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A B S T R A C T
A method of classifying generic orbits in arbitrary 2D and 3D potentials is presented. It is
based on the concept of spectral dynamics introduced by Binney & Spergel that uses the
Fourier transform of the time series of each coordinate. The method is tested using a number of
potentials previously studied in the literature and is shown to distinguish correctly between
regular and irregular orbits, to identify the various families of regular orbits (boxes, loops,
tubes, boxlets, etc.), and to recognize the second-rank resonances that bifurcate from them.
The method returns the position of the potential centre and, for 2D potentials, the orientation of
the principal axes as well, should this be unknown. A further advantage of the method is that it
has been encoded in a FORTRAN program that does not require user intervention, except for ‘fine
tuning’ of search parameters that define the numerical limits of the code. The automatic
character makes the program suitable for classifying large numbers of orbits.
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1 I N T RO D U C T I O N

Stellar orbits constitute the basic set of building blocks for the
dynamics of galaxies. This is so because galaxies are, to a large
extent, collisionless systems and thus orbits are a well-defined
concept. Although the most important function to a modeller is
the phase-space distribution function, it is not the explicit depen-
dence on phase-space coordinates, but an implicit one given by an
underlying orbital structure, that is sought after. The fundamental
problem of determining whether a self-consistent dynamical model
can be built with a given potential, ultimately depends on the orbital
structure supported by the potential. In recent times, a new approach
to building 3D dynamical models has been developed that expressly
makes use of a suitable exploration of the orbits supported by the
potential (e.g. Schwarzschild 1979; Richstone 1980, 1984; Statler
1987; Levison & Richstone 1987; see de Zeeuw 1994, section 3.4,
for a review).

Although the Jeans theorem (Jeans 1915) apparently allows
one to bypass detailed orbital knowledge to build self-consistent
dynamical models, questions as to irregularity, chaos, and non-
analytical integrals of motion, limit its use to integrable systems, or
to those cases in which irregular orbits are not important (Binney
1982b). Given the proliferation of irregular orbits on more realistic
dynamical systems it seems that, in the end, we need to get back to a
proper orbital assessment, even if it is only to ensure that the system
can be modelled without the difficulties introduced by the irregular
orbits.

The orbital structure may have a bearing on other important
issues: irregular orbits in a model in which the curvature of
isopotentials changes rapidly with radius may limit its flattening,

as conjectured by Binney (1982a). Even regular orbits may limit the
flattening in triaxial systems (Miralda-Escudé & Schwarzschild
1989; Lees & Schwarzschild 1992; Pfenniger & de Zeeuw 1989;
Schwarzschild 1993). The time-scale on which irregular orbits
cover their allowed region in phase space may introduce another
relaxation time-scale, much shorter than the two-body relaxation
time-scale (Schwarzschild 1993; Merritt & Fridman 1996).

Integrable potentials (e.g. Stäckel 1890; Kuzmin 1956; Lynden-
Bell 1962; de Zeeuw 1985) provide us with the basic templates for
the most important regular orbits on generic potentials, and an
insight into the way in which other orbits may arise. Their study,
however, can carry us some distance only, as the problem of finding
the factors in a potential that give rise to a particular orbital
structure, or whether it is integrable or not, is still one of the
fundamental unsolved problems of dynamics. Thus the study of the
orbital structure of potentials of interest in stellar dynamics has
remained an active enterprise (e.g. Binney 1982a and Miralda-
Escudé & Schwarzschild 1989 for 2D potentials; Schwarzschild
1979, 1993, Richstone 1982, Merritt & de Zeeuw 1983, Gerhard &
Binney 1985, Lees & Schwarzschild 1992 and Merritt & Fridman
1996 for non-rotating 3D potentials; Heisler, Merritt & Schwarz-
schild 1982, Mulder & Hooimeyer 1984 and Pfenniger 1984 for
rotating 3D potentials; Wilkinson & James 1982, Pfenniger &
Friedli 1991, 1993, Hasan, Pfenniger & Norman 1993 for potentials
extracted from N-body systems). In these and related studies, it is
important to have a tool that can quickly, and efficiently, classify the
orbits obtained. Such a tool is the goal of the present work.

In Section 2 we summarize some notions about orbits and
methods to classify them, and a consistent orbit nomenclature is
presented. Section 3 describes the procedure by which lines are
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extracted from the Fourier spectra, the first step of our classification
scheme. In Section 4, all the previous information is used to develop
a spectral classification method for 2D orbits. Section 5 shows how
to obtain information about the potential centre and principal axes.
Section 6 discusses some numerical points of our classifier. Section
7 presents the results obtained for orbits in 2D potentials. In Section
8 we extend the spectral classification scheme to 3D orbits. In
Section 9 we present results obtained in 3D potentials. Section 10
presents our conclusions.

2 P R E L I M I N A RY N OT I O N S

Here we review some notions about orbits, their structure in phase
space, methods of classifying them, orbital resonances and their
role in parenting orbit families. The basic characteristics of each
orbit that we will use in the spectral classification are identified, and
an orbital nomenclature that synthesizes the most important orbit
properties is introduced.

2.1 Integrals of motion and types of orbits

Orbits are shaped, to a large extent, by their isolating integrals
(Binney & Tremaine 1987, hereafter BT87, section 3.1.1). Each
such integral lowers by one dimension the region open to an orbit. If
the number M of isolating integrals equals the number N of degrees
of freedom, the orbital manifold is diffeomorphic to an N-dimen-
sional torus, i.e. we can find a one-to-one map between the manifold
and the torus that covers both completely (Arnold 1989, chapter 10;
Lichtenberg & Lieberman 1992, section 1.3). Such orbits are called
regular and their motion is quasi-periodic. For them we can define a
special set of canonical coordinates, the so-called action–angle
variables, in which the motion is constant in the actions and there is
uniform rotation in the angle variables.

A regular orbit with additional isolating integrals (M > N) is
further constrained. This occurs when there are resonances between
the rotation of two or more angle variables, in which case the orbit is
no longer dense on the torus. Since the rotation frequencies in the
angle coordinates are fixed on a given orbital manifold, all orbits
sharing the same manifold will be identical, except for a phase
difference (even when M ¼ N, there is an infinite number of orbits
sharing the same orbital manifold). We thus speak of non-resonant
(M ¼ N), and resonant (M > N) orbital tori; although both are
dense in the integrable region of phase space, only the former
form a set of non-zero measure.

If there is full resonance (i.e., M ¼ 2N ¹ 1), the orbit closes on
itself after a finite number of turns around the torus and it becomes
periodic. Such orbits are very important, because they can generate
their own family of orbits: if a periodic orbit is stable (BT87, p. 175),
neighbouring orbits will move on concentric tori nested around the
stable periodic orbit and form an orbital family. A method for
identifying all stable periodic orbits thus gives us the regular orbital
families supported by a given potential. Although numerical meth-
ods have been devised (e.g. Contopoulos & Magenant 1985;
Pfenniger & Friedli 1993), these require a long, detailed examina-
tion of a large set of orbits.

Irregular orbits, on the other hand, do not have such a torus-like
structure. They have, in general, complicated shapes and may be
chaotic, in the sense of having exponential divergence of neigh-
bouring orbits. Irregular orbits make difficult the construction of
self-consistent models; the ones dense on the energy manifold, for
instance, are limited by the equipotential surfaces, which, except for
a spherical configuration, are different in shape from the isodensity
surfaces of the corresponding mass distribution.

2.2 Orbit classification methods

The dimensionality of the region in which an orbit moves is the
feature exploited by a popular method used to classify orbits in 2D
potentials. The surface of section (SoS) (see e.g. BT87, section 3.3)
is usually taken as a 2D cut of phase space. Intersections of an orbit
with this section lie in a region with one dimension less than the
original orbital manifold. Thus, in 2D potentials, irregular orbits,
open regular orbits, and closed regular orbits define a ‘sea’, a line,
and a finite set of points, respectively. Unfortunately, distinguishing
among these cases involves a visual inspection of the section, and
this results in a subjective and time consuming procedure. Besides,
this method is not yet generalized to 3D potentials: a 2D section of
the corresponding 5D energy manifold does not suffice to disen-
tangle orbits moving on three or fewer dimensions (regular) from
those moving on higher dimensions (irregular).

