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Summary. In this paper we analyze an error estimator introduced by Bank and 
Weiser. We prove that this estimator is asymptotically exact in the energy norm for 
regular solutions and parallel meshes. By considering a simple example we show 
that this is not true for general meshes. 
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1 Introduction 

Several a posteriori error estimators have been introduced for the approximation 
by finite element methods of second order elliptic problems. Many of them, the 
so-called residual type estimators, are constructed by exploiting in some way the 
error equation I1-3, 6, 13]. In particular, some estimators are obtained by solving 
local problems for the error. 

In this paper we analyze an estimator introduced by Bank and Weiser 1-6] 
which belongs to the last class. This estimator has been used in the code P L T M G  
I-5] and has been extended to the Stokes problem I'7, 8]. 

Although this estimator has been introduced in a general context we consider it 
in the particular case of linear triangular elements. We prove that this estimator is 
asymptotically exact in the energy norm for parallel meshes and regular solutions 
(i.e., in this case, the ratio between the estimator ~/and the energy norm of the error 
lie tiE converges to one when the meshsize goes to zero). The proof is based on 
known local superconvergence results. 

On the other hand, by analyzing a simple example, we show that the asymptotic 
exactness is not true for general meshes, even for very regular solutions. However, it 
is known [6] that under mild regularity assumptions on the solution, there exist 

* The work was partially supported by Fundaci6n Antorchas. 
** The work was partially supported by the NSF under grant CCR-88-20279. 
Correspondence to: R. Rodriguez 



298 R. Dur/m and R. Rodriguez 

positive constants c and C such that 

(1.1) c t /<  Ilelle =< C~ ; 

these constants depend on the regularity of the mesh. Therefore, the behavior of 
this estimator is similar to that of other estimator defined using the jumps of the 
normal derivatives of the approximate solution properly weighted (see [9]). 

2 Asymptotic exactness 

We consider as a model problem the Laplace equation 

(2.1) 

- A u = f ,  in ~2, 

U = 0,  o n  F d  , 

Ou 
~ = g ,  i n F .  ; 

where O c IR 2 is a bounded polygon with boundary 00  = Fd w f 'n  and n is the 
outer normal vector to Of~. 

Given a regular family of triangulations {Y-h } of O, let Uh be the piecewise linear 
finite element approximation of u corresponding to ~-h. Integration by parts in 
each element shows that the error 

e := u -- Uh 

satisfies the equation 

~U h 
(2.2) I V e ' V v = I f v +  ~ 9 v -  Z f ~nr v, VveHrX~(f2), 

fa .Q Fn T ~ J h  ~T 

where Hrl~(f2):= {veHl(~?): Vlr~ = 0} and n r denotes the outer normal to 0T. 
(Here and thereafter we use standard notation for Sobolev spaces, norms and 
seminorms.) 

Let Er  be the set of edges of T and for each interior edge l let us choose an 
arbitrary normal direction n and denote the two triangles sharing this edge Tin and 
Tou,, where the normal n is outwards Tin. Let 

& j : =  V ( u h l r o o 3 . n  - V(uhlr,o)'n 

r 0uh denote the jump oF ~ across the edge 1; this value is independent of the choice 

of n. Equation (2.2) can be written as 

F2 l a E  T 1 / 
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where 

h ) 
~U h (2.4) Jz:= 2 g - ~ z  ' if I c F n  , 

0, if l c Fd �9 

TO recall the definition of the est imator  of Bank and Weiser, consider for TE ~--h 
the space 

~ ~  {V ~ ~z(  T) : v(P) = O, VP vertex of T} 

(where ~ 2 ( T )  denotes the space of polynomials  of degree not greater than 2 re- 
stricted to T). Let e r ~ ~  be the solution of the local problem 

r f V e r ' V v =  f v + ~ l  T 

then the local error es t imator  is defined by 

t / r :=  II Vet I]o,r �9 

We shall prove that  this est imator  is asymptotical ly exact in the energy norm 
on those port ions of the mesh which are parallel (i.e., such that  the union of two 
neighboring triangles is a paral lelogram) and where the solution is regular. 

Let Qo ~ Qz be subdomains  of I2 and assume that  the meshes are parallel in f21. 
It is known [14] that  for this kind of meshes the following superconvergence result 
holds: 

(2.5) IIV(u l -  uh)llo,~o < C(hZtlul[3,~l + Ilello,m), 

where u ~ is the piecewise linear Lagrange interpolant  of u. (For a survey on 
superconvergence results like this, see [11] or [12]). Here and thereafter C denotes 
a generic constant.  

We denote by Vhs the vector function defined by (Vh~)lr := Vet. 

Theorem 2.1. I f  the meshes are parallel on f21 and the solution u ~ H 3 (f21) then, for 
h small enough, 

live - Vh~llo,~o < C(hZllull3,m + Ilello,m) �9 

Proof For  T c f2o, let T* := U { T '  e J-h: T and T '  have a c o m m o n  edge}, as in 
Fig. 1. Let h be such that  T* c 12x. 

For  w e H 2 ( T  *) let qwe~~ be the solution of the problem 

(2.6) ~ V q ~ . V v = - ~ ( A w ) v + ~  ~_On_~tv, V v e ~ ~  
T T l r 

Then, we have 

(2.7) live - Vhello, r < IIV(u - u l )  - Vq, llo, r + HV(u I - uh)llo, r 

+ IIVq, - Vhello, r �9 
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Fig. 1 

Hence, in view of (2.5), it is enough to estimate the first and the last term on the 
right hand side of (2.7). 

