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Abstract. We provide a general framework for self-interacting warm dark matter (WDM)
in cosmological perturbations, by deriving from first principles a Boltzmann hierarchy which
retains certain independence from a particular interaction Lagrangian. We consider elastic
interactions among the massive particles, and obtain a hierarchy which is more general than
the ones usually obtained for non-relativistic (as for cold DM) or for ultra-relativistic (as
for neutrinos) approximations. The more general momentum-dependent kernel integrals in
the Boltzmann collision terms, are explicitly calculated for different field-mediator models,
including examples of a scalar field or a massive vector field. As an application, we study the
evolution of the interaction rate per particle under the relaxation time approximation, and
assess when a given self-interaction is relevant in comparison with the Hubble expansion rate.
Our framework aims to be a useful tool to evaluate DM self-interaction effects in the linear
power spectrum, with the consequent imprints on non-linear scales of structure formation.
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1 Introduction

In the standard cosmological paradigm, ΛCDM, Dark Matter (DM) has long been a necessary
ingredient in the Big Bang model of the universe and in understanding its evolution since
the early stages. While the evidence for its existence is implied by its gravitational effects in
astrophysical, galactic and cosmological structures; understanding the nature and composition
of this species is still an elusive subject [1–4]. Several attempts have been made to explain
this phenomenon by macroscopic objects, yet a microscopic origin of the DM phenomenon by
a new particle species remains as the most plausible hypothesis [3–7]. On the early stages of
DM research, active neutrinos appeared as promising candidates for this particle species [8, 9].
However, neutrinos are “hot” Dark Matter (HDM) with a free-streaming length which erases
structures up to large scales [10], while numerical simulations have shown that such “top-
down” structure formation is incompatible with clustering constraints [11]. Cosmological data
favored the adoption of the ΛCDM paradigm [12]: in the standard scenario, DM is assumed
to be produced in a thermal distribution and modeled as collisionless after it decouples from
the other species. The effective decoupling is assumed to occur at a temperature smaller
than the DM mass so that the distribution corresponds to non-relativistic particles. The
traditional candidates are weakly interacting massive particles (WIMPS) which were in
thermal equilibrium with the species in the cosmic plasma via weak interactions [13]. In
this scenario, galaxies form in a “bottom-up” fashion: small scales (favored by the small
velocity dispersion of CDM particles) become non-linear and collapse first, and their merging
and accretion leads to formation of structures on larger scales. On these scales, data of
the structure of the universe is consistent with CDM driving the formation of galaxies and
clusters, however, no viable fundamental particle within the standard model (SM) fulfills
these properties [3, 14] .

The standing ΛCDM paradigm, is in remarkable agreement with large scale cosmological
observations (see for instance [15–18]) and it is also compatible with an increasing amount
of observed galaxy properties (e.g. [19] and [20]). However, it has been noted that in this
paradigm it is challenging to describe some observables on smaller scales, such as the “missing”
dark matter sub-halos or the so called core-cusp discrepancy [21]. High resolution cosmological
simulations of average-sized halos in ΛCDM predicts [22] an overproduction of small-scale
structures, significantly larger that the observed number of small satellite galaxies in the Local
Group [23, 24]. Moreover, N-body simulations of CDM-only predict a singular density profile
for virialized halos [25, 26], while observational evidence points to dwarf spheroidal galaxies
(dSphs) having smooth cores in their central regions [27, 28]. Some other tensions have been
raised between CDM-only predictions and observations (see for example a review in [21]).

Among the earliest approaches to alleviate/resolve those conflicts is to consider two
DM components, one “cold” and one “hot” (C+HDM) [29, 30]. More recent models feature
only warm dark matter particles (WDM) [31], meaning that they are semi-relativistic during
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the earliest stages of structure formation with non-negligible free-streaming particle length.
WDM models feature an intermediate velocity dispersion between HDM and CDM that
results in a suppression of structures at small scales due to free-streaming [32]. If this free
streaming scale today is smaller than the size of galaxy clusters, it can provide a solution
to the missing satellites problem [27, 33–35]. However, thermally produced WDM suffers
from the so called catch-22 problem when studied within N-body simulations [36, 37]. Such
WDM-only simulations either show unrealistic core-sizes for particle masses above the keV
range, or they acquire the right halo sizes though for sub-keV masses, in direct conflict with
phase-space constraints [38]. It is important to remark that this may be due to shortcomings
on the simulations themselves, and could be alleviated by including baryon feedback [39] . A
particular, promising realization of these WDM models has been the minimal extension of
the SM by intermediate-mass sterile neutrinos in the O(keV) range known as νMSM (see, for
example, [40] for a review).

From the astrophysical point of view, fermion masses in this range and up to O(0.1
MeV) seem to also be favored by recent elementary particle based DM halo studies [35, 41],
where self-gravitating equilibrium systems were shown to be both in excellent agreement
with rotation curve observations while thermodynamically stable (coarse-grained entropy
maxima) within cosmological timescales [42]. From current cosmological data it is possible
to constrain these models analizing observable properties, such as from Lyman-α forest and
sub-structure observations in the Local Group. Comprehensive reviews of the constraints for
sterile neutrinos can be found in e.g. [43, 44] .

Another compelling alternative to colissionless CDM, apart from WDM, is to consider
interactions in CDM. This consideration relaxes the assumption that CDM interacts only
gravitationally after early decoupling, and includes interactions either between DM and
SM particles or additional hidden particles, or among DM particles themselves. These
later models are denominated as “self-interacting” DM models (SIDM) (see [45, 46] for
reviews). Born out of N-body simulations [47], SIDM halos could explain the cores of galaxies
when a 2 ↔ 2 interaction is assumed, with cross-sections constrained to be roughly of
σ/m ∼ 0.5 − 10 cm2/g [45, 48, 49]. However, certain tensions have been raised about the
upper limits in the self-interaction cross section, based on a more refined analysis of the
Bullet Cluster [50]. This has motivated the consideration of velocity dependent cross sections
(i.e. σ as a function of the rms velocity of DM particles) which are sensitive to the baryonic
environment [51].

Most SIDM studies assume a cosmological evolution identical to CDM on large scales,
and that the linear matter power spectrum remains unchanged. However, many models include
other ingredients that can produce small scale damping [52–55]. A good example of the latter
are the DM + Dark Radiation (DR) models considered by the ETHOS collaboration [52],
who created a framework for structure formation that encompasses several microphysical
interaction models via an effective theory. Interestingly, interacting scenarios combining
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DM+DR interactions with SIDM effects, are able to generate a truncation in the power
spectrum while producing shallower inner density profiles [56], alleviating the core-cusp and
missing satellite problems altogether.

So far, we have mentioned both WDM and SIDM as possible solutions to the tensions
between ΛCDM and observations on small scales, and discussed about their possible realiza-
tions. Here, we take both approaches into consideration. Previous studies have shown that the
inclusion of self-interactions among WDM particles in quasi-relaxed DM halos can alleviate
some constraints, as shown in [57, 58] for the case of self-interacting right handed neutrinos.
Also in [58] it is discussed the possibility of novel sterile neutrino production mechanisms
through heavy mediators, while further effects of including a scalar self-interaction in the
νMSM active-sterile mixing production scenarios, were considered in [59].

We focus here on the description and treatment of the linear theory of cosmological
perturbations for self-interacting WDM (SI-WDM) scenarios, and provide explicit expressions
for the Boltzmann hierarchies for different self-interacting sterile neutrino DM scenarios,
with its corresponding beyond SM field mediators. Efforts on calculating the evolution of
these perturbations either in traditional CDM or WDM scenarios (see [60] for a summary),
have been outlined either via semi-analytic methods such as in [61, 62], or via numerical
integration of the coupled Einstein-Boltzmann system [60, 63–65]. For the latter, freely
available numerical routines such as CAMB [64] or CLASS [65] exist as general purpose tools,
or more specialized ones as the (CDM-based) ETHOS code [52] for interacting DM+DR
models. An earlier work [66] pioneered the inclusion of SI-WDM on numerical Einstein-
Boltzmann solvers (though under important simplifications, see also [67]), finding an enhanced
suppression of power in small scales when compared to WDM only evolution.

The objective of this work is to contribute to the findings of these early realizations
of SI-WDM structure formation. To this aim we provide here a systematic and accurate
treatment of collisions in WDM models extending [66], and at the same time retaining certain
independence from a particular Lagrangian self-interacting model. Our procedure is motivated
by the tools provided by the Boltzmann hierarchies for interactive (active) neutrinos [68–70].
They are used and generalized to perform an accurate framework for the collision term
in the linearized Boltzmann equation for the SI-WDM species, and derive an explicit and
analytical expression for the equations of motion. Motivated by [52], we do not commit to a
particular form of the scattering amplitude, but provide a general parametrization in terms
of model dependent coefficients that naturally includes several interaction mediators such as
a massive scalar (as seen in [59, 69, 70]) or a vector field (as proposed from first principles
in [57, 58]). The general results here presented are aimed (but not limited) to further evaluate
the SI-WDM effects in the matter power spectrum, CMB anisotropies, halo models and
production mechanisms, and may also be useful beyond the study of DM such as the study of
active neutrino physics and their anomalies [70].
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In order to set our notation and conventions, in what remains of this section we briefly
introduce the cosmological perturbation theory and Einstein-Boltzmann equations.

1.1 Cosmological Perturbation Theory

In cosmology, the evolution of perturbations to the isotropic homogeneous background, which
are originated through a primordial power spectrum and will eventually collapse to form the
myriad of observed structures today, is handled through the Einstein equations. There, the
universal spacetime metric is split into a background Friedmann-Robertson-Walker (FRW)
metric and a small perturbation to said metric. The Einstein equations govern the evolution
of this perturbation with the perturbed energy-momentum tensors acting as sources. Several
choices exist in order to describe these metric perturbations: a “gauge freedom” in the
equations. Here, we will use the so called synchronous gauge, where the line element is defined
as

ds2 = a2(τ)
{
−dτ2 + (δij + hij)dxidxj

}
, (1.1)

where the scalar mode of the perturbation hij can be described in terms of two fields h(~k, τ)
and η(~k, τ) as

hij(~x, τ) =
∫
d3kei

~k.~x
{
k̂ik̂jh(~k, τ) +

(
k̂ik̂j −

1
3δij

)
6η(~k, τ)

}
, ~k = kk̂ . (1.2)

A discussion on gauge freedom and gauge modes in the context of perturbations to the FRW
metric can be found in [60, 71, 72]. Here, we quote the final form of the Einstein equations in
the synchronous gauge, in Fourier space:

k2η − 1
2
ȧ

a
ḣ = 4πGa2δT 0

0 ,

k2η̇ = 4πGa2(ρ+ P )θ ,

ḧ+ 2 ȧ
a
ḣ− 2k2η = −8πGa2δT ii ,

ḧ+ 6η̈ + 2 ȧ
a

(
ḣ+ 6η̇

)
− 2k2η = −24πGa2(ρ+ P )σ ,

(1.3)

where

(ρ+ P )θ ≡ ikjδT 0
j , (ρ+ P )σ ≡ −

(
k̂ik̂j −

1
3δij

)
Σi
j , (1.4)

with Σ the traceless component of T ij , ρ and P the background density and pressure respectively;
and the metric perturbation functions h, η in Synchronous gauge are defined as in eq. (1.2).
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1.2 The Relativistic Boltzmann Equation

In order to close the system of equations in (1.3) without the assumption of a perfect fluid, the
perturbations in a given energy component can be obtained in a more general way by making
use of the Boltzmann equation, which governs the evolution of the phase space distribution
function (DF). As a relativistic invariant, this function is used to describe the number of
particles of a given fluid in a differential unit of volume:

dN = f(xi, Pj , τ)dx1dx2dx3dP1dP2dP3 , (1.5)

where xi are the spatial coordinates and P i refers to the spatial components of the conjugate
momentum, defined as P ≡ (E/a, a[δij + hij/2]pj) in terms of the 4-momentum pj measured
by an observer comoving with the FLRW coordinates. In practice, it is convenient to describe
the perturbations to this function as a function of comoving proper momentum qi ≡ a(τ)pi
(with pi measured in a comoving frame) as:

f(xi, Pj , τ) = f0(q, τ) + F (xi, q, nj , τ) , (1.6)

where ~q = qn̂ is the comoving momentum, and nj its j direction component and f0 is the
background DF. The phase space density evolves according to the relativistic Boltzmann
equation. In terms of these new variables, this is:

Pα
∂f

∂xα
− ΓγαβP

αP β
∂f

∂P γ
=
(
∂f

∂τ

)
col
, (1.7)

where Γγαβ is the general relativistic metric connection and hij the metric perturbation in the
synchronous gauge (see [60] for details) . The right hand side of the equation involves the
terms due to collisions (referred here as the collision term), whose form depends on the type of
particle interactions involved. In the case of a general-relativistic formulation of perturbations,
the derivatives with respect to the coordinates df/dxi and df/dq depend explicitly on the way
one chooses to express the perturbed metric: the so called “gauge choice”. We refer the reader
to [71] for a comprehensive explanation on perturbed FRW metrics and the different gauge
choices, and [60] for a “canonical” application to most of the cosmological fluids in more than
one gauge. In k-space, the equation that dictates the evolution of the perturbation to the
phase space distribution F can be obtained from (1.7) and (1.6), to first order in F as:

∂F

∂τ
+ i

qk

ε
(k̂.n̂)F + d f0

d ln q

[
η̇ − ḣ+ 6η̇

2 (k̂.n̂)2
]

=
(
∂f

∂τ

)(1)

col
, (1.8)

with ε = aE the comoving energy and h, η the potential functions describing the scalar mode
of hij defined as in eq. (1.2). This equation is to be solved together with the zero order
Boltzmann equation [68]
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∂f0
∂τ

=
(
∂f

∂τ

)(0)

col
, (1.9)

and the equations for the other relevant species together with Einstein equations, to give a
closed system. The equations for the metric perturbations are obtained from the Einstein
equations with the perturbations of the total energy-momentum tensor (built as the sum of
the contributions for all relevant species acting as a source term.

2 The Boltzmann Equation for SI-WDM: Interaction Terms

Here, we focus on the right-hand-side (RHS) of equation (1.8). This term describes the
interaction between the different particle species, and the eventual self-interactions between
the same species. Some species can be considered as collisionless during most of their
lifetime such as CDM [60]: for some approaches on interactions and collision terms see e.g.
[52, 54, 73, 74]. For most other species (such as photons or baryons) the collision term plays
a major role in their evolution.

There has been recent progress in dealing with the collision term in cosmological
simulations from first principles. See for example [52, 54] for a streamlining on the treatment
of the term in CDM models, and [73, 74] for an approximation of the collision term in
terms of a Fokker-Planck operator. The focus of the following section is to extend the works
of Oldengott et. al. [68, 69], where the collision term has been uniquely calculated for
ultrarelativistic species (active neutrinos) and scalar field-mediators. Our extension is to the
case of SI-WDM, including a more general scattering amplitude for species that are neither
ultrarelativistic nor fully non-relativistic at decoupling, with emphasis in self-interacting
sterile neutrinos.

The RHS of equation (1.8) counts the number of collisions a particle species i undergoes
in a time interval dt per unit phase space. For a CP invariant two body scattering process
i+ j ↔ m+ n, the full expression for the collision term is:

(
∂fi
∂t

)
coll

(~k, ~q, τ) = gjgmgn
2Eq

∫
d3l

(2π)32El
d3q′

(2π)32Eq′
d3l′

(2π)32El′
δ

(4)
D (q + l− q′ − l′)

× (2π)4|M|2ij↔mn
{
fm(~k, ~q′, τ)fn(~k,~l′, τ)[1± fi(~k, ~q, τ)][1± fj(~k,~l, τ)]

− fi(~k, ~q, τ)fj(~k,~l, τ)[1± fm(~k, ~q′, τ)][1± fn(~k,~l′, τ)]
}
,

(2.1)

where g is the number of internal degrees of freedom of each species, |M|2 is the squared
Feynmann amplitude for the process, and δ(4)

D is the Dirac delta functional over the energy-
momentum 4-vectors labeled with boldface. The collision term as measured in the time-interval
dt is related to the expression in (1.8) as (∂fi/∂τ)col = a(∂fi/∂t)col [68]

The zero-order integral, which dictates the evolution of the background phase space
distribution f0 is simplified, under the same assumptions, as:
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(
∂fi
∂t

)(0)

ii↔ii
(|~q|, τ) = g3

i

2Eq(2π)5

∫
d3l

2El
d3q′

2Eq′
d3l′

2El′
δD(q + l − q′ − l′)|M|2

×
[
f0(l′, τ)f0(q′, τ)− f0(l, τ)f0(q, τ)

]
≡ D1[f ] +D2[f ] .

(2.2)

The first order collision integral, which involves the first order perturbation F (~k, ~q, τ)
can be simplified in the case of interactions ii↔ ii to:

(
∂fi
∂t

)(1)

ii↔ii
(~k, ~q, τ) = g3

i

2Eq(2π)5

∫
d3l

2El
d3q′

2Eq′
d3l′

2El′
δ

(4)
D (q + l− q′ − l′)|M|2

×
[
2f0(q′, τ)F (~k,~l′, τ)− f0(q, τ)F (~k,~l, τ)− f0(l, τ)F (~k, ~q, τ)

]
≡ C1[f ] + C2[f ] + C3[f ] ,

(2.3)

where we have made use of the symmetry of |M|2 under the exchange q′ ↔ l′, and under the
assumption that Bose enhancement and Pauli blocking are negligible as is customary done
for DM candidates on such early epochs [75]. In the case of a cosmological component that
only interacts with itself, this would provide a source term in the RHS of equation (1.8), the
equation of motion for the phase space perturbation F .

Here, we maintain a general form for f0 and provide the necessary collision term to
obtain its evolution via the zero-order Boltzmann equation (1.9). Concerning applications
of the results, a few comments are in order. In most interacting DM studies it is common
that either an equilibrium form (ultra relativistic, maxwellian or Juttner, see for example
[76, 77]) or a "frozen-out" form for f0 can be assumed for most of the dynamical evolution
of perturbations [66, 68]. Alternatively it turns out to be enough to compute the evolution
of a pseudo-temperature of the DM component as described for instance in [52, 53]. An
equilibrium distribution would implicitly assume either a thermal decoupling history of DM
or a period of strong coupling in self-interactions 1

In [68] both the first (2.1) and zero order (1.9) collision integrals have been considered
for the case of active neutrinos with a scalar interaction. In that case, a specific interaction
model has been evaluated and the particle mass of the neutrinos has been neglected, given
that they remain ultrarelativistic until late times. Here, we maintain certain level of generality
in the choice of interaction amplitudes, and explicitly include the mass of the particle. This
generalization of the collision term can be useful in certain WDM models that include self-
interactions between dark particles. In particular, for those models where the ultra relativistic

1For beyond SM neutrinos (assuming relativistic decoupling of Self-Interactions), a typical example is to set
f0 ∝ exp(−q/Tdec,0), where q is the comoving momentum and Tdec,0 is the SI decoupling temperature today.
In [68] an extra normalization factor is included to provide a correction accounting for the effects of Fermi
statistics in the number density.
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to non relativistic transition takes place in the radiation dominated era, and neither the
massless or very massive DM particle limits properly account for the WDM features [78].
These topics are more thoroughly discussed in the following sections.

Besides the above mentioned assumptions for the collision terms in (2.2) and (2.3), we
focus here on the case where the only relevant source of interaction is the self-interaction
among the DM particles themselves (i.e. DM-DM collisions). However, if other interactions
are relevant our results can be generalized by adding the corresponding collision term to the
RHS of (1.8). Moreover, the evolution of the mediator fields should in principle be studied
self-consistently. Nevertheless, in certain situations one can neglect the backreaction of those
fields. For instance, in the case of very massive mediator particles this assumption is justified
as the population of the mediators should be Boltzmann-suppressed at the times of interest.
This is generically not true, however, in the case of a massless mediator: the contribution
of the mediator population to the energy-momentum tensor may not be negligible and the
interactions between these two components should be properly accounted for. Here we do
not address the dynamics of the mediator fields and restrict our analysis to the effects of the
self-interactions of WDM. We focus below on the massive mediator cases, and relegate to
appendix C the computation for massless mediators.

2.1 Scattering Amplitude

Further assumptions enter the expression we will use for the spin-averaged scattering amplitude
|M|. We will assume that this amplitude can be expressed as a second degree polynomial in
the Maldestam variables s, t as defined in (A.20):

|M|2 ≡ m(2,0)s
2 +m(1,1)st+m(0,2)t

2 +m(1,0)s+m(0,1)t+m(0,0). (2.4)

This parametrization leaves the m(i,j) coefficients free as model dependent constants and
allows us to recover a few relevant cases for our study, such as the ones to be considered in
3.3. This assumption, together with the approaches taken in describing both the collision
terms and the Boltzmann equations, allow us to complement previous works [52] aiming to
describe self-interacting species in cosmology. It is in this way that we maintain some model
independence, being able to describe a wide array of (elastic) interaction cross sections either
in an exact or approximate way.

This parametrization encompasses most tree level interactions due to massive mediators
with mmed � m, where m is the DM mass and mmed is the one of the mediator. Notably, this
includes both of the examples studied in [68] as well as many more. Particularly, in the limit
m → 0, this parametrises the tree level self-interactions due to a massless scalar mediator,
which turns out to be a constant scattering amplitude (as detailed in section 3.3.1). However,
in a general case with m 6= 0 this parametrization does not account for massless mediators (of
interest for self interacting CDM models, see [45]). This is discussed further in appendix C,
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where we consider the DM-DM collision term for a massless scalar mediator which cannot be
modelled as (2.4).

In order to explicitly perform the collision term integrations, it is necessary to recast
this expression into their respective powers of t, which reads (with Bt and Ct trivial functions
of s),

|M|2 = Att
2 +Btt+ Ct, (2.5)

as relevant in the case of the C3, C2 integrals as demonstrated in appendix A. A similar
expression works in the case of the C1 integrals, this time involving u (having used the relation
s2 + t2 + u2 = 4m2, with Au, Bu and Cu simple functions of t as shown in appendix A):

|M|2 = Auu
2 +Buu+ Cu. (2.6)

3 Solutions to the Collision Terms

3.1 The First Order Collision Integral

In this section we write down the final results of the first order collision term in (2.3), and
refer to the reader to appendix A for the detailed derivation. In terms of integrations in
energies and Mandelstam variables, C3 can be expressed as:

C3 = −F (~q,~k, τ)g3
i

32(2π)3Eqq

∫
dEldsf0(El, τ)χ(s) , (3.1)

with χ(s) defined as

χ(s) =

√
1− 4m2

s

1
3At(s− 4m2)2 + 1

2Bt(s− 4m2) + Ct , (3.2)

and {At, Bt, Ct} given in eq. (2.5). Here and in what follows we use the convention that all
integrals run over the full range of the respective variables unless it is explicitly specified.

The calculations for the C2 term are identical to the ones developed in A.1 for C3. The
only difference is that the roles of the background and perturbed DF are reversed. This can
easily be seen from the definition of the term in (2.3). So, the final expression for the integral
is

C2 = − f0(Eq, τ)g3
i

32(2π)3Eqq

∫
dEldsF (~l,~k, τ)χ(s) , (3.3)

where we have implicitly used that ~l is a function of only (El, s). Given ~q, this is straightforward
to check from the definitions of s, El. In the case of C1, the calculation diverges greatly from
the one of C3. In this case, both the background DF and the perturbation are integrated
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over, and to perform the integration it is necessary to know f0(Eq, τ). This integral can be
expressed in terms of time-dependent collision kernel K(Eq, Eq′ , t, τ) as

C1 = g3
i

16(2π)3Eqq

∫
dEq′dtF (Eq′ , t)K(Eq, Eq′ , t, τ) , (3.4)

where the kernel is given by:

K(Eq, Eq′ , t, τ) =

{
Au

8|~q − ~q′|5

{
〈f0〉2

[
4t
(
3(Eq + Eq′ )2t− ((Eq − Eq′ )2 − t)(−4m2 + t)

)]

+ 〈f0〉1

[
4t(4(Eq − Eq′ )2(Eq + 3Eq′ )m2

− 4(Eq(Eq − Eq′ )(Eq + 2Eq′ ) + (Eq + 3Eq′ )m2)t+ (Eq + 3Eq′ )t2)

]

+ 〈f0〉0

[
(48(Eq − Eq′ )4m4 − 16(Eq − Eq′ )2m2(2E2

q − 3EqEq′ + 6m2)t

+ 8(E2
q (Eq − Eq′ )2 + (7E2

q − 12EqEq′ + 3E2
q′ )m2 + 6m4)t2

− 4(2E2
q − 3EqEq′ + 6m2)t3 + 3t4)

]}

+ Bu

2|~q − ~q′|3

{
〈f0〉1

[
t(Eq + Eq′ )

]
+ 〈f0〉0

[
2(Eq − Eq′ )2m2 + 2Eq(−Eq + Eq′ )t− 4m2t+ t2

]}

+ Cu

|~q − ~q′|
〈f0〉0

}

put in terms of moments of the background distribution function f0, that take the form

〈f0〉n (Eq, Eq′ , t, τ) =
∫ ∞
R2

dEl′f0(El′ , τ)Enl′ , (3.5)

which are functions of (Eq, Eq′ , t) only through R2, defined as

R1,2 = 1
2

Eq − Eq′ ± |~q − ~q′|
√

1− 4m2

t

 .