Another, increasingly popular, way to ascertain whether or not an
orbit is regular is by the computation of its Lyapunov characteristic
exponents (see e.g. Lichtenberg & Lieberman 1992), which give the
exponential rate at which nearby trajectories diverge from the
original one. It can be shown that a regular orbit has vanishing
Lyapunov exponents; unfortunately, it is not clear whether an
irregular orbit will necessarily have at least a non-zero real
exponent. A positive real exponent signals the onset of a more
disordered behaviour called chaos. (Although it is generally
assumed that irregular and chaotic orbits are the same in Hamil-
tonian systems, this has not been proven in general.) Another
drawback is that their numerical computation is difficult and time
consuming. Additionally, unlike SoSs and the method to be pre-
sented here, the Lyapunov exponents do not give any further
information regarding regular orbits, for instance, whether or not
they are closed (Merritt & Valluri 1996).

There is another technique first introduced in stellar dynamics by
Binney & Spergel (1982, 1984), and more recently extended in a
different form by Laskar (1993), that relies on one of the funda-
mental properties of regular orbits: the fact that they move winding
on a torus-like manifold and are thus quasi-periodic. Then, the
Fourier spectra of the time series of the coordinates of a regular orbit
should consist of discrete lines the frequencies of which can be
expressed as integer linear combinations of the frequencies associ-
ated to the N angle variables. We will call these latter frequencies
the base frequencies (BFs) to stress this property. If the orbit is
further constrained, this will manifest itself in a reduced number of
incommensurate BFs. If the orbit is closed, only one BF will exist.
Irregular orbits, not being quasi-periodic, will produce Fourier
spectra with lines the frequencies of which cannot be reduced to
integer combinations of less than N frequencies. If the orbit is
chaotic, the spectrum will be continuous (Tabor 1989, section
4.5.b).

So, if we compute the Fourier transform of the coordinates of an
orbit, identify its peaks, extract the corresponding frequencies, and
look for the BFs (if any), then the orbit could be classified. It turns
out that a closer inspection of the Fourier spectrum can further
disclose the orbit family to which the orbit belongs as well as the
resonance and resonance rank of its parent, so we need first to
describe these orbit families and their resonant parents and examine
the concept of resonance rank.

2.3 Orbit families and rank of resonant parents

We start with 2D potentials. Apart from the trivial case of a particle
at rest at the centre of a potential, the simplest orbits are the axial

2 D. D. Carpintero and L. A. Aguilar

q 1998 RAS, MNRAS 298, 1–21

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/298/1/1/976083 by guest on 23 N
ovem

ber 2021



orbits that move along each axis; these orbits are simple loops in
phase space and appear as single points at the origin in the SoS
orthogonal to them. When they are stable, the circulation of the
daughter orbits around the parent orbit introduces an additional
frequency which, in general, is not commensurable with the unique
BF of its parent; these orbits are dense in the nested tori. Additionally,
these daughter orbits do not have a fixed sense of rotation around the
centre and are dense within a box-like region in configuration space.
Their intersections with an SoS lie on loops that encircle the single
fixed point that corresponds to the axial orbit. We will call these p-box
orbits to emphasize their frequency incommensurability and the fact
that they do not circulate around the origin.

As we move through the nested tori, the BFs will change in
general, and for an infinite but countable number of tori, the
frequencies will be commensurable (only one frequency will be a
BF) and the corresponding orbits will close again. These first-rank
resonance orbits are analogous to closed Lissajous figures in
configuration space and produce a finite set of points around the
axial orbit in the SoS. There is, however, a fundamental difference
between the 1:1 resonance and the others: while the former
corresponds to a simple loop in configuration space and thus has
a definite sense of rotation – except for the cases of 0 or p
coordinate phase differences – the latter do not. To emphasize
this important fact we will call the 1:1 resonance the closed 1:1
loop, and the rest, the closed m:n boxes. As we move in energy,
some of these resonant orbits may become stable and generate, in
turn, families of daughter orbits that move on nested tori around
them and inherit the parent property of rotating, or not, around the
centre (Fig. 1). Similar to the case of p-boxes, these daughter orbits
will be open in general, as the newly introduced oscillating
frequency will be, in general, incommensurable with the parent
unique BF. We will call these orbits open m:n boxes and open 1:1
loops, depending on the parent identity.

When any of the daughter orbits spawned by a first-rank
resonance becomes resonant itself, we obtain a second-rank reso-
nant orbit. The orbit parenting process repeats itself on top of the
orbits that become stable as we move further in energy. Their
corresponding new daughter orbits appear in an SoS as islands that
enclose the discrete set of points produced by the closed second-
rank parent (Fig. 1). The second-rank resonance will be denoted by
an extra integer k, which represents the number of turns which it has

to give around the parent before closing on itself (k ¼ 2 for the
example in the figure). We will thus speak of closed and open
km:kn boxes and k:k loops. The common factor k will signal the
higher-rank resonance.

In three dimensions, the 1:1 loops orthogonal to the long and
short potential axes give rise to corresponding tubes, when per-
turbed orthogonal to the loop plane (the intermediate axis loops are
unstable and do not generate tubes, BT87 p. 154). The planar closed
m:n boxes, when stable, can also spawn families of 3D orbits. All of
these orbits may have an additional resonance in the direction
orthogonal to their planar parent, l:m:n resonances, which could
give rise to higher rank orbits as well.

Table 1 summarizes our nomenclature for 2D orbits and includes,
in parenthesis, the corresponding customary name. Although it is
common to refer to m:n resonances as boxlets, and a rich and
whimsical nomenclature exists for some of the resonances (banana
2:1, fish 2:3, pretzel 3:4, etc.), in our scheme we prefer to have all
orbits that circulate around the origin be called ‘loops’ and all that

Orbit classification 3
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Figure 1. Left: a stable first-rank 2:1 resonance orbit, and surrounding torus of one of its daughter orbits, around an open zeroth-rank torus. Right: second-rank
resonant orbit and daughter orbit torus. All tori have been cut open to show the closed resonant parent in each case. A plane corresponding to an SoS has been
introduced in both graphs.

Table 1. 2D orbit classification according to resonance rank.

Resonance No circulation Circulation
Rank around the centre around the centre

0th parent axial

daughter p-box
(box)

1st parent closed m:n box closed 1:1 loop
(closed boxlet) (closed loop)

daughter open m:n box open 1:1 loop
(open boxlet) (open loop)

2nd parent closed km:kn box closed k:k loop
(higher order (closed looplet)

resonance boxlet)

daughter open km:kn box open k:k loop
(?) (open looplet)
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do not ‘boxes’. Parent and daughter orbits share the name of the
parent resonance, the distinction being the ‘closed’ or ‘open’
qualification. A common factor in a resonance specification
naturally indicates a second-rank resonance. (Although there is
no provision for third and higher-ranked resonances, this notation
could be extended to them.) These are the basic properties that
define the morphology of an orbit and which are of utmost
importance when trying to build a self-consistent model. As we
will see, the procedure presented in this work allows us to recognize
all these orbital properties. The extension of this nomenclature to
3D orbits is presented in Section 8.

3 E X T R AC T I N G WAV E S F R O M T H E F O U R I E R
S P E C T RU M

We now describe in some detail the way in which line frequencies
are extracted from the computed Fourier spectrum of the orbit, the
first step in the orbit classification.

3.1 One wave

To classify, we must compute, from its Fourier spectrum, the
sinusoidal components that build up the orbit. Here we develop a
method for extracting them, which differs from that used by Binney
& Spergel (1982). We first concentrate on the issue of a unique
wave.

