a different approach to calculate 
the thermodynamic diagrams of metal/molten 
nitrate systems, based upon 02  and 0z 2- ions as 
electroactive species instead of the 02-  ion. 
These calculations are reported in the present 
paper with reference to the copper/molten 
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potassium nitrate system at different tempera- 
tures. The three potential/(log concentration)-i 
plots define areas of immunity, corrosion and 
passivity which will be compared with experi- 
mental data derived from voltammetric runs 
made with the copper/molten alkaline nitrate 
system [7]. Preliminary results on the electro- 
chemical behaviour of this system at 250~ 
indicate film formation on the copper surface 
mainly consisting of CuzO [8]. 

2. Results 

2.1. The potential/pO 2- diagram 

The calculation procedure to obtain the potential/ 
pO 2- diagram of the copper/potassium nitrate 
melt in the 500-700 K range, is the same as that 
already described in previous publications [2-4, 
9]. The potentials are referred to the standard 
nitrate reversible electrode which corresponds to 
the following equilibrium: 

NO~(1) = NO2(g)+�89 (2) 

Most of the thermal data were taken from the 
literature [10-12], and when the energies of 
formation were not available, they were estimated 
through the corresponding Born-Haber cycle. 
Thus, the standard free energies of formation of 
CuNO 3 and Cu(NO3) 2 were evaluated respect- 
ively from the following equilibria: 

KNO3(1) + CuCl(s) -- KCl(s) + CuNOds) (3) 
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40 ~0 20 to 0 
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Fig. 1. Potential/pO 2-  diagram at 500K. The numbers correspond to the equilibria 
shown in Table 1. 
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Fig. 2. Potent ia l /pO 2 -  diagram at 700K. The numbers correspond to the equil ibria 
shown in Table l. 
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and 

2KNOa(1)+CuCIz(s) = 2KCI(s)+Cu(NO3)2(s ). 
(4) 

Table 1 contains the various equilibria involving 
copper, copper ions, copper oxides and oxygen 
which were considered to evaluate the potential/ 
pO a- diagrams shown in Figs. 1 and 2. The 
corresponding Nernst equations, standard free 
energies of formation and standard potentials at 
500, 600 and 700 K are also assembled in Table 1. 

2.2. The potential/pO T and potential/p022- dia- 
grams 

Recent electrochemical studies on molten alka- 
line nitrates either pure or with the addition of 
sodium oxide [6, 7, 13], indicate the existence of 
the following equilibria involving NO 2 and 022- 
ions: 

O2-"1-NO3 = O22--~-NO 2 (5) 

and 

022- +2NO 3 = 2NO~ + 2 0 2  (6) 

The different oxygen ions are involved in electron 
transfer and disproportionation reactions [6]: 

O2+2e = 02 (7) 

o + e = o22- (8) 

and 

20 2 -- O2- + 02. (9) 

The concentrations of the different oxygen'ionic 
species are related by the disproportionation 
constant, 

K9 - [02][022-] = (3-5_+ 1)x 10 -6  at 229~ 
[02]  2 

and by the equilibrium constant, 

[NO2] [02-] = 3 at 229~ [6]. 
K s = [NO~][O2-] 

The values of the equilibrium constant make it 
clear that the important oxygen anions in the 
nitrate melts are the superoxide (02)  and the 
peroxide (022-) ions rather than the oxide (0 2-) 
ion. In the presence of oxygen at appreciable 
partial pressures any oxide or peroxide is con- 

verted virtually completely to superoxide. These 
equilibria apparently determine the high oxidi- 
zing power of the molten alkaline nitrates as 
compared to other oxoanion-containing melts. 

The ratio of the concentrations of the different 
oxygen ionic species depends on the ionic com- 
position of the melt and on the amount of 
dissolved oxygen. The alkaline oxides are rather 
insoluble in the nitrate melt, the dissolution 
apparently occurring by a chemical reaction 
through 0 2- and 0 2 ion formation [13]. At 
500K and a pO 2- of about 18, the 0 2 ion con- 
centration is of the order of 10 -5 mol per 1000 g 
and it increases slightly with the amount of 
sodium oxide present in the melt [14]. When 
sodium oxide exists in the nitrate melt, the NO 2 
ion concentration is comparable to the 0 2 ion 
concentration at equilibrium, and the 0 2- and 
022- ion concentrations are various orders of 
magnitude lower than the 0 2 ion concentration. 
The 0 2- and 022- ion concentrations increase 
rapidly when the amount of sodium oxide added 
is increased in the absence of oxygen. On the 
basis of Equations 5 to 9 the thermodynamic 
diagram can be presented in terms of either pO 2 
or pO 2-, assuming the 0 2 and 022- ions are 
respectively, the potential-determining species. 