This kernel is the most complex part of the collision term, mainly due to its explicit
dependence on time through the momenta of the background DF. However, once the scattering
amplitude |M|2 is specified, it should be numerically feasible to evaluate the integrals.

3.2 The Zero Order Collision Integral

The treatment of the term D2[f ] mimics exactly the one for C3[f ] but with the simplification
F (~q,~k, τ)→ f0(Eq). Thus, this term can be expressed as
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D2 = − f0(Eq)g3
i

32(2π)3Eqq

∫
dEldsf0(El, τ)χ(s) . (3.6)

The term D1[f ] is much more complicated. The key to solve this integral is to define a
method to recast an integration in an angular variable by an integral in energy, as described
in appendix B.1. As shown in such appendix, this procedure leads to a collision integral that
can be expressed as

D1 = g3
i

16Eqq(2π)3

4∑
i=1

∫
Ii
dEq′dEl′f0(Eq′ , τ)f0(El′ , τ)ki(Eq, Eq′ , El′ , τ) , (3.7)

in terms of 4 integrals of kernel functions: the integration limits Ii are defined in (B.7)
schematically as

∫ Eq

m

dEq′

[∫ Eq

Eq−Eq′ +m

dEl′ +
∫ ∞

Eq

dEl′

]
+
∫ ∞

Eq

dEq′

[∫ Eq

m

dEl′ +
∫ ∞

Eq

dEl′

]
≡

4∑
i=1

∫
Ii

, (3.8)

and the kernels ki(Eq, Eq′ , El′ , τ) are given by

ki(Eq, Eq′ , El′ , τ) =
∫
dt κ(Eq, Eq′ , El′ , t, τ) , i = 2, 4

ki(Eq, Eq′ , El′ , τ) =
∫ t2

t1

dt κ(Eq, Eq′ , El′ , t, τ) , i = 1, 3
(3.9)

with

κ(Eq, Eq′ , El′ , t, τ) =

{
Au

8|~q − ~q′|5

{
E2
l′

[
4t
(
3(Eq + Eq′ )2t− ((Eq − Eq′ )2 − t)(−4m2 + t)

)]

+El′

[
4t(4(Eq − Eq′ )2(Eq + 3Eq′ )m2

− 4(Eq(Eq − Eq′ )(Eq + 2Eq′ ) + (Eq + 3Eq′ )m2)t+ (Eq + 3Eq′ )t2)

]

+

[
(48(Eq − Eq′ )4m4 − 16(Eq − Eq′ )2m2(2E2

q − 3EqEq′ + 6m2)t

+ 8(E2
q (Eq − Eq′ )2 + (7E2

q − 12EqEq′ + 3E2
q′ )m2 + 6m4)t2

− 4(2E2
q − 3EqEq′ + 6m2)t3 + 3t4)

]}

+ Bu

2|~q − ~q′|3

{
El′
[
t(Eq + Eq′ )

]
+
[
2(Eq − Eq′ )2m2 + 2Eq(−Eq + Eq′ )t− 4m2t+ t2

]}

+ Cu

|~q − ~q′|

}
,

(3.10)
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and t1,2 defined as the two solutions to the following equation:

P (t1,2) = |~q − ~q′|
√

1− 4m2

t1,2
= 2El′ − Eq + Eq′ .

Thus, we have arrived at a somewhat general expression for the collision integrals which
depends on the scattering amplitude only through the coefficients At,u, Bt,u and Ct,u defined
in equations (2.5) and (2.6). After this, in order to obtain a Boltzmann hierarchy that can be
in principle solved numerically one can follow a procedure analogous to the one described in
[68]. We perform this procedure in section 4, while in next we provide some examples of the
kernel functions obtained from different models of the self-interaction.

Collision terms at the level of the zero-order distribution function are common in other
applications of DM such as in ΛCDM (thermal production and decoupling) [79]. The tools
developed in this section, together with an accurate treatment of inelastic collision terms
could help to discern the effects of self-interactions in early DM production, though remains
as an interesting avenue for future research.

3.3 Kernel Functions for Different Mediator Models

In this section, we calculate the different kernel functions involved in the collision integrals
for a small subset of self-interaction models. We need to compute the coefficients [At, Bt, Ct]
in eq. (2.5) for the C3[f ] integral and [Au, Bu, Cu] given in eq. (2.6) for the C1[f ] and D1[f ]
integrals.

Motivated by the possibility that the DM constituents are sterile neutrinos, we consider
the following three cases: the first two evaluated by [68] which are interactions mediated by
scalar particles; and the case of a heavy vector field proposed in [46].

For the first case, the interaction Lagrangian can be written as (further information
about the scattering processes can be found in [68]):

Lint = gνRνRφ , (3.11)

where g is the scalar coupling constant, φ is the scalar field and νR is the DM field modelled
as a right handed neutrino. In the case studied in [68] the massless scalar limit reduces
to a constant amplitude, however, this does not happen generally. We refer to [80] for an
expression of the scattering amplitude for scalar mediators of arbitrary mass. In this study,
as an example, we only consider a constant amplitude case, reminding that only in the limit
of massless DM it corresponds to a zero mass scalar mediator (see appendix C). Our main
focus here is a massive scalar mediator, meaning that mmed = mφ � E (with E denoting the
mean energy of the colliding DM particles).

The vectorial model of [46] also assumes DM is given by right handed neutrinos but
with an interaction Lagrangian given by
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Lint = −gV VµνRγµνR , (3.12)

with gV acting as a coupling constant and Vµ, the massive vector field. In the cases considered
here, and under the assumption gV . 1 all mediators fall into the massive case mmed = mV �
E (see (3.26)).

The authors of ref. [46] have proposed this effective interaction-Lagrangian to derive a
self-interacting system of self-gravitating sterile-neutrinos on galaxy scales. When applied
to the Milky Way, it was there shown how a O(101) keV-fermionic DM concentration at the
center of the DM halo (i.e. forming a degenerate condensate), could work as an alternative to
the super massive black hole (SMBH) in SgrA*. At the same time such fermionic halo model
provides a plausible (and alternative) explanation to the small scale structure observables.

It is important to note that, while motivated by the study of sterile neutrinos, the
framework and the interaction models here presented, remain general and can be used in
other applications such as (massive) active neutrino cosmology.

3.3.1 Constant Amplitude

We start with a simple toy model: a constant scattering amplitude |M|2. We adopt the
notation used in [68] for the massless scalar mediator. This constant amplitude can be
expressed as

|Mνν↔νν |20 = 6g4 , (3.13)

where g is the scalar coupling constant in the ultra-relativistic case. Being constant in the
involved momenta, the coefficients of the expansion in Mandelstam variables are, simply:

At = Bt = Au = Bu = 0

Cu = Ct = C0 ≡ 6g4
. (3.14)

For the χ(s) function appearing in the final form for C3 and C2, we obtain

χ(s) = C0

√
1− 4m2

s
. (3.15)

For the time dependent kernel function K(Eq, Eq′ , t, τ) in C1, we find

K(Eq, Eq′ , t, τ) = C0 〈f0〉0√
(Eq − Eq′)2 − t

, (3.16)

with 〈f0〉0 as defined in eq. (3.5) and
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ki(Eq, Eq′ , El′) = 2C0
(√

(Eq − Eq′)2 − t1 −
√

(Eq − Eq′)2 − t2
)

, i = 1, 3

ki(Eq, Eq′) = 4C0 min(q, q′) , i = 2, 4 ,
(3.17)

with t1,2 defined as the roots of the equation P (t) = 2El′ − Eq + Eq′ with t2 > t1, as used in
section 3.2 for the kernel functions to calculate the background DF in D1. When comparing
these expressions with the ones used in [68], both collision integrals coincide in the limit
m→ 0, showing explicitly that our more general expression for the collision term reduces to
this known limiting case.

3.3.2 Massive Scalar Mediator

We follow here the considerations of [68] for the case of a scalar mediator which is considerable
more massive than the mean scattering energy. In this case the population of scalar particles
would be Boltzmann suppressed, so there would be no need to track the evolution of their
population. Moreover, in this scenario, the neutrinos would be initially in thermal equilibrium
(as noted in [68] and references therein). In this case, the interaction amplitude reduces to:

|Mνν↔νν |2m = g4

2m4
Φ

(
s2 + t2 + u2

)
, (3.18)

with mφ denoting the scalar mediator mass. Here, by using the identity s + t + u = 4m2

we can either replace u or s in the scattering amplitude to obtain the two sets of scattering
coefficients [A,B,C]:


At = 2 g4

2m4
Φ
≡ 2Cm

Bt = 2Cm(s− 4m2)

Ct = 2Cm(s2 − s4m2 + 8m4)

, (3.19)


Au = 2Cm
Bu = 2Cm(t− 4m2)

Cu = 2Cm(t2 − t4m2 + 8m4)

. (3.20)

Making use of these coefficients, the kernel functions χ, ki and K as defined in section 3.2
and 3.1 respectively, read as follows:

χ(s) = 1
3Cm

√
1− 4m2

s

(
256m4 − 128m2s+ 19s2

)
, (3.21)
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K(Eq, El, s, τ) = Cm
4((El − Eq)2 − s)5/2

{
〈f0〉2 4s

[
(4(El − Eq)2m2 + 2(E2

l + 4ElEq + E2
q − 2m2)s+ s2

]

+ 〈f0〉1 4s(Eq − El)

[
− 4(El − Eq)2m2 − 2(E2

l + 4ElEq + E2
q − 2m2)s− s2

]

+ 〈f0〉0

[
48(El − Eq)4m4 − 16(El − Eq)2m2(E2

l − 3ElEq + E2
q + 6m2)s

+ 8((El − Eq)2(E2
l − ElEq + E2

q ) + (5E2
l − 12ElEq + 5E2

q )m2 + 6m4)s2

− 4(3E2
l − 7ElEq + 3E2

q + 6m2)s3 + 7s4

]}
,

(3.22)

ki(Eq, Eq′ , El′ ) =
∫
Ii

dt
Cm

4((Eq′ − Eq)2 − t)5/2

{
E2
l′ 4t

[
(4(Eq′ − Eq)2m2 + 2(E2

q′ + 4Eq′Eq + E2
q − 2m2)t+ t2

]

+El′ 4t(Eq − Eq′ )

[
− 4(Eq′ − Eq)2m2 − 2(E2

q′ + 4Eq′Eq + E2
q − 2m2)t− t2

]

+

[
48(Eq′ − Eq)4m4 − 16(Eq′ − Eq)2m2(E2

q′ − 3Eq′Eq + E2
q + 6m2)t

+ 8((Eq′ − Eq)2(E2
q′ − Eq′Eq + E2

q ) + (5E2
q′ − 12Eq′Eq + 5E2

q )m2 + 6m4)t2

− 4(3E2
q′ − 7Eq′Eq + 3E2

q + 6m2)t3 + 7t4
]}

,

(3.23)

where the integration regions in the t variable for these last integrals are in the range
[tcos θ=−1, tcos θ=1] for i = 2, 4; and [t1, t2] where t1,2 are the solutions of P (t) = 2El′−Eq +Eq′

for i = 1, 3 (see appendix B.1 for details). Here the background DF kernels ki have analytical
(though complicated) expressions in (Eq, Eq′ , El′ , t1,2), which are not very illuminating to
write down.