Let us suppose that at times tk ¼ kd; k ¼ 0; . . . ;N ¹ 1 (N even),
the values zk ; zðtkÞ of a complex function are recorded. The
discrete Fourier transform of the set fzkg is

Zj ¼
1
N

XN¹1

k¼0

zk exp ¹
i2pjk

N

� �
; ð1Þ

where j ¼ ¹N=2 þ 1; . . . ;N=2. The Fourier spectrum then consists
of N waves of amplitudes jZjj, phases gj ; argðZjÞ, and frequencies
qj ¼ 2pfj ¼ 2pj=Nd. Let us suppose, to begin with, that zðtÞ is a
plane wave,

zðtÞ ¼ AeiðqstþfÞ
: ð2Þ

Our goal is to recover the amplitude A, initial phase f, and
frequency qs from the Fourier spectrum. For convenience, we put
qs ¼ 2ps=Nd, where s is a (real) number. If s equals any of the j (i.e.,
if qs ¼ qj for some j), then the resulting spectrum will be simply
Zj ¼ A expðifÞ if j ¼ s, and Zj ¼ 0 otherwise. This shows that the
choice of a normalization 1=N, a negative sign on the exponent, and
indices ¹N=2 þ 1 # j # N=2 for the Fourier transform, yields the
correct results. Were any of the above chosen other way, further
transformations would have been required to get the correct
answers.

When s is not an integer, every frequency qj has a non-zero
amplitude. To see this, we now obtain an expression for the
amplitudes. Replacing equation (2) into equation (1) yields

Zj ¼
Aeif

2Nf1 ¹ cos½2pðs ¹ jÞ=Nÿg
ðr þ ijÞ; ð3Þ

where we have defined

r; 1 ¹ cos½2pðs ¹ jÞ=Nÿ ¹ cos½2pðs ¹ jÞÿ

þ cos½2pðs ¹ jÞðN ¹ 1Þ=Nÿ; ð4aÞ

j; sin½2pðs ¹ jÞ=Nÿ ¹ sin½2pðs ¹ jÞÿ

þ sin½2pðs ¹ jÞðN ¹ 1Þ=Nÿ: ð4bÞ

Now, from equation (3) we can compute

jZjj ¼
A
N

1 ¹ cos½2pðs ¹ jÞÿ
1 ¹ cos½2pðs ¹ jÞ=Nÿ

� �1=2

: ð5Þ

This equation includes s ¼ j as a limiting case. Note that the
phase f has disappeared. To solve for the remaining unknowns A
and s, since we have N equations – one for each value of j – we may
take any two, namely, j ¼ m1 and j ¼ m2. Now we can eliminate A
by dividing them:

1 ¹ cos½2pðs ¹ m1Þÿ

1 ¹ cos½2pðs ¹ m2Þÿ
¼

1 ¹ cos 2pðs ¹ m1Þ
N

h i
1 ¹ cos 2pðs ¹ m2Þ

N

h i jZm1
j2

jZm2
j2
: ð6Þ

m1 and m2, however, are integers, so the first member is equal
to 1. Using the identity 1 ¹ cos a ¼ 2 sin2ða=2Þ, and defining
k ¼ pðm2 ¹ m1Þ=N and a ¼ pðs ¹ m1Þ=N to simplify the notation,
the foregoing equation becomes

cos k ¹ cot a sin kj j ¼
jZm1

j

jZm2
j
: ð7Þ

Depending on whether cos k ¹ cot a sin k _ 0, we have

tan a ¼
sin k

cos k 7 jZm1
j=jZm2

j
: ð8Þ

Now, since jm2 ¹ m1j < N=2, then jkj < p=2, and the inequalities
cos k ¹ cot a sin k _ 0 can be written in the form cot a tan k + 1.
However, since js ¹ m1j < N=2 also, a is an angle of the first or
fourth quadrants. In the former case, the upper sign implies
m1;m2 < s, and the lower sign m1 < s < m2. In the latter case, the
upper sign implies s < m1;m2, and the lower sign m2 < s < m1. So, if
we always choose m1 and m2 such that s is in between, we can safely
take the lower sign. Now we are able to compute a (and therefore s)
from equation (8) with the plus sign.

Our next goal is to compute the amplitude. Since we now know s,
from equation (5) we have, taking any j,

A ¼ NjZjj
1 ¹ cos 2pðs ¹ jÞ

N

1 ¹ cos 2pðs ¹ jÞ

" #1=2

: ð9Þ

Now the phase f. Equation (3) can be written

jZjjðcos gj þ i sin gjÞ ¼
Aðcos f þ i sin fÞðr þ ijÞ

2Nf1 ¹ cos½2pðs ¹ jÞ=Nÿg
: ð10Þ

From the foregoing equation we obtain

tan f ¼
f1 ¹ cos½2pðs ¹ jÞ=Nÿgðr sin gj ¹ j cos gjÞ

f1 ¹ cos½2pðs ¹ jÞ=Nÿgðr cos gj þ j sin gjÞ
: ð11Þ

We keep the factors f1 ¹ cos½2pðs ¹ jÞ=Nÿg so that we do not lose
any signs in finding the quadrant of f.

There only remains the choice of m1, m2, and the j of equations
(8) and (11); so far, the only restriction is that s must be between m1

and m2. We note that, from equation (5), the amplitudes of the
(discrete) spectrum peak at the value of j nearest to s. Now let us
suppose that zðtÞ contains another plane wave with frequency s0. If
we choose m1 close to s0, the information of m1 regarding s will be
greatly shadowed by the presence of this second wave. Therefore, it
is convenient to choose m1 to be the value of j nearest to s (i.e., the
frequency at the peak), and, for the same reason, to take m2 such that
m2 ¼ m1 6 1 and s lies in between, such that m2 is the adjacent
frequency with the greater amplitude. It is also convenient to choose
j ¼ m1 to save numerical work, for the computations involving m1

can then be reused.
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Thus, the computation proceeds as follows. First, we look for the
greatest amplitude in the Fourier spectrum; its frequency j will be
m1, and that of its neighbour with the greater amplitude will be m2.
Then equations (8), (9), and (11) are used, in turn, to obtain s (or qs),
A, and f. Once this triplet has been computed, we say, following
Binney & Spergel (1982), that a ‘line’ has been extracted.

3.2 More than one wave

If zðtÞ has more than one plane wave, first we compute A, f, and s for
the wave corresponding to the greatest peak in the spectrum. Next,
we subtract its contribution (equation 3):

Zj ← Zj ¹
Aeif

2Nf1 ¹ cos½2pðs ¹ jÞ=Nÿg
ðr þ ijÞ: ð12Þ

This eliminates the peak from all the frequencies. Now we look
for the second greatest peak, extract the corresponding line, and so
on. Unfortunately, this is not an exact procedure as with a single
wave, because the first line will be contaminated with information
regarding the others; the closer two lines are, the more inaccurately
their parameters will be computed. This will affect the subtraction,
and so errors are carried into the next lines. To reduce this problem,
we extract the lines twice. For the second extraction, we start from
the naked spectrum resulting from the complete first extraction.
Then we add the first extracted line which, being alone, will be
much less contaminated than before. We re-extract this line, and
subtract it with the new computed values. Then we add the second
line, and so on. As we will see below, this procedure proves to be
very successful, even in cases in which two nearby lines have
comparable amplitudes, thus strongly influencing each other.

A subtlety remains to be considered, since, in the case of an orbit,
zðtÞ is a real function. Let us suppose that

zðtÞ ¼ A cosðqt þ fÞ ¼
A
2

eiðqtþfÞ þ e¹iðqtþfÞ
� �

: ð13Þ

We are not interested in the values A=2, 6f, and 6q of the plane

waves, but in the values A, f, and q of the original cosine. We may
merely take the positive portion of the spectrum, extract the line,
and double the amplitude. However, since every peak found in the
positive portion of the spectrum has a negative twin, the tails of the
latter may make a non-negligible contribution to the former,
particularly if the peak is at a frequency near zero. So instead of
simply neglecting the negative portion, we subtract both peaks
simultaneously.