Let us show that if we~2(T*) ,  then 

(2.8) qw = W -  W I, i n T .  

Clearly w - wte ~2~ and, since the solution of (2.6) is unique, it is enough to 
see that 

Pwq 
(2.9) j" V(w - w' ) .  Vv = - S (Aw)v + ~,  II On lit v, Vv e ~ ~  

T T r 

Integration by parts shows that (2.9) holds if, Vle Er ,  

1 . l-0w i] 

which, by Simpson's rule, is equivalent to 

_ 1VwG o (w - w')(Q~) = 
On 2 [ On lit' 

(where Qt is the midpoint of I as in Fig. 1). For  a proof of this last equality see, for 
instance, [9]. Therefore, (2.8) holds. 

On the other hand, using the definition of qw and a trace theorem it is easy to 
see that for w e H 2 ( T  *) 

IIVqwllo, r =< Chrlwl2,r* 
and hence 

I I V ( w  - w i)  - Vqwll0,r < Chrlwh, r*, 

where hr is the diameter of T. Consequently, because of (2.8), an application of the 
Bramble-Hilbert lemma gives for w e H 3 (T.) ,  

I I V ( w  - w i)  - Vq, IIo, r < Ch21wl3,r*. 

By using w = u, this last inequality provides the estimate for the first term on 
the right hand side of (2.7). To bound the last term, observe that because of (2.6) and 
the definition of er, 

-1 v vve o(r). 
TS v(q,, - . T ) .  v v  = 2 , ~ , .  I IL o .  li, v, 



The asymptotic exactness of Bank-Weiser's estimator 301 

In particular, for v = qu - •T, using Schwarz inequality, a trace theorem and an 
inverse inequality we obtain 

I[Vqu - Vhell0,r =< C [IV(u l -  Uh)l[o,r* �9 

Therefore, the theorem follows by using again (2.5). [] 

Remark 2.1. As a consequence of the theorem, the relative error 

l ive - Vh~[Io,~o 

IlVello, oo 

converges to 0 when h goes to 0, whenever the error satisfies IIVe [IO,Oo > ch and 
IIe IIo,t~l = (f(h ~ +~), for some e > 0. The first assumption holds in all but trivial 
cases (see [2-]). The second one holds, for instance, when t2 is a convex polygon and 
u~H2(f2); it also holds for non convex polygons and homogeneous Dirichlet 
boundary conditions (see [9-] and [10]). When both assumptions hold, the es- 
timator is asymptotically exact on Oo. 

Now, we shall analyze a simple example which shows that the estimator is not 
asymptotically exact for general meshes. Let us consider a particular case of 
problem (2.1) where t2 is a square as in Fig. 2a, Fd consists of the two vertical edges 
of f2 and F .  of the horizontal ones; let f be a constant and g = 0. The solution is 
a quadratic polynomial in x (and it does not depend on y). Let J-h be a family of 
criss-cross meshes; (a criss-cross mesh is a uniform mesh of squares splitted into 
four triangles as in Fig. 2b). 

Since the solution is quadratic and the Neumann boundary conditions are zero, 
it is easy to see that 

u(P), 

uh(P) = u(P) + ~4 Au, 

if P is a vertex of a square R, 

if P is the midpoint of R , 

where R is a square in the mesh as that in Fig. 2b (see [9]). 

0U ~-~=0 

u = 0  u = 0  R: 

Ou ~ = 0  
(~) (b) 

Fig. 2a,b 
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By using this expression for uh it is possible  to compute  explicitly the true error  
and  the est imator .  The error  is the same for all the squares R: 

h4(Au) 2 
IlVell~,g= 18 

And for each triangle Ti disjoint with Fd, the estimator is: 

17h4(Au) 
1728 ' i =  1,3 , 

q~, = 65h4(Au)2 
1728 ' i = 2 , 4 .  

F o r  those triangles with an edge l on the bounda ry  Fo, the es t imator  is different; 
however,  since the p ropo r t i on  of these elements goes to zero when the mesh is 
refined, their effect is asympto t ica l ly  negligible and so, for any subdomain  of g2, the 
quot ient  between the es t imated error  and  the exact one converges to 

q~" 41 i=1 - ~ 1.3 
[IVello, R 

Therefore, in spite of the uniformity  of this k ind  of meshes, the es t imator  is not  
asymptot ica l ly  exact  even for very smooth  solutions.  This behavior  is ana logous  
to that  of  o ther  well known es t imators  as Z ienk iewicz -Zhu ' s  [15] (see [4])  and  
that  in [9]. 
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Note added in proof. The analysis of this paper is also valid for one of the 
estimators introduced by Verffirth in [13]. This estimator is defined by 
7/r := I[ V~r I[o, T where er is the solution of the local problem: 

! 1 ~ !Jtv, Vv~Vr, ~r ~ vr: r j" Wr. Vv = fv  + ~ t~ E~ 

in the space Vr := :o (T) (~ (H~ (T) :~ :3 (T)) (i.e.: the space of quadratic functions 
vanishing at the nodes of  T of Bank-Weiser's estimator, plus a cubic bubble 
function). 

A result analogous to Theorem 2.1 is valid for this estimator (its proof  needs 
only minor  modifications) and hence the estimator is asymptotically exact under 
the same assumptions as Bank-Weiser's one. On the other hand, Verffirth's es- 
t imator is not  asymptotically exact for general meshes, even for smooth solutions. 
For  instance, in the particular case of problem (2.1) previously analyzed, we have: 

4 \i/2 

 ei So.  - -- 1.68. 

Once again the situation is the same as for Bank-Weiser's estimator. 