3.3.3 Massive Vector Field

In [46] the authors calculate the 4-fermion self-scattering amplitude for the right handed
sterile neutrinos with the interaction (3.12), and reach the following result:

|Mνν↔νν |2V =
(
gV
mV

)4 1
cos4 θ′W

[
44(ql)2 − (qq′)2 − (ql′)2

]
, (3.24)

where mV is the mediator mass, θ′W the (dark sector) Weinberg angle and pq ≡ pµqµ on a
4-vector notation. By making use of the following Mandelstam variables properties
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ql = s− 2m2

qq′ = 2m2 − t

ql′ = 2m2 − u

, (3.25)

the equation (3.24) can be put in terms of (s, t, u). As for massive scalars, the scattering
coefficients can be calculated using s+ t+ u = 4m2:


At = −2

(
gV
mV

)4 1
cos4 θ′W

≡ −2CV

Bt = CV (8m2 − 2s)

Ct = CV (168m4 − 172m2s+ 43s2)

, (3.26)


Au = 43CV
Bu = CV (88t− 172m2)

Cu = CV (168m4 − 172m2t+ 43t2)

, (3.27)

and the expressions for the kernels are:

χ(s) = 4
3CV

√
1− 4m2

s
(74m2 − 29s)(m2 − s) , (3.28)

K(Eq, El, s, τ) = CV
8((El − Eq)2 − s)5/2

{
172 〈f0〉2 s

[
4(El − Eq)2m2 + 2(E2

l + 4ElEq + E2
q − 2m2)s+ s2

]

+4 〈f0〉1 s

[
172(El − Eq)3m2 + 4(−El + Eq)(−44E2

l − 86ElEq + E2
q + 43m2)s− (47El + 133Eq)s2

]

+ 〈f0〉0

[
656(El − Eq)4m4 + 16(El − Eq)2m2(2E2

l + 39ElEq + 2E2
q − 82m2)s

− 8((El − Eq)2(−43E2
l − 2ElEq + 2E2

q ) + (−35E2
l + 156ElEq − 35E2

q )m2 − 82m4)s2

+ 4(−84E2
l + 121ElEq + 6E2

q − 78m2)s3 + 121s4

]}
,

(3.29)
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ki(Eq, Eq′ , El′ ) =
∫
Ii

dt
CV

8((Eq′ − Eq)2 − t)5/2

{

172E2
l′t

[
4(Eq′ − Eq)2m2 + 2(E2

q′ + 4Eq′Eq + E2
q − 2m2)t+ t2

]

+4El′t

[
172(Eq′ − Eq)3m2 + 4(−Eq′ + Eq)(−44E2

q′ − 86Eq′Eq + E2
q + 43m2)t− (47Eq′ + 133Eq)t2

]

+

[
656(Eq′ − Eq)4m4 + 16(Eq′ − Eq)2m2(2E2

q′ + 39Eq′Eq + 2E2
q − 82m2)t

− 8((Eq′ − Eq)2(−43E2
q′ − 2Eq′Eq + 2E2

q ) + (−35E2
q′ + 156Eq′Eq − 35E2

q )m2 − 82m4)t2

+ 4(−84E2
q′ + 121Eq′Eq + 6E2

q − 78m2)t3 + 121t4
]}

,

(3.30)

where, again, the integration regions in the t variable for these last integrals are in the range
[tcos θ=−1, tcos θ=1] for i = 2, 4 and [t1, t2], where t1,2 are the solutions of P (t) = 2El′−Eq +Eq′

for i = 1, 3. These last kernel functions for the background DF have analytical forms but are
not illuminating, just as in the massive scalar case (see appendix A for details).

4 Boltzmann Hierarchy

Once having obtained the expressions for the collision integral kernels, it is a standard practice
to perform a Legendre expansion in (1.8) in order to construct a so called Boltzmann hierarchy
of equations, which is independent of the angle between ~k and ~q. In order to calculate the
time dependent kernels above, the full solution to the background DF f0(Eq, τ) must be
obtained. If we assume that, in the time scales of interest, the collision term is only due to
self-scattering, then the evolution of f0 is governed by:

∂f0
∂τ

(Eq, τ) = a (D1[f0] +D2[f0]) =

= G0a

{
− f0(Eq)

∫
dElf0(El)κ(0)(Eq, El) + 2

4∑
j=1

∫
Ij
dEq′dEl′f0(Eq′)f0(El′)K

(0)
j (Eq, Eq′ , El′)

}
,

(4.1)

where G0 = 1/[4(2π)3] and

κ(0)(Eq, El) = 1
Eqq

∫
dsχ(s) , (4.2)

K(0)
j (Eq, Eq′ , El′) = 1

Eqq
kj(Eq, Eq′ , El′) . (4.3)
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Here, we will assume that the initial conditions for f0 are set beforehand at some early
time and that its subsequent evolution is only governed by self-interactions as said before.
This ansatz, notably, excludes the production mechanism that should give rise to the initial
population of these particles: we follow [66] and implicitly assume that the mechanism for
production is not significanly affected by the self-interaction mechanism. Once the evolution of
this distribution is known, the various moments 〈f0〉i defined in eq. (A.68) can be calculated,
thus allowing to obtain the time dependent kernels K.

As the coefficients in the LHS of the Boltzmann eq. (1.8) are only functions of |~q|, |~k|
and cos ε ≡ k̂.q̂, it is assumed that the RHS also depends only on these parameters. Thus, in
order to express the relevant equations of both sides in a Legendre series we first write

F (|k|, |q|, cos ε) =
∞∑
l=0

(−i)l(2l + 1)Fl(|k|, |q|)Pl(cos ε) ,

Fl(|k|, |q|) = il

2

∫ 1

−1
d cos εF (|k|, |q|, cos ε)Pl(cos ε) ,

(4.4)

where Pl(cos ε) is the l-th Legendre polynomial and Fl is the l-th multiple of the perturbed
DF. In this case however, a residual dependence on the azimuthal angle between ~q and ~k, ψ,
is still present (as caused by the first order collision terms). In [68] the authors argue that
an averaging over ψ in the collision terms has no effect on the expressions for the collision
integrals, and they perform such average. The argument is based on the fact that the LHS
of (1.8) is not affected by such averaging. Also, from a phenomenological viewpoint, the
only observable is the integrated effect of the perturbation, further strengthening the claim.
Therefore, in what follows, we perform such average as well. The moment decomposition in
the LHS of the Boltzmann equation is well known, and the reader can consult [74] for the
expressions for massive neutrinos in the collisionless case on both typical gauge choices.

In order to calculate the moment expansions of the collision integral, we make use of the
following property: given a collision term with the form

(
∂f

∂τ

)(1)

k
(~k, ~q, τ) =

∫
d cos θd|q′|K(|q|, |q′|, cos θ, τ)F (~k, ~q, τ) , (4.5)

the (ψ averaged) l-th multipole can be written as:

il

2

∫ 2π

0

dψ

2π

∫ 1

−1
d cos εPl(cos ε)

(
∂f

∂τ

)(1)

k
=
∫
d|q′|Kl(|q|, |q′|, τ)Fl(|k|, |q′|, τ) , (4.6)

with

Kl(|q|, |q′|, τ) ≡
∫ 1

−1
d cos θK(|q|, |q′|, cos θ, τ)Pl(cos θ) . (4.7)
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However, our expressions for the collision integrals are expressed in terms of Mandelstam
variables and energies instead of angles and momenta. Our kernels are also expressed in terms
of these variables. We can solve both problems by recasting the integration in Mandelstam
variables in the definition of the kernel moments. So, for a collision integral of the form

(
∂f

∂τ

)(1)

k
(~k, ~q, τ) =

∫
dsdElK(Eq, El, s, τ)F (~k,~l, τ) (4.8)

the property (4.6) would be modified as follows:

il

2

∫ 2π

0

dψ

2π

∫ 1

−1
d cos εPl(cos ε)

(
∂f

∂τ

)(1)

k
=
∫
dElKl(Eq, El, τ)Fl(|k|, |l|, τ) , (4.9)

with

Kl(Eq, El, τ) ≡
∫
dsK(Eq, El, s, τ)Pl(cos θ(s)) . (4.10)

Then, putting together the results of sections A.1, A.2 and A.3 we arrive at the following
moment expansion, in Synchronous gauge:

Ḟ0(k,Eq, τ) =− qk

Eq
F1(k,Eq, τ) + ḣ

6
∂f0

∂ ln q

−G0aF0(k,Eq, τ)Γ(Eq, τ) +G0a

∫
dElF0(k,El, τ)K(1)

0 (Eq, El, τ)

Ḟ1(k,Eq, τ) = qk

3Eq
F0(k,Eq, τ)− 2qk

3Eq
F2(k,Eq, τ)

−G0aF1(k,Eq, τ)Γ(Eq, τ) +G0a

∫
dElF1(k,El, τ)K(1)

1 (Eq, El, τ)

Ḟ2(k,Eq, τ) = qk

5Eq

[
2F1(k,Eq, τ)− 3F3(k,Eq, τ)

]
− ∂f0

∂ ln q

[
1
15 ḣ+ 2

5 η̇
]

−G0aF2(k,Eq, τ)Γ(Eq, τ) +G0a

∫
dElF2(k,El, τ)K(1)

2 (Eq, El, τ)

Ḟl(k,Eq, τ) = qk

(2l + 1)Eq

[
lF(l−1)(k,Eq, τ)− (l + 1)F(l+1)(k,Eq, τ)

]
−G0aFl(k,Eq, τ)Γ(Eq, τ) +G0a

∫
dElFl(k,El, τ)K(1)

l (Eq, El, τ) , l ≥ 3

(4.11)

with the various kernel moments defined as:

Γ(Eq, τ) =
∫
dElf0(El)κ(0)(Eq, El) , (4.12)

K(1)
l (Eq, El, τ) = −χl(Eq, El)f0(Eq) + 2 1

Eqq
Kl(Eq, El, τ) , (4.13)

with κ(0) defined as (4.2), and Kl, χl the Legendre transforms of the K, χ kernel functions
defined as in (4.10), and where the l-th moment of the perturbed DF Fl is defined as in
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(4.4), and we have chosen to express the momentum dependence in terms of energy for
consistency. In order to solve this hierarchy, the kernel functions for the interaction model
must be specified.

5 Relaxation Time Approximation

Even if the evolution of the background DF f0 may seem complicated due to the collisions in
play, its effect may be accounted for in a much simpler way depending on the particularities
of the interaction. Concretely, if the rate of particle interactions is much higher than the rate
of expansion of the universe, measured roughly by H, the Hubble rate, we may assume that
the shape of the distribution function is one in equilibrium. That is to say, a DF that obeys

(
∂feq0 (Eq, t)

∂t

)
coll

= 0 , (5.1)

such as Maxwell-Boltzmann, Fermi-Dirac or Bose-Einstein distributions, depending on the
particle model used. It is possible to construct a substitute collision operator for f0 that
reconstructs the expected behavior for small departures from thermal equilibrium:

(
∂f0
∂t

)
coll
≈ f0(Eq, t)− feq0 (Eq, t)

τ(Eq)
. (5.2)

This is know as the relaxation time approximation of the collision operator. The relaxation
time τ is the timescale in which the system is expected to relax to equilibrium. This parameter
can in principle have a q dependence and is commonly defined as [81]2:

τ(Eq) ≈ 〈σv〉−1 = −f0(Eq, t)
D2[f0] ≈ −

feq0 (Eq, t)
D2[feq0 ] , (5.3)

which involves the integral of the kernel χ, evaluated in the thermal equilibrium background
DF. It is straighforward to evaluate these integrals, as they only involve known functions. We
have performed these numerically for the interaction models posed in 3.3, and the results can
be seen in figure 1 (we refer to appendix D for more details).

For all of these models, we follow [66] and assume that the abundance of WDM and its
primordial distribution function are already set deep into the radiation dominated epoch and
the effects of self-interactions in these initial conditions can be effectively decoupled from the
evolution of perturbations.