We measured the accuracy of the method with the incomplete-
ness parameter i (Binney & Spergel 1982):

i2 ¼

X10

n¼1

q2
max ðdxnÞ

2 þ ðdynÞ
2� �

þ ðdẋnÞ
2 þ ðdẏnÞ

2� 	
X10

n¼1

q2
max x2

n þ y2
n

ÿ �
þ ẋ2

n þ ẏ2
n

� � ; ð14Þ

where xn ; xðtnÞ, etc; dxn ¼ xn ¹ x̄n, etc; ½xðtÞ; yðtÞÿ is the orbit,
½x̄ðtÞ; ȳðtÞÿ is the orbit reconstructed from the lines; t1; . . . ; t10 are
ten reference times, and qmax is the frequency of the line of
maximum amplitude. To compare our method of extraction
with that used by Binney & Spergel (1982), we choose
an orbit in the potential F ¼ ln r2, with initial conditions
ðx0; y0; ẋ0; ẏ0Þ ¼ ð0:6; 0; 0; 1:115Þ, which yields an energy per unit
mass E ¼ ¹0:4 and an eccentricity e . 0:22. We extracted all the
lines with amplitudes greater than 5 × 10¹5 times the greatest
(Fig. 2). Taking ten equidistant times along a period of integration
of 100 units (.45 orbital periods), we obtained i ¼ 0:003. As a
comparison, Binney & Spergel obtained i ¼ 0:025 for this same
orbit.

Also, the parameter i allows us to measure the benefits of the
double-extraction algorithm mentioned above. We generated syn-
thetic orbits with two sines in x and two in y, all with the same
amplitude, and with phases 08 and 908, respectively. On each
coordinate one wave had a fixed frequency, and the other had a
frequency which was varied between experiments. We computed i

Orbit classification 5
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Figure 2. Left: Fourier spectrum of the x coordinate of the orbit mentioned in the text. The points have been joined with solid lines in order to improve visibility.
Right: amplitudes of the extracted lines of the orbit, on a logarithmic scale, as a function of frequency.
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as a function of the separation of the frequencies. Fig. 3 shows
how a second extraction greatly improves the computation of the
lines.

4 S P E C T R A L C L A S S I F I C AT I O N O F 2 D
O R B I T S

Now we describe the spectral characteristics which allow us to
classify 2D orbits. We denote as Fx and Fy the frequencies
corresponding to the greatest amplitudes of the x and y line spectra,
respectively, calling them dominant frequencies. Note that a domi-
nant frequency is not neccesarily a base frequency. We assume a
coordinate system with its x axis aligned with the major axis of the
potential, and with its origin coinciding with the centre of the
potential.

In all the examples in this section, we have used one of the
following potentials, where v2

0, Rc, q, and Re are constants, and
R ¼ ðx2 þ y2Þ1=2.

(i) Logarithmic potential:

FLðx; yÞ ¼
v2

0

2
ln R2

c þ x2 þ
y2

q2

� �
: ð15Þ

(ii) Binney potential (Binney 1982a):

FBðx; yÞ ¼
v2

0

2
ln R2

c þ x2 þ
y2

q2 ¹
Rðx2 ¹ y2Þ

Re

� �
: ð16Þ

(iii) Hénon–Heiles potential (Hénon & Heiles 1964):

FHðx; yÞ ¼
1
2

R2 þ 2x2y ¹
2
3

y3
� �

: ð17Þ

All our orbits were integrated using a Runge–Kutta–Fehlberg
integrator, with Cash–Karp coefficients (Press et al. 1994), with
double precision. We get an energy conservation better than one
part in 106 in all cases.

4.1 p-box orbits

Since a p-box orbit does not put any constraint on the ratio Fy=Fx,
this will in general be an irrational number, and we are already left
with two independent frequencies, i.e., neither of the two is a
multiple of the other, nor they are multiples of a common third
frequency. Since the y axis is aligned with the minor axis of the
potential, one expects, in general, that Fy > Fx. Sometimes it occurs
that Fy < Fx, but in these cases there is always another y line
symmetric to Fy with respect to Fx, and with a similar amplitude;
this is explained by a simple model of a librating oscillator (Binney
& Spergel 1982). When we come upon this, we do not hesitate to
call the latter frequency the dominant frequency.

The remaining lines must be integer linear combinations of Fx

and Fy, in order to ensure regularity. Thus, we already have a
criterion to classify an orbit as a p-box orbit: it must have an
irrational ratio of dominant frequencies, and integer linear depen-
dence of the rest of the spectra with respect to the former. Fig. 4
shows a typical p-box orbit and some of its extracted lines.

4.2 First- and second-rank box orbits

The basic spectral difference between m:n box orbits and p-box
orbits is that Fx and Fy are commensurable in the former case,
corresponding therefore to the same BF. Moreover, the resonance is
simply the quotient Fy=Fx. We will call unit frequency the greatest
common divisor of Fx and Fy, i.e., the frequency in terms of which
they are integers. This unit frequency may or may not be occupied
by a line. If the rest of the lines are multiples of the BF, the m:n box
orbit is closed, for we have only one BF. However, if one line is
independent (i.e., its ratio with the BF is irrational), and the rest of
the lines are linearly dependent of both the BF and the new line, then
we have an open m:n box orbit. This new frequency can in general
be associated with the libration of the orbit around its parent. Figs 5
and 6 show examples of closed and open m:n box orbits, and their
extracted lines.

As we saw, a resonant orbit may parent orbits with the same
resonance but higher rank. This happens, for example, when a
line, in what otherwise would have been an open m:n box orbit,
matches a submultiple of the unit frequency: now this line can
be regarded as a new unit frequency, thus multiplying m and n
by the same factor, and generating a closed second-rank m:n
box, i.e., a closed km:kn box. If there is an additional BF, the
orbit becomes open. Fig. 7 shows an example of a km:kn box
orbit and some of its lines.

4.3 First- and second-rank loop orbits

From a spectral point of view, loop orbits and m:n box orbits differ
only in the order of the resonance: in the former, the ratio
Fy=Fx ¼ m:n ¼ 1:1 (Fx is, in this case, the frequency of rotation
around the centre of the potential, and we talk of a 1:1 loop orbit),
whereas in the latter, this ratio is any other rational. As before, if the
orbit is closed, the other lines will be multiples of a single BF; but if
it is open, the rest of the lines must be integer linear combinations of
two BFs. Fig. 8 shows an example of an open 1:1 loop orbit and its
extracted lines.

A closed loop orbit can close itself after one turn (a 1:1
resonance), but it can also close itself after k turns; we speak in
this case of a k:k loop orbit. Any one of these may give birth to a
family of open librating loop orbits with the same k:k resonance. As
before, we can compute this higher-rank resonance with the aid of

6 D. D. Carpintero and L. A. Aguilar
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Figure 3. Incompleteness parameter i as a function of the separation in
frequency of two equal-amplitude lines. Open triangles show the results
when a single extraction of the lines is performed; filled circles are the results
when the lines are extracted twice.
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the unit frequency. Figs 9 and 10 show examples of a closed 3:3 and
an open 2:2 loop orbits, respectively, and their extracted lines.

4.4 Irregular orbits

Since irregular orbits do not have line-like spectra that can be
expressed as integer linear combinations of BFs (in the case of a
truly chaotic orbit, even a continuum will appear), the lines

extracted by our algorithm do not describe the orbit, i.e., its
incompleteness parameter i is large. Sometimes, irregular orbits
are close to regular orbits in phase space, and this is reflected in their
spectra; but they always have some extra lines that are not integer
combinations of the BFs, which gives them away. Fig. 11 shows an
example of an irregular orbit and its spectra.

A related problem is that of irregular orbits highly confined between
regular regions, sometimes called ‘sticky’ or ‘semi-stochastic’ orbits

Orbit classification 7
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Figure 4. Left: a p-box orbit, obtained by launching a particle in the potential FL, with v2
0 ¼ 1, Rc ¼ 0:14, q ¼ 0:9, and initial conditions x0 ¼ 1, y0 ¼ 1:3,

ẋ0 ¼ 0, and ẏ0 ¼ 0. Right: amplitudes of the extracted lines versus frequency for the x (top) and y (bottom) coordinates. In all of the examples presented, only
those lines with amplitudes greater than 2 per cent of the strongest line, in each coordinate, are shown; this number is further constrained to five lines at most (i.e.,
only the lines used to classify the orbit are shown). The actual spectra bear many more lines. The dominant frequencies are also marked.