Since no thermal data related to species con- 
taining 0 2 and 022- ions are available, the 
estimated standard potentials of the redox 
couples of Equations 7 and 8 reported in the 
literature were used directly. These standard 
potentials were calculated from the correspond- 
ing half-wave potentials neglecting the terms 
containing the activity and diffusion coefficient 
ratio in the Nernst equations. The half-wave 
potentials were obtained from voltammo- 
grammes run with platinum electrodes and 
NaNOa-KNO a eutectic at 229~ [6]. This pro- 
cedure implies an error in the standard potentials 
of about l0 mV [6]. Table 2 contains the Nernst 
equations, standard free energies of formation 
and standard potentials at 500K, calculated for 
the different reactions which were considered to 
evaluate the potential/pO 2 diagram shown in 
Fig. 3. To calculate equilibria where the NO 2 ion 
is involved, the standard free energy change of 
the reaction: 

NO~(1) = NO2(g)+e (10) 
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Table 2. 

No. Reaction Nernst equation AG~ E~ 

o R T  
1 C u + + l e  = Cu E = E +--ff In [Cu +] 26.592 -1 .153 

o R T  
2 Cu2++2e  = Cu E = E +~-fi In [Cu 2+] 35.418 --0.768 

-~  [Cu2+l 
3 C u 2 + + e  = Cu + E = E ~  In [Cu+ ] 8"826 --0"383 

o R T  
4 2 C u z O + l e  = 4 C u + O ~  E = E +- f f  p O i  91.985 --3.987 

o R T  
5 2 C u O + l e  = 2 C u + O i  E = E + ~-  p O i  80.745 --3.50 

o R T  
6 4 C u O + l e  = 2CuzO+OS E = E + - f f  pO5 69"505 --3.01 

7 4 C u + + O S + 3 e  = 2Cu20 E =  E~ + 4 R T  _ 3F [Cu ] - - ~  pOz 14.383 --0.208 

o R T  + 2 R T  
8 2 C u + + O 2 + l e  = 2CuO E = E +---~ In [Cu ] -----~ pO~ --27-561 1.195 

o R T  2+ 2 R T  
9 2 C u 2 + + O i + 3 e  = 2CuO E =  E +~-~ In [Cu ] -~--~ pO~ --9.909 0-143 

E ~ R T  2+ 4 R T  
10 4 C u 2 + + O i + 7 e  = 2Cu20 E = +~-~ In [Cu ] --~-~ pOT 49"687 --0"308 

11 2 C u + 2 C u + + O ~ + l e  = 2Cu20 E = E ~  -- In [Cu+] 2 -  pO?- --38.801 1.682 

o R T  R T  
12 O z + l e  = O7 E = E +---~ I n p O 2 +  - ~  pO2 28'442 --1"233 

o R T  R.~T F 13 O ? ' + l e  = 0 2 -  E = E ----~ In [O~-]--  pOT 40-898 --1.773 

~o R T ,  [NO~] e R T  
14 2 N O ~ + l e  = 2 N O 7 + O 7  E =  t~ ----~ m [ N ~ + . - -  ~ p u ~  67.194 --2.91 

o R T  [NO~] 2 R T  2 
15 2 N O ] + 2 e = 2 N O ~ + O  2- E = E  + ~ l n [ N o ~ ] 2  ~ -~ ln [O2- ]  108"092 -2"34 

16 N O ~ + 2 e  = N O ~ + O  2- E - -  E ~  [NOel R T l n  
2F [NOel  2F [0 2-] 110"155 --2.388 

17 N O a + l e  = NO~ E = E~ PN~ 19"376 --0.825 
F [NO 2 ] 

18 2 O i  +2Cu+ + 3 N O 2  

= C u 2 0 +  3NO 3 

19 2 0 2  +Cu2+ + 3 N O 2  

= CuO+ 3NO~ 

PO5 = (AG~ 
R T  

--93-599 

- - (AG~ In{[Cu2'+ ][NO I ]a/[NO] ]3)) pO; = 
R T  

--105.745 

PO2 = 20'5 

p O i  = 23'19 
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Fig. 3. Potential/pO 7 diagram at 500K. 
shown in Table 2. 

I ..... 1 I 
4O ~0 z0 1o pO?, 0 

The numbers correspond to the equilibria 

with respect to the reversible nitrate electrode 
was taken equal to 19.37 Kcal tool -1 [15]. 

Another way to arrive at a potential/pO; 
diagram is by a direct transformation of the 
potential/pO 2- diagram, after expressing the 
Nernst equations of the latter as a function of the 
O~- ion concentration derived from equilibrium 
in Equation 5. The Nernst equations, as ex- 
pressed in terms of 02- ion concentration, are 
plotted in the potential/pO 2 diagram shown in 
Fig. 4. 

Similarly, a potential/pO 2- diagram (Fig. 5) 
can also be drawn by taking into account 
equilibrium Equation 9. 

3. Interpretation and discussion 

The thermodynamic diagrams shown in Figs. 1 
to 5 comprise different areas related to the 

stability of metallic copper (immunity), the 
stability of ionic species (corrosion, active 
dissolution), the stability of copper oxide (passi- 
vity) and the dissolution of copper oxide (trans- 
passivity) in the molten potassium nitrate. These 
regions are schematically depicted in Fig. 6. 