2In the first equality we approximate the relaxation time (the timescale for the system to relax towards
equilibrium) by the collision time (the mean time between collisions). While in the cases considered in
section 3.3 it can be considered as a good approximation, cases where many collisions produce small changes
in momenta (such as long range interactions) require additional care (see [82] for a discussion).
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Figure 1: Relaxation times for three different interaction models: Constant Amplitude (left), Massive
Scalar (center) and Vector Field (right), calculated for a Maxwell-Boltzmann background DF for
different temperatures. The definitions on the interaction constants for the models considered (with
interaction Lagrangians defined in 3.3) can be found in (3.14) for the constant amplitude model, in
(3.26) for the massive scalar model and in (3.26) for the massive vector field.

5.1 Application to Self-Interaction Decoupling

In order to evaluate whether or not a thermal f0 can be assumed, for a given particle physics
model for the interaction, one may look at the ensemble averages of the interaction rate
Γ(Eq) = τ−1(Eq). This value is to be compared to H at this point: if Γ� H, the system is
effectively in thermal equilibrium and adopts an equilibrium background distribution function
f0.

This is equivalent to the traditional approach used to determine if a species has decoupled
from the rest of the cosmic plasma in the standard sector (see for example [69]). In other
words, a given interaction is considered to cease being relevant if the interaction rate per
particle Γ ∼

〈
τ−1〉

th (see appendix D) is overtaken by the Hubble expansion rate, which in
the radiation dominated era is H ∼ T 2/mpl where mpl is the Planck mass. So, in summary,
a thermal background DF can be assumed if at some point during the evolution of the
perturbations, the self-interactions were a dominant phenomenon in the sense Γ > H.

We can see how this interaction rate evolves along with the temperature of the plasma in
fig. 2, using the models of section 3.3. We work here on the assumption that the self-interaction
decouples (this is to say, Γ > H) while the particle itself is still relativistic. At the moment
the self-interaction decouples its distribution function remains “frozen-out”: the function
itself remains unchanged and the evolution is just given by the redshift in physical momenta
p ∝ a. If decoupled while relativistic but well after the initial production of these particles,
the distribution is frozen with a form f0 ∝ e−pdec/Tdec and the redshift in momenta can be
reinterpreted as a temperature evolution of the form T ∝ a−1.

Depending on the coupling strength, it is possible that the self-interaction decouples
while the particle is non relativistic. This opens the possibility of a species that undergoes
chemical and kinetic decoupling from the plasma while still relativistic, but remains in
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Figure 2: Evolution of interaction rate per particle and Hubble expansion rate (in dashed line) for
three different interaction models: Constant Amplitude, Massive Scalar and (massive) Vector Field,
with interaction Lagrangians defined in section 3.3 and interaction constants defined in (3.14), (3.19)
and (3.26) respectively, and calculated for a Maxwell-Boltzmann background DF. Several interaction
strengths are evaluated for each model: both the ones relevant for a relativistic decoupling/recoupling
as well as interaction strengths satisfying Bullet Cluster constraints (see [46]). The calculations are
performed for a DM particle mass of 10 keV, and the vertical line marks the relativistic-nonrelativistic
transition temperature.

equilibrium (with itself) until a later stage. After the decoupling of the self-interactions, the
background distribution would be frozen out on a Maxwell form f0 ∝ e−p

2
dec/(2mTdec) and the

temperature is interpreted to evolve as T ∝ a−2, while preserving the number density at
chemical decoupling. .

We can see in fig. 2 that the assumption of relativistic decoupling of the self-interaction
does not necessarily hold for some interaction constants (e.g. CV ∼ 108Gf ). In that case, the
self-interactions should decouple while non-relativistic, if at all, and they alter the distribution
function which in turn renders the method we used to obtain fig. 2 (described in (D.11))
inapplicable, as it assumes f0 ∝ e−E/T . In particular, couplings CV ∼ 108Gf in the vector field
case were shown in [46] to correspond to cross sections in the range σ/m ∼ 0.1−1 cm2/g, which
are usually considered to alleviate various problems in N-body simulations on self-interacting
CDM, and are strongly constrained by observations3 [45].

5.2 An Approximate Form for the Collision Integrals

The full form of the Boltzmann hierarchy for these species (4.11) can be reduced by making use
of the relaxation time approximation. The most straightforward way to do this is by simply
replacing expression (5.2) into the collision term and calculating the new hierarchies, through

3Interestingly, those cross sections may be large enough to spoil the assumption that the DF corresponds to
particles that decouple being relativistic, as used in previous applications of SI-WDM such as [66]. An interaction
constant that large may cause the particle to remain in thermal equilibrium well into a non-relativistic regime.
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expression D2[f0] (3.6). In [66] such an approach is taken in a simplified way: instead of the
full (energy dependent) relaxation time τrel, its thermal average is used (see appendix D):

C[F ] ≈ −aF (~q,~k, τ)
〈τ〉th

. (5.4)

This simple approach however leads to an important conceptual error: this approximation
(and to a certain extent (5.2) as well) qualitatively simply “erase” the perturbations to the
DF F (~q,~k, τ) [83]. This violates conservation of particle, momentum and energy densities,
resulting in a poor approximation to the full collision term in the case of perturbations. In
[66] it is noted that this can be avoided by setting the Cl=0,1[f ] = 0, and these conservation
laws are recovered, thus arriving to a Boltzmann hierarchy of the form:

Ḟ0(k,Eq, τ) '− qk

Eq
F1(k,Eq, τ) + ḣ

6
∂f0

∂ ln q

Ḟ1(k,Eq, τ) ' qk

3Eq
F0(k,Eq, τ)− 2qk

3Eq
F2(k,Eq, τ)

Ḟ2(k,Eq, τ) ' qk

5Eq

[
2F1(k,Eq, τ)− 3F3(k,Eq, τ)

]
− ∂f0

∂ ln q

[
1
15 ḣ+ 2

5 η̇
]
− aF2(k,Eq, τ)

〈τ〉th

Ḟl(k,Eq, τ) ' qk

(2l + 1)Eq

[
lF(l−1)(k,Eq, τ)− (l + 1)F(l+1)(k,Eq, τ)

]
− aFl(k,Eq, τ)

〈τ〉th

, l ≥ 3 .

(5.5)

This relaxation time approximation [66, 69, 84] has the advantage of localizing the equations
in momenta, which results in more efficient numerical integration by eliminating all coupling
between different momentum bins and allowing for sparse evaluation.

As an illustration of the effects of self-interactions in the matter power spectrum, we
provide in fig. 3 specific examples for the case of a massive scalar field-mediator (3.18), under
the relaxation time approximation (5.5). We have used an extended version of CLASS 2.7.2
[65, 78] where we include our results for SI-WDM models with particle masses in the ∼ keV
range.

In order to compare the results for standard CDM, WDM and the SI-WDM model,
both WDM and SI-WDM components were assumed to have a relativistic Fermi-Dirac
equilibrium distribution function f0 with a given temperature Tdec (i.e. a DF that corresponds
to relativistically decoupled thermal relics), and their abundances were adjusted to match
that of CDM in the best fit data from Planck 2018 [85]. It is important to notice that the
assumption that the background DF is given at all times by the relativistic Fermi-Dirac
distribution may not apply if the self-interaction is sufficiently large. For instance, for some
interaction strengths that are favored by SIDM N-body simulations for CDM [45], it is
necessary to consider non-relativistic self-interaction decoupling.

In fig. 3 we recover the results of [66] for the case of m = 1 keV, but for different coupling
strengths. This is because of a missing scale factor in their calculation of the relaxation time,
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see [69]. As shown here for the first time, for the masses considered, those couplings actually
correspond to non-relativistic self-interaction decoupling. In [67] similar results are obtained,
but using a fluid approximation leading to spurious oscillations at high enough k (see [69, 78]
for a discussion).

In the power spectra shown in fig. 3 it can be seen that for the smaller interactions,
in which the assumption of relativistic self-interaction decoupling is fulfilled, the results
are practically indistinguishable from standard WDM. It is only for the cases of higher
coupling constants (where the relativistic decoupling assumption is no longer valid) that
certain features appear: both the modification in the transfer functions observed in [66] and
acoustic oscillations at higher k reminiscent of fluid approximations (see [52, 78]). Such results
are explicitly shown in dashed or dot-dashed lines in fig. 3, for given self-interaction strengths
either for the case of m = 1 keV and m = 10 keV. 4.

For the case of m ∼ few keV as of typical WDM models under the thermal decoupling
assumption [34], it can be seen that our SI-WDM power spectrums do not exhibit the steep
trend at large k typical of those standard WDM scenarios. This less abrupt suppression of
power at typical (comoving) wave numbers of k ∼ 10 h/Mpc (i.e. short scales relevant for
sub-halo structures), can be better visualized in the transfer function of fig. 3 (bottom pannel).
Such an effect should point to a better agreement with small-scale structure constraints for the
lower end of the (thermal relic) keV particle-mass range. All in all, a more general behaviour
of the suppression in the power spectrum (relevant for sub-structure number counts), together
with the self-interacting nature of the ∼ keV DM candidates (relevant to the inner shape of
DM halos), could bring the SI-WDM paradigm into an appealing alternative to the CDM
paradigm.

Before closing, we point out that the simplified approach to the hierarchies given here,
can be generalized slightly by using the separable ansatz instead. Namely, assuming that the
“temperature perturbation” Fl(Eq, k, τ) is independent of momentum, that is

Fl(k,Eq, τ) ≈ −1
4
d ln f0
d ln q f0(Eq, τ)Fl(k, τ) . (5.6)

Then, the l-th collision term can be reduced to:

Cl[f ] = −aFl(k,Eq, τ)(Γrel(Eq, τ)− Γexch,l(Eq, τ)) , (5.7)

with:

4In the case of non relativistic self-interaction decoupling, the power spectrum damping is expected to shift
to higher k as the distribution function becomes “colder”. A detailed analysis of this effect in terms of realistic
cosmological effects on small-scales are the subject of future analysis [86].
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Figure 3: Power Spectrum (top panel) and Transfer Functions with respect to standard WDM
(bottom panels) for a massive scalar SI-WDM model under the relaxation time approximation (5.5) for
two values of the DM particle mass: 1 and 10 keV. Also plotted are the power spectra of CDM and of
a 1 and 10 keV WDM model. Notice all the calculations assume relativistic interaction decoupling,
however dashed and dashed-dotted lines refer to coupling strengths which do not fulfill this hypothesis
and should undergo non relativistic self-interaction decoupling. These results have been taken from
[86] with permission from the authors.

Γrel(Eq, τ) = −D2[f0]/f0 = τ−1(Eq, τ)

Γexch,l(Eq, τ) = G0

∫
dEl

(
χl(Eq, El)f0(Eq)− 2 1

Eqq
Kl(Eq, El, τ)

)
d f0(l)/d ln l
d f0(q)/d ln q .

(5.8)

While this is a significant simplification to the collision term, as proposed in [69], further
simplifications can be done by performing a momentum average

〈Γrel − Γexch,l〉avg ≡
∫
dqq3f0(q)(Γrel − Γexch,l)∫

dqq3f0(q) ≡ αl
〈
τ−1

〉
avg

. (5.9)

Under this approximation the Boltzmann hierarchy reduces to5:

5This form holds under the assumption that conservation laws for number density, momentum and energy
are fulfilled. It has been explicitly checked in [69] for the case of massless particles under massive scalar
mediators, but it remains to be checked in the more general cases.
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Ḟ0(k,Eq, τ) '− qk

Eq
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Ḟ1(k,Eq, τ) ' qk

3Eq
F0(k,Eq, τ)− 2qk

3Eq
F2(k,Eq, τ)

Ḟ2(k,Eq, τ) ' qk

5Eq
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2F1(k,Eq, τ)− 3F3(k,Eq, τ)
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− ∂f0

∂ ln q

[
1
15 ḣ+ 2

5 η̇
]
− aα2F2(k,Eq, τ)

〈τ〉avg

Ḟl(k,Eq, τ) ' qk

(2l + 1)Eq

[
lF(l−1)(k,Eq, τ)− (l + 1)F(l+1)(k,Eq, τ)

]
− aαlFl(k,Eq, τ)

〈τ〉avg

, l ≥ 3 ,

(5.10)

provided Cl=0,1=0. This approximation can be further reduced to the form (5.5) by assuming
αl≥2 = 1. If it results on a better overall approximation than (5.5), remains to be explored in
future works.