Figure 5. As Fig. 4, but for a closed 2:1 box orbit, obtained by launching a particle in the potential FL, with v2
0 ¼ 1, Rc ¼ 0, q ¼ 0:7, and with initial conditions

x0 ¼ 0, y0 ¼ 0:13, ẋ0 ¼ 1:83496, and ẏ0 ¼ 0.
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(Goodman & Schwarzschild 1981). Such orbits must be given
sufficient time to reveal their irregularity without ambiguity, i.e.
they need longer integrations to be properly classified. An example
will illustrate this. Let us launch a particle in the potential FL

with ðv0;Rc; qÞ ¼ ð1; 0; 0:7Þ, and initial conditions ðx0; y0; ẋ0; ẏ0Þ ¼

ð0; 0:2663; 1:39029; 0Þ, so that E ¼ 0. This orbit is classified as a 2:1
box, but only if we integrate it for fewer than about 400 orbital periods.
For longer integrations, our algorithm tells us that it is an irregular
orbit. Fig. 12 shows what happens. Fig. 12(a) shows the
ðy; ẏ; x ¼ 0; ẋ > 0Þ SoS of this orbit, sampled during some 400 orbital

periods. We can see how closely it resembles a regular orbit. Fig. 12(b)
shows the same SoS for an integration five times longer. We see that
the phase space visited has grown, and now we clearly have an
irregular orbit. This is just what the algorithm showed. Unfortunately,
there is no way to tell in these cases whether or not a further
integration period is needed to establish a good classification. On
the other hand, the orbit has behaved as a regular orbit during the time
in which it was classified as such. This orbit was also integrated with a
different implementation of the Runge–Kutta–Fehlberg integrator
(Fehlberg 1968), attaining an energy conservation of one part in 109.

8 D. D. Carpintero and L. A. Aguilar

q 1998 RAS, MNRAS 298, 1–21

Figure 6. Same as Fig. 4, but for an open 4:3 box orbit, obtained by launching a particle in the potential FL, with v2
0 ¼ 1, Rc ¼ 0, q ¼ 0:9, and with initial

conditions x0 ¼ 0, y0 ¼ 0:13, ẋ0 ¼ 1:95121, and ẏ0 ¼ 0:25.

Figure 7. Same as Fig. 4, but for an open 4:2 (second-rank) box orbit, obtained by launching a particle in the potential FL, with v2
0 ¼ 1, Rc ¼ 0, q ¼ 0:7, and with

initial conditions x0 ¼ 0, y0 ¼ 0:064, ẋ0 ¼ 2:15750, and ẏ0 ¼ 0:36.
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In the end we must distinguish between a mathematical definition
of irregular orbit and a pragmatic one: although the above orbit is
strictly speaking irregular, what matters to an astronomer is its
behaviour during the time-scales of interest. The same orbit may
play the role of a regular or irregular orbit, depending on the ratio of
its diffusion time-scale in phase space to the dynamical time-scale
of the modelled system (Goodman & Schwarzschild 1981;
Schwarzschild 1993; Merritt & Fridman 1996). Our classifier
gives the correct pragmatic answer.

Fig. 13 summarizes our 2D classification in terms of BFs and
resonances between dominant frequencies.

5 W H E N T H E O R I E N TAT I O N A N D C E N T R E
O F T H E P OT E N T I A L A R E U N K N OW N

The results of the previous section are based upon the assumptions
that (i) the x axis of coordinates is on the long axis of the potential,
and (ii) the origin of coordinates lies on the centre of the potential.
This is fine if we know the potential a priori. However, we may want
to classify an orbit which, for instance, has been obtained from an
N-body simulation for which the orientation and centre of the
system are unknown, or at least are not known with adequate
accuracy. We will show here that the algorithm is able to classify

Orbit classification 9
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Figure 8. Same as Fig. 4, but for an open 1:1 loop orbit, obtained by launching a particle in the potential FL, with v2
0 ¼ 3, Rc ¼ 1, q ¼ 1, and with initial

conditions x0 ¼ 1, y0 ¼ 0, ẋ0 ¼ 0, and ẏ0 ¼ 0:3.

Figure 9. Same as Fig. 4, but for a closed 3:3 loop orbit, obtained by launching a particle in the potential FL, with v2
0 ¼ 40, Rc ¼ 1, q ¼ 1, and with initial

conditions x0 ¼ 1, y0 ¼ 0, ẋ0 ¼ 0, and ẏ0 ¼ 6:28318.
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orbits without knowledge of the orientation or of the centre of the
potential, and that it can even provide us with this information.

5.1 Orientation

It is clear that loop orbits are immune to any rotation of the
coordinate system; for other reasons, irregular orbits also are
immune. Box orbits, on the other hand, are not. To see this, let us
take the long axis oscillator, with amplitude A, with the coordinate
system aligned with the potential. Then, a single line will appear on
the x spectrum, with amplitude A, and nothing will appear on the y

spectrum. Now let the coordinate system be rotated anticlockwise
by an angle b. The amplitude of the x-line will shrink to A cos b, and
a line will appear on the y spectrum at the same frequency, with
amplitude A sin b. The phases of both lines will be the same. Had we
rotated by a clockwise angle b, the amplitudes and frequencies
would be the same as above, but the phases would differ by an angle
p. Since, in this context, b and b þ p are equivalent angles, we have
covered any possible angle with the example above.

To recover the original alignment, we seek to learn whether the
frequencies are equal, and then compute tan b from the amplitudes.
Since this computation always yields an angle b belonging to the

10 D. D. Carpintero and L. A. Aguilar
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Figure 10. Same as Fig. 4, but for an open 2:2 loop orbit, obtained by launching a particle in the potential FH with initial conditions x0 ¼ ¹0:48, y0 ¼ 0, ẋ0 ¼ 0,
and ẏ0 ¼ 0:30768.

Figure 11. Same as Fig. 4, but for an irregular orbit, obtained by launching a particle in the potential FB, with v2
0 ¼ 1, Rc ¼ 0:14, q ¼ 0:9, Re ¼ 1:5, and with

initial conditions x0 ¼ 0:2, y0 ¼ 0:2, ẋ0 ¼ ¹0:8, and ẏ0 ¼ 0:55401.
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first quadrant, we fix the sign through the phases. This scheme is not
in conflict with the recognition of a loop orbit (we recall that the
presence of equal frequencies in both x and y spectra is the criterion
for loop orbits) because once the coordinate system is rotated, then
(i) if the orbit is a loop, nothing changes and we still have equal
frequencies in both spectra; or (ii) if the orbit is a box, one of the
lines vanishes.

If the spectra have more than one line, they are irrelevant to the
above discussion, because, in order to make the rotation, it suffices
to take the line with the maximum amplitude (whether it appears on
the x or on the y spectrum) to make the rotation.

Before leaving the subject, we must work out a subtle problem.
We have seen that the long axis of the potential, i.e., the pros-
pective x axis of coordinates, bears the maximum amplitude
of oscillation of a box orbit, and the above rotation is based on
this assumption. However, it turns out that there are orbits in which
the maximum amplitude lies on the short axis of the potential.
If this is the case, we are left with a coordinate system wrongly
rotated 908. To avoid this, since the ratio Fy=Fx is always greater
than one, we simply rotate the coordinate axes by 908 whenever
Fy=Fx < 1.

5.2 Translation

A displacement of the coordinate system reflects on the spectra of
an orbit only in its zero-frequency slot; the rest is left unchanged.
Then the most simple way to centre the orbit is to nullify the
amplitude of the zero frequency. This centring is most useful in
dealing with orbits in the meridional plane of an axisymmetric
potential.

One last comment about loop orbits: we might have tried to
classify loop orbits based on their constant sense of motion,
instead of through their spectra. If this were the case, a translation
does change matters, because the constant sense of rotation is true
only if measured from within the ‘hole’ of the orbit. We can still
make a translation eliminating the frequency zero, but if the orbit
has a very tiny hole, then the translation might fail to put the
origin exactly inside the hole, and the sense of rotation will come

out wrong. Also we would run into trouble if trying to classify a
loop orbit in the meridional plane of an axisymmetric potential,
for in this case one cannot say beforehand where the hole is
(unless one visually inspects the orbit). It is safer to deal with the
spectra.