In the potential/pO 2- diagram the immunity 
region observed at negative potentials is deter- 
mined by the equilibrium lines of the Cu § and 
the Cu20/Cu,O 2- couples. The Cu20 stability 
region is delineated by the equilibrium lines of 
the Cu20/Cu,O 2- and CuO/Cu,O 2- couples 
and the equilibrium lines of the Cu+,O2-/Cu20 
system. At low pO 2- values and high anodic 
potentials the CuO stability region is observed. 
The boundaries of these regions are the equi- 
librium lines corresponding to the CuO/Cu2 O, 
O 2-, 02- /02,  CuO/Cu+,O 2- and CuO/Cu 2+, 
02-  couples. The transpassivity region extends 
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A[ 3 > 
2 
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- 2  

-41  I [ I [ 
so 20 ~o. "pO~. o 

Fig. 4. Potential/pO 2- diagram at 500K. Lines numbered 1 to 10 correspond to the Nernst 
equations of equilibria 1 to 10 in Table 1 ; lines numbered 12 to 17 correspond to the 
Nernst equations of equilibria 12 to 17 in Table 2. The Nernst equations are given in 
terms of pO~ taking into account equilibria of Equations 5 and 9. 
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-2  
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-4L I 1 _ _ _ _ , . _ 1 _ _  
40 so 2o to pot-  

Fig. 5. Potential/pO 2 - diagram at 500K. Lines numbered 1 to 10 correspond to the 
Nernst equations of equilibria 1 to 10 in Table 1 ; lines numbered 12 to 16 correspond 
to the Nernst equations of equilibria 12 to 16 in Table 2. The Nernst equations are 
given in terms of pOz z - taking into account  equilibria in Equations 5 and9. 
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Fig. 6. Scheme of the different regions established in the potential/pO( diagram. 

from the 02-/02 line upwards. At low 02-  ion 
concentration the region of active dissolution 
exists at potentials more anodic than approxi- 
mately - 1.0 V. The potential/pO 2- diagram of 
molten potassium nitrate and the redox reactions 
at equilibrium, involving the corresponding 
decomposition products, has been reported 
earlier [2-4]. 

The potential/pO 2 diagram, shown in Fig. 3, 
although involving an uncertainty larger than 
the potential/pO E- diagram as a result of taking 
the half-wave potential of the 02 /0  2 couple as 
the standard potential, gives interesting informa- 
tion about the copper/molten potassium nitrate 
system. The immunity region observed at 
negative potentials is determined by the equili- 
brium lines of the Cu+/Cu and the CUEO/Cu,O 2 
couples. On increasing the potential, at a low pO 2 
value, the equilibrium related to the CuO/ 
CUEO,O 2 system is firstly attained and then, at 
higher potentials, the region corresponding to 
the stability of CuO is reached. But when the 
CuE+,O~./CuO equilibrium line is exceeded the 
dissolution of the metal through the CuO 
passivating layer should occur with the simul- 
taneous precipitation of CuO into the melt, as is 
also suggested in the transpassivity region of the 
potential/pO 2- diagram. The region delineated 
by the CuEO/Cu,02 and CuE+,OE/CuO lines 
corresponds to metal passivation. At high pO E 

values and at anodic potentials higher than that 
of the Cu +/Cu equilibrium, the metal dissolution 
region is found. At pO 2 between approximately 
16 and 34, at unitary activity of the Cu + and 
Cu 2 + ions, in the potential range between - 1.2 
to 0.4 V, the enclosed areas correspond to a 
hypothetical system where equilibrium of species 
CuEO, Cu +, 0 2 , Cu, CuO and Cu 2+ would 
exist. The dashed lines drawn in the potential/ 
p O ;  diagram correspond to hypothetical sys- 
tems. They give only an indication of the trends 
of the metal behaviour at equilibrium in the 
nitrate melt. One interesting feature of the 
potential/pO 2 diagram is the existence of a 
rather restricted region, where copper passiva- 
tion by CuO becomes possible. 

On the other hand, the potential/pO 2 diagram 
shown in Fig. 4 is simpler than the one shown in 
Fig. 3. The equilibria involved in this figure are 
the same as those already discussed for the 
potential/pO~ diagram. A good definition of 
the various regions related to the electrochemical 
behaviour of copper in molten nitrate is ex- 
hibited. 

Similar comments apply to the potential/pO 2- 
diagram shown in Fig. 5. This diagram also 
contains a relatively large range of potential 
corresponding to the CuO stability, but the 
active dissolution region is constrained to a 
narrow region of potential and pO 2-. 
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Fig. 7. Potential/pO 7 diagram at 500K involving different equilibria with molten 
potassium nitrate and related products. 

The potential/pO 2 diagram corresponding to 
the decomposition of the melt is given in Fig. 7 
to illustrate the stability regions of the melt. 

Most of the features corresponding to the 
diagrams just described will be correlated with 
experimental results obtained by running current/ 
potential voltammometric curves with copper 
electrodes in NaNO3-KNOs eutectic. These 
results will be reported in a future publication 
[81. 
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