6 Summary and Outlook

Throughout this work, we aimed to fill a gap in the description and treatment of linear theory
of scalar perturbations in cosmology by including the case of a self-interacting warm dark
matter component. Motivated by the possible impact of these self-interactions in large and
small structure formation scales, we provide an accurate treatment of collisions in the early
universe, extending previous works on the subject while maintaining a phenomenological
approach that allows us to retain certain model independence on the particular interaction
Lagrangian. By extending the treatment in [68–70] for active neutrinos, we calculated the
first and zero order collision terms and provided a general framework in order to include these
collision terms in the coupled Einstein-Boltzmann system. This was done with the objective
of accurately evaluating the effect of WDM self-interactions on the linear power spectrum
and the CMB anisotropies.

In section 2 we provide a short summary about the assumptions used in this framework,
as well as the general form (2.4) for the interaction amplitude that was used. It is shown
there that this form can accurately describe several models of massive mediator interactions
between sterile neutrinos, though not limited to those cases, and including for Majoron-like
scalar mediators between right handed neutrinos. The main calculations are given in section 3.1
and 3.2 where we show the results for the first and zero order collision terms respectively in
the SI-WDM scenario. Also, we provide in section 3.3 some examples for a handful of specific
interaction models, along with the corresponding coefficients for the collision terms.

A detailed treatment on how to include these collision terms in a Boltzmann hierarchy
is shown in section 4, and several possible simplifications in order to treat the evolution of
the background and perturbed distributions based on the relaxation time approximation are
shown in section 5. In this last section we discuss the effects of self-interactions in the matter
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power spectrum for ∼ keV DM thermal relics, by providing an specific example for the case
of massive scalar field-mediators. Besides acoustic oscillations arising at large k, it is shown
a less abrupt suppression of power (relative to standard WDM) for typical comoving wave
numbers of k ∼ 10 h/Mpc, relevant for small-scale structure constraints.

While developed with the intent of being used in the calculation of cosmological pertur-
bations in the case of SI-WDM, the forms of the collision terms themselves are quite general
and they can be used also in several other applications, for example in the case of (massive)
active neutrino cosmology, as noticed in section 3.3. The implementation of this formalism
in a CMB Boltzmann solver developed to explore the effects of the SI-WDM framework in
cosmology, has been partially used in section 5 through an explicit example (as explained
above). A detailed exploration for other field-mediators, interaction strengths, as well as
other quantitative small-scale structure effects are left for a future work [86]. In this direction,
further exploration of possible approximation schemes or efficient computation methods is
key in order to successfully implement the hierarchies (4.11) in a practical way. Moreover,
the phenomenological model in (2.4) for the interaction amplitude can be generalized by
including other types of interaction Lagrangians, such as light mediators or more complex
models accurately. For light mediators, in appendix C, we extend the calculation of the
DM-DM collision term. This calculation is a necessary step to further generalize the equations
to include models where other collision terms involving light mediators are relevant. In order
to explore this kind of WDM interactions, further modeling it is required, since in general
the population of light mediators cannot be neglected, and a consistent generalization should
also model the evolution of their distribution function and collision terms. Also, it should be
possible to extend this formalism to include the effects of Bose enhancement or Pauli blocking
by generalizing the collision kernels, as was argued in [68].
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A First Order Collision Integral Terms

A.1 Calculation of C3[f ]

The term C3 can be expressed as:

C3[f ] = − g3
i

2Eq(2π)5

∫
d3l

2El
d3q′

2Eq′
d3l′

2El′
|M|2δ(4)

D (q + l− q′ − l′)f0(l)F (~q) , (A.1)

where gi is the number of degrees of freedom of the particle and we have omitted the ~k, τ
dependencies on the distribution functions for compactness.

A.1.1 Solving for ~l′ and β

The energy conservation Dirac delta δ(4)
D (q + l− q′ − l′) can be used to solve directly

the l′ integral using the definition of the invariant integration measure:

∫
d3l′

2El′
δ

(4)
D (q + l− q′ − l′) =

∫
d3l′θ(El′)Θ(Eq + El − Eq′)×

× δ(3)
D (~q +~l − ~q′ − ~l′)δD(E2

l′ − (Eq + El − Eq′)2)

= Θ(Eq + El − Eq′)δD(E2
~q+~l−~q′ − (Eq + El − Eq′)2)

≡ Θ(Eq + El − Eq′)δ(g(~q,~l, ~l′))

(A.2)

where

g(~q,~l, ~l′) ≡ −E2
~q+~l−~q′ + (Eq + El − Eq′)2 , (A.3)

and Θ is the Heaviside theta function. The following parametrization is used for the momentum
3-vectors:


~q = q(0, 0, 1)
~l = l(0, sinα, cosα)
~q′ = q′(sin β sin θ, cosβ sin θ, cos θ)

, (A.4)

So the argument of the Dirac delta in (A.3) can be expressed as:

g(~q,~l, ~l′) =2m2 + 2EqEl − 2EqEq′ − 2ElEq′ + 2lq′(cosα cos θ + sinα cosβ sin θ)

+ 2qq′ cos θ − 2ql cosα .
(A.5)

In this parametrization for the momentum 3-vectors, the integrals in the collision term can
be expressed as
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C3[f ] =− F (~q)g3
i

8(2π)4Eq

∫
dq′dld(cos θ)d(cosα) l

2

El

q′2

Eq′
f0(l)Θ(Eq + El − Eq′)|M|2

×
∫ 2π

0
dβδD(g(~q,~l, ~q′)) ,

(A.6)

where we have used d3l = 2πl2dld(cosα) and d3q′ = dβq′2dq′d(cos θ), we have omitted the
relevant integration bounds except on the β integral and assumed that the scattering amplitude
|M| does not depend on the azimuthal angle β. For this integral, we use the following identity
of the Dirac delta:

∫ 2π

0
dβδD(g) =

∫ 2π

0
dβ
∑
i

δD(β − βi)
∣∣∣∣ ∂g∂β

∣∣∣∣−1

βi

, (A.7)

that allows calculations of compositions between delta functionals and functions, where βi
are real roots of the real function g(..., β, ...). For this integral, we have

∂g

∂β
= −2lq′ sinα sin θ sin β (A.8)

cosβi =
(
lq′ sinα sin θ

)−1 [−m2 + (EqEq′ − qq′ cos θ) + (ElEq′ − lq′ cosα cos θ)

+ (ql cosα− EqEl)
]
. (A.9)

From this, we can infer that two solutions βi exist: one in the interval [0, π] and one in [π, 2π].
As the absolute value of the derivative of g is the same in both solutions, we can express the
integral in (A.6) as

∫ 2π

0
dβδD(g) = 2

∫ π

0

∣∣∣∣ ∂g∂β
∣∣∣∣−1

cosβi
δD(β − βi) = 2

∣∣∣∣ ∂g∂β
∣∣∣∣−1

cosβi
. (A.10)

To ensure the physical condition that | cosβi| < 1, we add a Heaviside step function in
cos2 βi. The following property follows from (A.9) :

Θ(1− cos2 βi) = Θ
(∣∣∣∣ ∂g∂β

∣∣∣∣2
cosβi

)
. (A.11)

So, the C3 integral in (A.6) can be expressed as

C3[f ] = − g3
i F (~q)

4(2π)4Eq

∫
dld(cosα) l

2

El
f0(l)

∫
dq′d(cos θ) q

′2

Eq′
Θ(Eq + El − Eq′)|M|2

×Θ
(∣∣∣∣ ∂g∂β

∣∣∣∣2
cosβi

) ∣∣∣∣ ∂g∂β
∣∣∣∣−1

cosβi
.

(A.12)
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Here, an important point in the calculation is reached. The remaining angular integrals
are in cos θ and cosα, the angles between ~q and ~q′, and ~q and ~l, respectively. Now, without
any knowledge of the background function f0, up to three of the remaining four integrals could
be solved. However to continue solving from here on we need to know about the scattering
amplitudeM. We will go as far as possible without specifying this, and then we will assume
an ansatz for a general form ofM. To continue we express the term |∂g/∂β|cosβi in terms of
the variables {q, l, θ, α} as follows:

∣∣∣∣ ∂g∂β
∣∣∣∣2
cosβi

= a
(θ)
3 cos2 θ + b

(θ)
3 cos θ + c

(θ)
3 , (A.13)

with coefficients:


a

(θ)
3 = −4q′2|~l + ~q|2 ≤ 0

b
(θ)
3 = 8q′[q + l cosα][EqEq′ + ElEq′ − EqEl + ql cosα−m2]

c
(θ)
3 = 4

{
l2q′2 sin2 α− [EqEq′ + ElEq′ − EqEl + ql cosα−m2]2

} . (A.14)

Now, let us consider in greater detail the integration of the Heaviside theta function in
equation (A.12). The argument of the function is a quadratic function in cos θ with a negative
leading coefficient. Thus, the function will only be non zero if two real roots of the polynomial
|∂g/∂β|2cosβi exist and it will be unity between them. So, the Θ function can be translated
into a border condition for the cos θ integral and an existence condition for the roots:

∫
d(cos θ) |M|2√

a
(θ)
3 cos2 θ + b

(θ)
3 cos θ + c

(θ)
3

Θ(a(θ)
3 cos2 θ + b

(θ)
3 cos θ + c

(θ)
3 )

= Θ
[
(b(θ)3 )2 − 4a(θ)

3 c
(θ)
3
] ∫ x2

x1
d(cos θ) |M|2√

a
(θ)
3 cos2 θ + b

(θ)
3 cos θ + c

(θ)
3

,

(A.15)

with x1,2 the roots of the polynomial |∂g/∂β|2cosβi ,

x1,2 = b
(θ)
3

2|a(θ)
3 |
±

√√√√√( b
(θ)
3

2|a(θ)
3 |

)2

+ c
(θ)
3

|a(θ)
3 |

. (A.16)

The argument of the Heaviside step function can be expressed as

(b(θ)3 )2−4a(θ)
3 c

(θ)
3 = 64q′2l2 sin2 α

[
EqEl(1− cos y)

]
×
{
− 2E2

q′ + 2(Eq + El)Eq′ −
[
EqEl(1− cos y) + m2|~l + ~q|2

EqEl(1− cos y)

]}
,

(A.17)
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where

1− cos y = 1 + m2

EqEl
− ql

EqEl
cosα . (A.18)

So this argument has 4 real roots in Eq′ : {−m,+m,R1, R2}, with R1,2 given by

R1,2 = 1
2

{
Eq + El ± |~l + ~q|

√
1− 2m2

EqEl(1− cos y)

}
. (A.19)

The −m root can already be discarded as non physical. In order to to obtain the ordering for
the rest of the roots, thus the non-zero intervals for the Heaviside step functions, we will next
develop some alternative notation for the angular variables θ, α, making use of Mandelstam
variables.
A.1.2 Mandelstam variables for C3

Mandesltam variables are Lorentz invariant quantities constructed with the relevant
information on a two on two scattering process and are defined as:


s ≡ (q + l)2 = (Eq + El)2 − |~q +~l|2 > 0

t ≡ (q − q′)2 = (Eq − Eq′)2 − |~q − ~q′|2 < 0 .

u ≡ (q − l′)2 = (Eq − El′)2 − |~q − ~l′|2 < 0

(A.20)

We can make use of these quantities to advance in the remaining integrals for the collision
integral C3. First of all it is important to note that at this stage the derivations here and
in [68] start to diverge. Some of the interesting properties of Mandelstam variables, which
allows them to be of use in these calculations, are related to the center of momentum (CoM)
frame that cannot be properly defined in the case of collisions between massless particles.
Indeed, for the case of identical particles the Mandelstam variables can be calculated in the
CoM frame making use of their Lorentz invariance:


s = 4

(
ECoMm

)2

t = −2
(
pCoMm

)2 (
1− cos θCoM

)
,

u = −2
(
pCoMm

)2 (
1 + cos θCoM

) (A.21)

with ECoMm , pCoMm the individual particle’s energy and momentum magnitude measured in the
CoM frame and θCoM the scattering angle measured in the same frame. We can also express
these variables in terms of the quantities we have used throughout the calculation of C3 as:


s = 2EqEl

(
1 + m2

EqEl
− ql

EqEl
cosα

)
= 2EqEl(1− cos y)

t = −2EqEq′
(
1− m2

EqEq′
− qq′

EqEq′
cos θ

)
,

(A.22)
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where here, the quantities are measured in the “lab” frame, that is to say, the fixed frame in
which we have measured ~q. It would not be possible to change the whole integral to CoM
quantities making use of the Lorentz invariant measure d3p/2Ep because ~q is fixed by the
LHS of the Bolztmann equation. As a first use for these quantities, let us consider the roots
R1,2 in the polynomial above. The roots can be immediately recast as a function of s:

R1,2 = 1
2

Eq + El ± |~l + ~q|

√
1− 4m2

s

 . (A.23)

From expression (A.21) we can see that s ≥ 4m2, thus these roots are always real. As
for the ordering of the roots, it should be quite obvious that R2 > m,R1. It is also possible
to prove that R1 > m:
• Let us first define the total momentum 4 vector: pµ = (Eq + El, ~q +~l). If we recall the

form of a Lorentz transformation over a 4-vector,

p
0′ = γ(p0 − ~β.~p)

~p′ = γ(−|~β|p0 + ~p)
(A.24)

we can infer that the form of R1 is very similar to the 0 component of this 4-vector,
measured in a different coordinate system (Lorentz boosted). The magnitude of this
boost from the ”laboratory” system ( where we measure ~q, ~l ) to this new system would
be |~β| =

√
1− 4m2/s in the direction of the total 3-momentum ~q+~l 6. The total energy

p0 measured in this new frame of reference is

E′pµ = 2γR1 (A.25)

• On the other hand this energy, measured in the boosted system, can be also written as

E′pµ = mpµγ
′ , (A.26)

where, this time, mpµ =
√
|pµpµ| and γ′ is the Lorentz factor corresponding to the boost

from the center of momentum system to this new system of reference.

• Equating these two expressions, one finds:

R1 =

√
|pµpµ|

2
γ′

γ
=
√
s

2
2mγ′√
s

= mγ′ ≥ m , (A.27)

because γ′ ≥ 1. �
6This is a valid boost rapidity β, as using the properties of the Mandelstam variables one can find

|~β| = pCoMm /ECoMm , with these quantities being the individual particle’s energies and momenta measured in
the center of momentum system.
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So, going back to the expression for the last Heaviside theta (A.17) we can conclude that
it is both non zero and physical only between R1 and R2. We can then express the whole C3

integral as

C3 = − g3
i F (q)

4(2π)4Eq

∫
dld(cosα) l

2

El
f0(l)

∫ q′(R2)

q′(R1)
dq′

q′2

Eq′

∫ x2

x1
d(cos θ) |M|

2(s, t)√∣∣∣ ∂g∂β ∣∣∣2cosβi

, (A.28)

where q′(R) =
√
R2 −m2 and we have made use of the fact that R2 ≥ Eq +El to eliminate

Θ(Eq + El − Eq′). The observant reader may have noticed that not only we omitted the
dependency on the dynamical variables of |M|2, but we have also simply carried it outside of
both integrations, on ~l′ and β. As the Mandelstam variables encompass all of the relevant
invariant quantities involved on the kinematics of the process itself, it is reasonable to expect
the scattering amplitude |M|2 to only depend on (s, t, u). Now, we have solved first a three
momentum integral in ~l′ imposing the momentum conservation Dirac delta. When calculating
scattering amplitudes momentum conservation is explicitly imposed, so we can consider |M|
to already be evaluated at ~l′ = −~q−~l+ ~q′. Now for the β integral we have solved a Dirac delta
in the function g defined in (A.3). If we express this function in Mandelstam variables we can
see that it is simply δD(s+ t+ u− 4m2). Thus, we can impose the condition s+ t+ u = 4m2

in |M| and bring it out of the β integral. Note that this condition is trivially fulfilled given
the definition of s, t and u.

A.1.3 Change of variables to {s, t, Eq, Eq′}

At this point, as mentioned above, further integration is not possible without specific
knowledge of the scattering amplitude |M|. However in terms of the variables we have used
so far, namely {~q, ~q′,~l, ~l′}, the scattering amplitude may indeed have a very complicated
and ultimately redundant expression. The Mandelstam variables contain all of the Lorentz
invariant quantities that are involved in the expression of |M| so that its only dependencies
would be on (s, t), after having applied the identity s+ t+u = 4m2. In order to accommodate
to a more general expression for the scattering amplitude, it is convenient to change variables
in the integrals of C3 to obtain an expression involving (s, t). Indeed, we can make the
following variable change:



q′ → Eq′ =
√
q′2 +m2

l→ El =
√
l2 +m2

cosα→ s = 2EqEl
(
1 + m2

EqEl
− ql

EqEl
cosα

)
cos θ → t = −2EqEq′

(
1− m2

EqEq′
− qq′

EqEq′
cos θ

)
. (A.29)

The integration measures change accordingly as:
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dq′d cos θ = Eq′

2qq′2
dEq′dt , dld cosα = El

2ql2dElds . (A.30)

So that the whole integral can be expressed as

C3 = − g3
i F (q)

16(2π)4Eqq2

∫
dEldsf0(El)

∫ R2

R1
dEq′

∫ t(x2)≡t2

t(x1)≡t1
dt
|M|2(s, t)√∣∣∣ ∂g∂β ∣∣∣2cosβi

(A.31)

Now, the expression (A.13) that states |∂g/∂β|2cosβi as a second degree polynomial in
cos θ can be recast into a polynomial in t using (A.22):

∣∣∣∣ ∂g∂β
∣∣∣∣2
cosβi

= a
(t)
3 t2 + b

(t)
3 t+ c

(t)
3 , (A.32)

with


a

(t)
3 = − 1

q2 |~l + ~q|2

b
(t)
3 = − 2

q2
{
s(Eq − El)(Eq − Eq′) + 2q2l2 sin2 α

}
c

(t)
3 = s

q2 (4m2 − s)(Eq − Eq′)2

. (A.33)

The ingredients are all set to perform the t integral given an expression for |M|. We
then assume that this amplitude can be expressed as a second degree polynomial in (s, t), as
in (2.4):

|M|2 ≡ m(2,0)s
2 +m(1,1)st+m(0,2)t

2 +m(1,0)s+m(0,1)t+m(0,0) . (A.34)

In order to explicitly perform the t integral, we group the coefficients in (A.34) in their
respective powers of t:

|M|2 = Att
2 +Btt+ Ct . (A.35)

So the t integral becomes

∫ t2

t1
dt

|M|2√
a

(t)
3 t2 + b

(t)
3 t+ c

(t)
3

= 1√
−a(t)

3

{
At

∫ t2

t1
dt

t2√
(t− t1)(t2 − t)

+

+Bt

∫ t2

t1
dt

t√
(t− t1)(t2 − t)

+ Ct

∫ t2

t1
dt

1√
(t− t1)(t2 − t)

}
.

(A.36)

Then, we use the following identity:
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∫ x+

x−
dx

Ax2 +Bx+ C√
(x+ − x)(x− x−)

= π

{
A

(
3b2 − 4ac

8a2

)
−B

(
b

2a

)
+ C

}
, (A.37)

where x(+,−) are the solutions of ax2 + bx+ c = 0 to arrive at

C3 = − g3
i F (q)

16(2π)4Eqq

∫
dEldsf0(El)

∫ R2

R1
dEq′

π

|~q +~l|

×

At
3

(
b
(t)
3

)2
− 4a(t)

3 c
(t)
3

8
(
a

(t)
3

)2

−Bt
(
b
(t)
3

2a(t)
3

)
+ Ct

 .

(A.38)

The expressions in brackets have fairly complicated forms, but mostly polynomial in nature
in (Eq′ , Eq, El, s,m). They can be factored into powers of Eq′ in order to integrate them as:

3
(
b

(t)
3

)2
− 4a(t)

3 c
(t)
3

8
(
a

(t)
3

)2 = 1
8|~l + ~q|4

{
E2

q′

[
4s
(
2s
(
E2

l − 4ElEq + E2
q − 2m2)+ 4m2(El + Eq)2 + s2) ]

+Eq′

[
4s
(
4m2s(3El − Eq)− 4m2(3El − Eq)(El + Eq)2

+ s2(Eq − 3El)− 4Eqs(Eq − 2El)(El + Eq)
)]

+
[

8s2 (m2 (3E2
l + 12ElEq + 7E2

q

)
+ E2

q (El + Eq)2 + 6m4)
− 4s3 (3ElEq + 2E2

q + 6m2)− 16m2s(El + Eq)2

×
(
3ElEq + 2E2

q + 6m2)+ 48m4(El + Eq)4 + 3s4

]}
,

(A.39)

b
(t)
3

2a(t)
3

= − 1
|~l + ~q|2

{
Eq′

[
s(Eq − El)

]
+
[
− s

(
Eq(El + Eq) + 2m2)+ 2m2(El + Eq)2 + s2/2

]}
.

(A.40)

Once these are replaced into (A.37), we can perform the integral in Eq′ using


∫ R2
R1

dEq′ = |~q +~l|
√

1− 4m2/s∫ R2
R1

dEq′Eq′ = |~q +~l|
√

1− 4m2/s(Eq + El)/2∫ R2
R1

dEq′E
2
q′ = |~q +~l|

√
1− 4m2/s

[
(Eq + El)2/4 + (1− 4m2/s)|~q +~l|2/12

] . (A.41)
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In this way we arrive at the following expression for the integral C3:

C3 = − g3
i F (q)

32(2π)3Eqq

∫
dEldsf0(El)


√

1− 4m2

s

[1
3At(s− 4m2)2 + 1

2Bt(s− 4m2) + Ct

] ,

(A.42)
which can be recast into a more compact notation:

C3 = −g
3
i F (~q,~k, τ)

32(2π)3Eqq

∫
dEldsf0(El, τ)χ(s) , (A.43)

where the function χ is defined in (3.2), and we explicitly wrote the arguments of each
function. Now, in this particular integral we could in fact formally integrate in s to obtain
only a last integral over El of the background DF times an arbitrary function. We leave this
as it is, because this form will become practical in calculating the next collision integral C2.
It becomes quite remarkable that the χ function only depends on s (which in turn is only
proportional to the CoM energy). This might suggest that a more straightforward method of
obtaining these integrals may be available.

A.2 Calculation of C2[f ]

The calculations for the C2 term are identical to the ones developed in the previous section.
The only difference here is that the roles of the background and perturbed DF are reversed.
This can easily be seen from the definition of the term in (2.3). So, the final expression for
the integral is

C2 = − g
3
i f0(Eq, τ)

32(2π)3Eqq

∫
dEldsF (~l,~k, τ)χ(s) , (A.44)

where we have implicitly used ~l ≡ ~l(El, s). This is true given the parametrization (A.4) for
this vector, as its magnitude can be uniquely determined by El and its angle with the vector
~q by the Mandelstam variable s. Therefore, unlike the previous case, the integral on s cannot
be performed, since F also depends on it.

A.3 Calculation of C1[f ]

The procedure for calculating C1 are very similar to the ones used to calculate C3, but with
some changes in the parametrization of the vectors involved. Following from the expression
(2.3), the full integral can be expressed as

C1[f ] = 2g3
i

Eq(2π)5

∫
d3l

2El
d3q′

2Eq′
d3l′

2El′
|M|2δ(4)

D (q + l− q′ − l′)f0(q′)F (~l′) . (A.45)
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A.3.1 Solving for ~l and β

Since the integrand does not depend on ~l, we perform the first integral using the momentum
conservation Dirac delta along this variable (instead of ~l′ as it was used before). After doing
this, we use a new parametrization that reflects our choice of remaining variables:


~q = q(0, 0, 1)
~q′ = q′(0, sin θ, cos θ)
~l′ = l′(sin β sinα, cosβ sinα, cosα)

. (A.46)

Following the steps on section A.1, we reach the following expression:

C1[f ] = g3
i

4Eq(2π)4

∫
d(cos θ)d(cosα)dl′dq′ q

′2

Eq′

l′2

El′
f0(l′)F (~q′)Θ(Eq′ + El′ − Eq)|M|2

×
∫ 2π

0
dβδD(g(~q′, ~l′, ~q)) .