6 N U M E R I C A L A L G O R I T H M A N D L I M I T S O F
T H E C L A S S I F I C AT I O N

Compromises that involve decisions are unavoidable when we
translate the above considerations into a finite precision, numerical
algorithm. Here we discuss the most important.

One decision to make is how many lines should be extracted in
order to properly classify an orbit. We want to establish a limit, both
to save time and to avoid tiny noisy lines. One way to do this is by
limiting the number of lines, Nl; another one is to put a lower limit
on the amplitude of the line, for example with respect to the
strongest. We used both criteria and found that Nl ¼ 5 per coordi-
nate, and a minimum amplitude of 0.02 times that of the greatest
suffices to achieve a good classification.

We also must decide whether or not two numerically com-
puted frequencies a and b are equal. We have used the following

Orbit classification 11
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Figure 12. Left: SoS of an orbit (see text), integrated during 400 orbital periods. Right: the same, but for some 2000 orbital periods.

Figure 13. Summary of 2D spectral orbit classification.
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criterion,

a ¼ b ⇔ ja ¹ bj

jaj þ 1
< « D; ð18Þ

where D is the difference in frequency between two adjacent
Fourier slots, and « is a parameter to fix. We found that « . 0:25
is a good compromise.

A further problem arises from the time-span of the orbit
integration. It is clear that an orbit that was integrated for too
short a time may yield an incorrect Fourier spectrum. As Fig. 14
shows, we found that, with N ¼ 4096 points that sample uniformly
the orbit in time, the classification is reliable when the orbit has been
integrated over 100 orbital periods. Fortunately, since the orbital
period is, generally speaking, the inverse of Fx, the program itself
can estimate the number of orbital periods over which an orbit was
integrated, and can warn the user if neccesary.

As a further security, the classification is performed at least
twice for each orbit: one with the original time-span, and once
again with a portion of the orbit removed. If the classifications
differ (which sometimes happens), a third pass is made in order to
resolve the question. We found that this solves almost all
uncertain cases. The rare cases left undecided are signalled by
the classifier so that a more detailed examination may be
performed by other means.

The most challenging numerical problem consists of determining
whether two (finite precision) numbers have a low-order quotient.
(Note that this is not the problem of reconstructing a numerator and
a denominator from their rational quotient.) If a and b are those
numbers, and m and n are (small) integers, we found that comparing
a=b with m=n with the aid of equation (18) suffices in most cases. If
the ratio is found to be rational, then the resonance is automatically

m:n, and the unit frequency arises at once. However, this procedure
is not guaranteed to succeed, because we do not have an infinite
frequency resolution. This means that resonances that do not
generate orbit families will no longer be a set of measure zero,
but will appear as ribbons of finite width. Decreasing « in
equation (18) will result in a narrowing of the ribbons, but the
price paid will be that many real rational ratios, because of

12 D. D. Carpintero and L. A. Aguilar

q 1998 RAS, MNRAS 298, 1–21

Figure 14. Orbit classification as a function of the time-span of orbit integration, for several assorted orbits. A dot indicates a successful classification, a cross
marks a discrepant one.
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Figure 15. Ratio of dominant frequencies versus initial x coordinate in the
potential FL described in the text.
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Figure 16. Orbital structure of the logarithmic potential FL, with v0 ¼ 1, Rc ¼ 0 and q ¼ 0:7, at E ¼ 0.

Figure 17. Orbital content of the Binney potential with q ¼ 0:9, Rc ¼ 0:14, v2
0 ¼ 1, and Re ¼ 1:5, at E ¼ ¹0:6348.
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inaccuracies in the determination of their frequencies, will be
considered irrational, thus resulting in spurious irregular orbits. In
the end, one must recognize that any numerical tool will have limits
in resolution.

However, the classifier is still a powerful tool. We integrated a
series of orbits in the potential FL with v0 ¼ 1, q ¼ 0:9, and
Rc ¼ 0:14, at an energy E ¼ ¹0:337 (BT87, fig. 3.8), with initial
conditions 0:6 # x0 # 0:7, ẋ0 ¼ y0 ¼ 0, and ẏ0 chosen to match the
energy. Thus, this series crosses from the loop to the box region of
the potential. Fig. 15 shows the ratio of dominant frequencies along
this series. The classifier sharply recognizes the border between
families (qy=qx ¼ 1 for loops, > 1 for p-boxes). The first two orbits,
from left to right, with ratios > 1, were classified as irregulars. The
rest were classified as loops (left) or p-boxes (right).

7 R E S U LT S F O R 2 D P OT E N T I A L S

To test our classifier, we analysed the orbital structure of several
potentials previously studied, so that we could compare the results.

Fig. 16 shows a grid of orbits that we have classified on the SoS
for the logarithmic potential FL, with q ¼ 0:7, Rc ¼ 0, v2

0 ¼ 1, that
corresponds to an energy per unit mass E ¼ 0 (in this and other
examples in this section, every symbol in the corresponding figure
represents the initial point of an orbit that was integrated and
classified separately). This is to be compared with fig. 1 of
Miralda-Escudé & Schwarzschild (1989). As indicated by these
authors, there is a complete lack of p-box orbits, and irregular orbits
fill the phase space between the different classes of regular orbits.
All resonances found by these authors have been found by our
classifier, and, at the higher resolution of our grid, further fine detail
is beginning to appear. Resonances as high as 8:5 appear close to

y , 0 and ẏ < 1:4 (labelled as ‘other’ in the figure), narrow strips of
k:k loops at the border and within the region occupied by the open
1:1 loops orbits, and also narrow strips of 2k:k boxes within the
region of 2:1 boxes. The ‘irregular sea’ in this SoS appears to be all
connected as can be seen in Fig. 12(b), which shows an irregular
orbit that loiters around almost all of the irregular bands between
regular zones in this SoS. The few irregulars close to the 2k:k orbits,
when inspected, reveal themselves as 4:2 boxes, so we are here at
the limit of frequency resolution of the classifier.

Fig. 17 shows a similar SoS grid, but for the Binney potential
FB, with q ¼ 0:9, Rc ¼ 0:14, v2

0 ¼ 1, and Re ¼ 1:5, at
E ¼ ¹0:6348. As can be seen, there are islands of regular
orbits in a sea of irregularity. Again, second-rank resonance
orbits begin to show up. This figure can be compared with figs
3–27 of BT87, where some orbits were sketched. Our classifier
combined with a finer grid gives us a higher resolution picture of
the orbital structure of this particular SoS.

Fig. 18 shows an SoS of the Hénon–Heiles potential FH, at
E ¼ 0:1602. As is already known, at this relatively high energy
most orbits are irregular. Our classifier shows also that there exists a
large regular region populated mainly by 1:1 and k:k loops. There
are also a few m:n box orbits with high resonances; however, these
isolated orbits are most likely a consequence of the finite frequency
resolution of our classifier.

Table 2 reports the percentage of orbits of each type found on the
orbital grids studied in this section.

8 S P E C T R A L C L A S S I F I C AT I O N O F 3 D
O R B I T S

The Fourier analysis and subsequent extraction of lines proceeds as

14 D. D. Carpintero and L. A. Aguilar
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Figure 18. Orbital content of the Hénon–Heiles potential at E ¼ 0:1602.
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in 2D. The only change is in the classification itself. We assume that
the x, y, and z axes correspond to the large, intermediate, and short
axes of the potential, respectively. First, we determine the dominant
frequencies in each coordinate, denoting them Fx, Fy, and Fz.

Now we take each couple of coordinates ðx; yÞ, ðx; zÞ, ðy; zÞ in turn.
For each case, we analyse whether the second-dominant line must
bear the title of dominant, as we explained in Section 4.1. Then,
again for each pair, we compute whether or not they have a rational
ratio, i.e., whether a resonance is present. If this is the case, we
compute the integer numerator and denominator, as described in
Section 6. In each case, we search for the possibility of an improper
quotient related to a higher-rank resonance, and compute numera-
tors and denominators accordingly. Once the three pairs of coordi-
nates have been surveyed, we are left with zero, one, two or three
resonances encountered.

If we find three resonances, i.e., one resonance in each pair of
coordinates, then all three dominant frequencies are multiples of a
single unit frequency. We then build the relationship between the
three coordinates in the form of a proportion among integers X:Y:Z,
taking into account any present higher-rank resonance.

When the program finds only two resonances (which is, of
course, not possible), what happens is that one of the quotients is
likely to be formed by two large integers beyond the range searched
by the classifier. We then reconstruct the lost resonance from the
other two, ensuring that no spurious improper resonances leak in.

If we find only one resonance, say Y=X, then it means that Fz has
an irrational relation with respect to Fx and Fy. In this case, we will
denote the irrational ratios by putting Z ¼ p, thus yielding the
triplet X:Y:p. Of course, the same holds if Z=X or Z=Y were the case.

If no resonances are encountered, all three dominant frequencies
are irrationally related. This corresponds to the 3D analogues of the
2D p-boxes. Extending our foregoing notation, we will call them
3D p-boxes.

We can now establish the number of BFs among the dominant
frequencies: if there are three resonances, there is one BF; if there is
one resonance, there are two BFs; and if no resonances were found
at all, there are three BFs. With these figures, we go on searching for
additional BFs, i.e., frequencies present in the orbit but that are not
integer linear combinations of the dominant-born BFs. The proce-
dure goes much as in the 2D case, but now we make room for up to
four possible independent frequencies.

The last step is to classify the orbit from the data collected above.
First, we consider the total number of BFs: if we find a total of more

than three BFs, the orbit is irregular and the BFs are not really BFs.
If fewer than four BFs are found, we have regular orbits that are
closed (one BF) or open (three BFs). If there are two BFs, the orbit
moves on a 2D manifold in configuration space. Following the usual
nomenclature, we will call these orbits thin.

Secondly, we consider the number of resonances. When there are
no resonances, then the orbit is an axial orbit (one BF), a 2D p-box
(two BFs) or a 3D p-box (three BFs). If there is one resonance, we
have a 2D closed box (one BF), a thin box (two BFs) or an open box
(three BFs); except when the resonance is 1:1, in which case we
have closed loops, thin tubes and open tubes, respectively. Finally,
the orbits whose dominant frequencies are all in resonance, and
with three or two BFs, are boxes or tubes the parents of which are
the corresponding 3D closed resonant orbits with one BF.

The particular case of a 1:1 resonance between two coordinates
gives rise to the familiar z-tubes, if x and y are resonant, or x-tubes, if
y and z are resonant. (In rare cases, as in a fully harmonic 3D
potential, we may also have y-tubes or two or three k:k relations).
Although we were not able to find any distinguishing feature
between so-called outer x-tubes and inner x-tubes (de Zeeuw
1985) spectra, we can fill this gap with a simple routine, computing
from the coordinates of the orbit whether it is concave (outer x-tube)
or convex (inner x-tube) in the x direction. However, it turned out
that this routine could not handle all the cases properly, as some-
times the curvature was subtle. A better routine remains to be
created.

Fig. 19 summarizes the classification. The columns arrange orbits
according to whether they are closed, thin or open. The rows corre-
spond to family sequences in which the parent is 1-, 2- or 3D. We
have added a 0 in the notation to indicate an absent coordinate.

Our notation, however, has a difficulty which did not appear
before. In 2D, a common factor was used to signal a second-rank
resonance; in 3D, such a factor may be spurious. Let us suppose, for
example, that we have a 9:4:2 resonance. Have we the resonances
9:4, 9:2 and the second-rank 4:2, or is the third pair a 2:1 resonance
converted to 4:2 by the first two pairs? Clearly, we must extend our
notation to break the ambiguity. We use a prime to signal a pair of
numbers with a common factor which do not represent a real
second-rank resonance. In the example above, a 4:2 resonance
would yield the standard 9:4:2, whereas a 2:1 resonance would be
written as 9:40:20. When there are two pairs of numbers having a
common factor, as in 9:6:4, it may be that there are no second-rank
resonances, in which case we put 90:60:40 to indicate the resonances
3:2, 9:4 and 3:2. If there is only one second-rank resonance, say 6:4,
we write 90:60:4, marking individual 3:2, 9:4 and 6:4 resonances.
Finally, 9:6:4 signals that both 9:6 and 6:4 are second-rank
resonances.

Orbit classification 15
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Table 2. Percentages of orbits in the studied
potentials.

Orbit type FL FB FH

Irregular 8 68 82
p-box 0 2 1
1:1 41 8 8
k:k 4 2 9
2:1 22 9 0
2k:k 1 2 0
3:2 15 5 <1
3k:2k 0 1 0
4:3 1 1 0
5:3 4 1 0
5:4 0 <1 0
Other m:n 3 <1 <1

Total of orbits 3556 4237 7084

Figure 19. Summary of 3D spectral orbit classification. a The order of the
indices does not change the classification name, just the spatial orientation.
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As in the 2D case, we perform a second classification by
removing a portion of the orbit; if the classification differs, a third
pass is made with another orbital portion removed.

The position of the centre of the 3D potential is obtained by
means of a simple extrapolation of the method described in 2D. The
orientation, on the other hand, is far from this simple. We have not
yet developed the corresponding algorithm.

9 R E S U LT S F O R 3 D P OT E N T I A L S

As for the 2D case, we study some potentials the orbital structure of
which is either simple, or has been determined independently, to test
the validity of our classifier.

We first tested the classifier with orbits in a 3D harmonic
oscillator, obtaining good classifications in all cases.

A non-trivial and fully regular and well-studied potential is the
‘perfect ellipsoid’ (de Zeeuw 1985; BT87), a member of the family
of Stäckel potentials (Stäckel 1890). Although it has its simpler
form in ellipsoidal coordinates, which is not very convenient for
numerical integration, we have used this potential because it has the
major four families of 3D orbits, and by computing the three
integrals of motion, one can know a priori which type of orbit
one is working with, and then confront this result with the output of
our classifier.

Fig. 20 shows some examples. The orbit of Fig. 20(a) was
integrated in the perfect ellipsoid potential with parameters

16 D. D. Carpintero and L. A. Aguilar
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(d)

Figure 20. Spectra of orbits in the Stäckel potentials described in the text. (a) Spectra of the orbit obtained by launching a particle from
x0 ; ðx0; y0; z0Þ ¼ ð¹1:3;¹0:5; 0:3Þ, and with initial velocity v0 ; ðvx0; vy0; vz0Þ ¼ ð0:25; 0:1; 0:2Þ. x-lines are solid, y-lines dotted, and z-lines dashed. The
resulting classification is a p-box. (b) The same, but with ðx0;v0Þ ¼ ð1; 1; 0:1;¹0:2901; 0:3; 0:1Þ. The dashed–dotted lines belong to both x and y coordinates. It is
an open 1:1:p z-tube. (c) The same, but with ðx0;v0Þ ¼ ð0:01;¹1; 0; 0:05678; 0:01; 0:35Þ. Dashed–dotted lines indicate both y and z lines. It is a thin 9:130:130

inner x-tube. (d) The same, but with ðx0;v0Þ ¼ ð1; ¹3:1;¹5:4; 0:3;¹0:1; 0:1Þ. Dashed–dotted lines indicate both y and z lines. It is an open p:1:1 outer x-tube.
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a ¼ ¹1, b ¼ ¹0:390 625, and g ¼ ¹0:25. It is a 3D p-box; lines of
each coordinate are marked with different line types. Note how each
pair of coordinates makes a 2D p-box spectrum on its own. Fig.
20(b) shows the spectra of an open 1:1:p tube (a z-tube), integrated
in the same potential with parameters a ¼ ¹2, b ¼ ¹1, and
g ¼ ¹0:5; in this case, the lines belonging to the x and y coordinates
have the same frequencies, and so the amplitude shown is only the
greatest among x and y. Fig. 20(c) shows an example of a thin inner
x-tube, integrated in the prolate limit of the perfect ellipsoid
potential (de Zeeuw 1985) with parameters a ¼ ¹4 and b ¼ ¹1;
here the frequencies of the y- and z-lines are the same. Fig. 20(d)
shows the spectra of a p:1:1 outer x-tube, integrated in the same
potential of Fig. 20(a).

Schwarzschild (1993) has investigated the possibility of self-
consistent models in a singular, triaxial logarithmic potential,
expanded in spherical harmonics. We have used this reference
because the orbital classification for 3600 orbits on six variants of
this potential in two so-called ‘start spaces’ is given, and the precise
resonance is listed for 64 stable, closed orbits, together with their
initial conditions (tables 3 and 4 of Schwarzschild 1993). These
orbits span a rich variety of resonances as high as 31:42:51. The
classification accomplished in this work represents a tour de force,
achieved by considering the symmetry and behaviour of the mean
angular momenta and positions along each axis, as well as the
corresponding extrema. The way in which the precise resonance
order has been found is through a visual inspection of the plots of
the individual time series for each coordinate (Schwarzschild,
private communication), a daunting task indeed, when considering
the high order of some resonances.

We have integrated all stable closed orbits listed in this work for
80 periods. We were pleased to see that for all but 4 of the 64 orbits,
we obtained the same classification as Schwarzschild, including the
resonance, the closeness, and all the second-rank resonances, which
Schwarzschild calls ‘higher period multiples’. Here follows an
account of the discrepant cases.

(i) In table 3 of the above reference, we found that orbit number
3 of the C ¼ 0:7, T ¼ 0:5 model, and orbit number 3 of the C ¼ 0:3,
T ¼ 0:5 model, were thin 1:p:2 boxes, i.e. there were two BFs, and
therefore they were not closed. The classification given by
Schwarzschild is 1:S:2. We note that a letter ‘S’ appears in his
tables 3 and 4 whenever there is no motion on a coordinate, except
on these two cases where, according to us, it should indicate a non-
resonant coordinate; interestingly enough, an S is used to indicate
precisely this on his table 1.

(ii) In his table 4, orbit number 7 of the C ¼ 0:7, T ¼ 0:5 model
was found to be a p:42:51 box, instead of a 31:42:51 box. That is,
our program found two irrational quotients instead of the relations
31:42 and 31:51, and a 14:17 resonance which turned out to be
improper, becoming the 42:51 quotient. We can tune the algorithm
in order to detect even these high quotients (we did it and found the
right classification); this practice, however, may render the algo-
rithm unable to find irrational quotients (see Section 6). We prefer to
stick with a ‘safe’ algorithm, losing high resonances, which are not
very important.

(iii) In table 4 of Schwarzschild (1993), orbit number 3 of the
C ¼ 0:3, T ¼ 0:98 model was found to be a 2:3:0 box (a planar
fish), instead of a reported 2:3:5. This is clearly a mere misprint in
the reference, which must then read 2:3:S.

As a further step, we tried to reproduce the orbital content of the
x-z start space for the six models used by Schwarzschild (fig. 4 in
that reference). Fig. 21 shows the outcome. In this figure, the x loop

stands for planar 0:1:1 orbits, which we are unable to classify as
inner or outer long tubes. We have explicitly separated saucers
(1:1:2) and fans (1:2:2) from the rest of the bananas and tubes, in
order to compare our results with the work of Schwarzschild. The
greatest difference turns out to be the lack of saucers in the third and
fourth models, which are conspicuous in those models in Schwarz-
schild (1993). However, this may be due to a slight inconsistency in
Schwarzschild’s definition of saucers, since they are defined as
1:1:2 resonances in his table 1, but are searched for simply as
‘significant Lz, asymmetric in z’, conditions that orbits other than
saucers can fulfil. Also, comparison between our Fig. 21 and fig. 4
of Schwarzschild shows that a finer resolution can easily be attained
with our automated classification. However, there appear several
suspicious orbits: inner tubes immersed in regions of outer tubes,
isolated irregulars in otherwise regular zones, or box orbits
embedded in a sea of tubes. We closely examined a number of
these orbits. The inner tubes studied turned out to be outer tubes:
their concavities were small, and so our routine was fooled. On the
other hand, suspicious irregulars and boxes had very close lines in
different coordinates, which should be at the same frequency if
those orbits were to follow the family of their neighbours; in fact, by
augmenting « in equation (18), we recovered the correct classifica-
tions. This demonstrates how the value of « is a compromise
between a finer resolution in frequency space, and a compensating
factor for the numerical inaccuracies in extracting the lines.

1 0 S U M M A RY A N D C O M PA R I S O N W I T H
P R E V I O U S S P E C T R A L M E T H O D S

We have developed a method to automatically classify an orbit,
given its coordinates as a function of time. It is based on the analysis
of the Fourier spectrum of the orbit, and takes advantage of the
quasi-periodic property of regular orbits. It can distinguish not only
between regular and irregular orbits, but also between loop, box,
and other resonant orbits up to orders comparable to those studied
previously. It can also identify higher-rank resonances. An addi-
tional feature is the ability to classify orbits, even when the
coordinate system is not centred, nor (for the 2D case), aligned
with the potential. For orbits to be classified reliably, they should be
integrated for about 100 orbital periods.

The main limitation of the present method is its resolution in
frequency space, an unavoidable limitation of any finite precision
computation. Its main advantage is the automatic character of the
classification, which permits the reliable classification of a large
number of orbits, leaving only a few doubtful cases to be examined
further in detail. This advantage should greatly facilitate detailed
orbital structure investigations of generic potentials. We have also
introduced a consistent orbit nomenclature based on the spectral
features used for the classification. This nomenclature has the virtue
of including most types of orbits previously studied, in a notation
that is compact and physically meaningful. Although this notation
encompasses up to second-rank resonances, it can be extended in
the future, should it be necessary to study higher-rank resonances.

Binney & Spergel (1982) first introduced the spectral method in
galactic dynamics. In that first work they studied box and loop
orbits in the 2D logarithmic potential. They recognized the line-like
spectra as the basic distinguishing feature of regular orbits in
frequency space, and interpreted the two BFs for these orbits in
terms of a simple physical model. In a follow-up work (Binney &
Spergel 1984), they showed the way in which the actions can be
computed from the Fourier representation of the orbits. They came
back to the logarithmic potential and were able to show several

Orbit classification 17

q 1998 RAS, MNRAS 298, 1–21

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/298/1/1/976083 by guest on 23 N
ovem

ber 2021



18 D. D. Carpintero and L. A. Aguilar

q 1998 RAS, MNRAS 298, 1–21

Figure 21. Orbital content of the x–z start space in the (a) first, (b) second, (c) third, (d) fourth, (e) fifth and (f) sixth scale-free logarithmic models used in
Schwarzschild (1993).
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Figure 21 – continued
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Figure 21 – continued
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important results, e.g. the way in which regular orbit families fit in
action space.

More recently, Laskar (1993) has reintroduced the spectral
method within the context of stability studies of orbits in conserva-
tive dynamical systems. Laskar obtains the BFs using phase-space
coordinates in an iterative numerical algorithm that results in a very
accurate determination of frequencies and phases. Papaphilippou &
Laskar (1996) have used this method to study the same logarithmic
potential studied by Binney & Spergel. The actions of box and loop
orbits are then approximated by means of the spectral representa-
tion. The main thrust of this work is the study of the orbital structure
by means of a 1D map from one phase-space variable to frequency
space. Resonances as high as 9:16 are identified by means of this
technique.

Our approach has been different, as our main goal has been to get
an automatic orbit classifier. Our procedure for extracting lines is
better than the one originally used by Binney & Spergel, but does
not seem to be as good as the one claimed by Laskar. Our precision,
however, seems to be adequate to obtain the desired classification.
The identification of the particular behaviour of line frequencies in
Fourier space, which we use to accomplish the classification, was
not contemplated in those earlier references.

In computing the BFs for an orbit, we are obtaining the basic
frequencies that occur in action–angle theory. This being of
importance itself, further work remains to be done; in particular,
the computation of the action integrals for 3D orbits extending the
method introduced by Binney & Spergel (1984) is of paramount
importance, because they provide a natural coordinate system on
which to study the phase-space distribution of regular dynamical
systems. Another interesting line of work would be to investigate
whether chaotic orbits can be identified by means of the continuum
they produce in Fourier space. We hope to pursue these lines of
investigation in the future.

The program developed to accomplish the orbit classification is
available for general use upon request.
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