(A.47)

where this time the argument of the remaining Dirac delta g can be expressed as

g ≡ 2m2 + (2Eq′El′ − 2El′Eq − 2EqEq′)− 2q′l′(sinα cosβ sin θ + cosα cos θ)

+ 2ql′ cosα+ 2qq′ cos θ .
(A.48)

Again, as the β integral only involves the Dirac delta we can rewrite this integral as in
equations (A.7), (A.9) where in this case the functions involved are:

∂g

∂β
= 2q′l′ sinα sin β sin θ , (A.49)

cosβi = (2q′l′ sin θ sinα)−1
[
2m2 + (2Eq′El′ − 2El′Eq − 2EqEq′)− 2q′l′ cosα cos θ

+ 2ql′ cosα+ 2qq′ cos θ
]
.

(A.50)

We also add here a Heaviside theta function in cos2 βi to ensure the condition | cosβi| < 1,
but this time with the argument

∣∣∣∣ ∂g∂β
∣∣∣∣2
cosβi

= a
(α)
1 cos2 α+ b

(α)
1 cosα+ c

(α)
1 , (A.51)

with coefficients:


a

(α)
1 = −4l′2|~q − ~q′|2

b
(α)
1 = 8l′(q′ cos θ − q)

[
m2 + Eq′El′ − EqEl′ − Eq′Eq + qq′ cos θ

]
c

(α)
1 = 4

{
q′2l′2 sin2 θ −

[
m2 + Eq′El′ − EqEl′ − Eq′Eq + qq′ cos θ

]2} . (A.52)
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Then the C1 integral results:

C1[f ] = g3
i

4Eq(2π)4

∫
d(cos θ)dq′ q

′2

Eq′
F (~q′)

∫
dl′

l′2

El′
f0(l′)Θ(Eq′ + El′ − Eq)

×
∫
d(cosα) |M|2√

a
(α)
1 cos2 α+ b

(α)
1 cosα+ c

(α)
1

Θ(a(α)
1 cos2 α+ b

(α)
1 cosα+ c

(α)
1 ) .

(A.53)

The argument for the last theta function is a second degree polynomial, this time in cosα,
with negative leading coefficient. As before, we solve this condition by imposing integration
limits in the cosα integral and adding a new Heaviside theta function to ensure the existence
of real roots for the polynomial (A.51). The discriminant of this polynomial becomes:

(
b
(α)
1

)2
− 4a(α)

1 c
(α)
1 = 64l′2q′2 sin2 θEq′Eq(1− cos z)

{
2E2

l′ + 2(Eq′ − Eq)El′

−
[
EqEq′(1− cos z) + m2|~q − ~q′|2

EqEq′(1− cos z)

]}
,

(A.54)

where

1− cos z = 1− m2

EqEq′
− qq′

EqEq′
cos θ . (A.55)

The argument of the function again has four real roots in El′ : {−m,+m,R1, R2} with R1,2

given by

R1,2 = 1
2

{
Eq − Eq′ ± |~q − ~q′|

√
1 + 2m2

EqEq′(1− cos z)

}
. (A.56)

As before, we can discard any roots smaller than m as non physical. This time however, the
ordering of these roots is different, as we will see below once we express these roots in terms
of Mandelstam variables.

A.3.2 Mandelstam variables for C1

So again, in order to assess the ordering of the roots R1,2, as well as facilitating the
integration of the collision kernels, we make use of the Mandelstam variables. The relevant
variables for the integrals here are t and u. Their expressions are given in (A.20), however
as we have changed the parametrization of the vectors themselves for this collision term, we
need their expressions in terms of the momentum variables:

t = (q − q′)2 = −2EqEq′ + 2m2 + 2qq′ cos θ = −2EqEq′(1− cos z)

u = (q − l′)2 = −2EqEl′ + 2m2 + 2ql′ cosα
. (A.57)
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Now, the roots of
(
b
(α)
1

)2
− 4a(α)

1 c
(α)
1 in terms of these new variables is

R1,2 = 1
2

Eq − Eq′ ± |~q − ~q′|
√

1− 4m2

t

 . (A.58)

We can see that the argument in the square root is always positive, because t is always negative.
To find out the order of the roots, we start by noticing the following three conditions:

1. Thanks to the fact that t is spacelike, we can infer that |Eq − Eq′ | < |~q − ~q′|.

2. As t is negative,
√

1− 4m2/t > 1.

3. Thus R1 ≤ 0 for any ordering of Eq, Eq′ . �

Then, as R1 is negative, it is not a physical value for the energy integral. The proof that
R2 ≥ m2, hence R2 is physical, is slightly more complicated but possible, and is left to the
reader. It is important to note in this case the ordering of these roots in order to understand
the allowed ranges for El′ . If we focus on the discriminant (A.54) we see that, as before, it has
four roots but in this case the value is positive in the limit El′ →∞. So, as the ordering of all
four simple roots is in this case [(−m ≤ R1) or (R1 ≤ −m)] ≤ m ≤ R2, we can conclude that
the only range of energies where both El′ ≥ m and the discriminant is positive is El′ ≥ R2.
So, for C1 we have boundary conditions for El′ that are completely different from the ones for
C2 and C3. We can then use these limits in energy for the full integral but first we need to
change variables to Mandelstam variables to perform them, these time using (t, u).

A.3.3 Change of variables to {t, u, Eq′ , El′}

So, we now make the appropriate change of variables proceeding in a very similar way
as in the case of C3. In fact, the expression for the variables and differentials in Eq′ and t
are exactly the same as (A.29), (A.30). It is therefore immediate to see that the change of
variables to El′ and u is expressed as:



q′ → Eq′ =
√
q′2 +m2

l′ → El′ =
√
l′2 +m2

cosα→ u = −2EqEl′
(
1− m2

EqEl′
− ql′

EqEl′
cosα

)
cos θ → t = −2EqEq′

(
1− m2

EqEq′
− qq′

EqEq′
cos θ

)
, (A.59)

with the corresponding integration measures given by

dq′d cos θ = Eq′

2qq′2
dEq′du , dl′d cosα = El′

2ql′2
dEl′du . (A.60)

Now, we had expressed |M|2 in terms of only (s, t) in (A.34). However, this time s is
not a relevant variable of integration. We can use the relation s+ t+ u = 4m2 to obtain an
analogous expression in variables (t, u):
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|M|2 = Auu
2 +Buu+ Cu , (A.61)

with the {Au, Bu, Cu} coefficients only depending on t. So, the C1 collision integral can be
expressed as:

C1 = g3
i

8(2π)4Eqq2

∫
dEq′dtF (Eq′ , t)

∫ ∞
R2

dEl′f(El′)
∫ u(y2)≡u2

u(y1)≡u1
du
|M|2(u, t)√∣∣∣ ∂g∂β ∣∣∣2cosβi

, (A.62)

with y1,2 the roots of |∂g/∂β|2cosβi in cosα. This expression depends on |∂g/∂β|2cosβi , this
time given by (A.51), which can be recast into a polynomial in u as:

∣∣∣∣ ∂g∂β
∣∣∣∣2
cosβi

= a
(u)
1 u2 + b

(u)
1 u+ c

(u)
1 , (A.63)

with coefficients:


a

(u)
1 = −|~q − ~q′|2/q2

b
(u)
1 = −2[t(Eq + Eq′)(Eq − El′) + 2q2q′2 sin2 θ]/q2

c
(u)
1 = t(Eq − El′)2(4m2 − t)/q2

. (A.64)

The integral in u can then be computed using the property (A.41), so that the full
collision integral becomes

C1 = g3
i

8(2π)4Eqq

∫
dEq′dtF (Eq′ , t)

∫ ∞
R2

dEl′f0(El′)
π

|~q − ~q′|

×

Au
3

(
b
(u)
1

)2
− 4a(u)

1 c
(u)
1

8
(
a

(u)
1

)2

−Bu
(
b
(u)
1

2a(u)
1

)
+ Cu

 .

(A.65)

The expressions for the coefficients accompanying {Au, Bu} can be expressed in terms
of powers of El′ , in order to facilitate integration:
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3
(
b

(u)
1

)2
− 4a(u)

1 c
(u)
1

8
(
a

(u)
1

)2 = 1
8|~q − ~q′|4

{
E2

l′

[
4t
(
3(Eq + Eq′)2t− ((Eq − Eq′)2 − t)(−4m2 + t)

) ]

+El′

[
4t(4(Eq − Eq′)2(Eq + 3Eq′)m2

− 4(Eq(Eq − Eq′)(Eq + 2Eq′) + (Eq + 3Eq′)m2)t+ (Eq + 3Eq′)t2)
]

+
[

(48(Eq − Eq′)4m4 − 16(Eq − Eq′)2m2(2E2
q − 3EqEq′ + 6m2)t

+ 8(E2
q (Eq − Eq′)2 + (7E2

q − 12EqEq′ + 3E2
q′)m2 + 6m4)t2

− 4(2E2
q − 3EqEq′ + 6m2)t3 + 3t4)

]}
,

(A.66)

b
(u)
1

2a(u)
1

= −1
|~q − ~q′|2

{
El′

[
t(Eq + Eq′)

]
+
[
2(Eq − Eq′)2m2 + 2Eq(−Eq + Eq′)t− 4m2t+ t2

]}
.

(A.67)

Here the approach diverges greatly from the one we took for C2 and C3. In the previous cases
we managed to also perform the integration in energy, but here this cannot be done without
knowing the background DF f0. Since given f0, the integration in El′ can be performed, it is
convenient to define

〈f0〉n (Eq, Eq′ , t, τ) =
∫ ∞
R2

dEl′f0(El′ , τ)Enl′ , (A.68)

which is a function of (Eq, Eq′ , t) only through R2, and express the full collision integral in
terms of these moments of f0:
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C1 = π

(2π)4Eqq

∫
dEq′dtF (Eq′ , t)

×

{
Au

8|~q − ~q′|5

{
〈f0〉2

[
4t
(
3(Eq + Eq′)2t− ((Eq − Eq′)2 − t)(−4m2 + t)

) ]

+ 〈f0〉1

[
4t(4(Eq − Eq′)2(Eq + 3Eq′)m2

− 4(Eq(Eq − Eq′)(Eq + 2Eq′) + (Eq + 3Eq′)m2)t+ (Eq + 3Eq′)t2)
]

+ 〈f0〉0

[
(48(Eq − Eq′)4m4 − 16(Eq − Eq′)2m2(2E2

q − 3EqEq′ + 6m2)t

+ 8(E2
q (Eq − Eq′)2 + (7E2

q − 12EqEq′ + 3E2
q′)m2 + 6m4)t2

− 4(2E2
q − 3EqEq′ + 6m2)t3 + 3t4)

]}

+ Bu

2|~q − ~q′|3

{
〈f0〉1

[
t(Eq + Eq′)

]
+ 〈f0〉0

[
2(Eq − Eq′)2m2 + 2Eq(−Eq + Eq′)t− 4m2t+ t2

]}

+ Cu

|~q − ~q′|
〈f0〉0

}
.

(A.69)
We can recast this expression in terms of a (fairly complex but mostly polynomial)

integration kernel K(Eq, Eq′ , t, τ).

C1 = g3
i

16(2π)3Eqq

∫
dEq′dtF (Eq′ , t)×K(Eq, Eq′ , t, τ) . (A.70)

This integration kernel is the most complex part of the collision term, mainly due to the
explicit dependence of the integration kernel on time through the momenta of the background
DF.

B The Zero Order Collision Term

In this appendix we provide details on the calculation of the zero-order collision integral. As
shown in (2.2) this can be split into two parts: D1[f ] and D2[f ]. The treatment of the term
D2[f ] mimics exactly the one for C3[f ] but with the simplification F (~q,~k, τ)→ f0(Eq). Thus,
it is immediate to see that this term can be expressed as in (3.6).

B.1 Calculation of D1[f ]

The term D1[f ] holds some similarity to the term C1, as it involves the integration of both of
the vectors ~q′, ~l′ on which the distribution functions are evaluated. The derivation for this
term closely follows the one for the perturbed DF until equation (A.65). In this case, the
result can be written as
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D1[f ] = g3
i

16Eqq(2π)3

∫
dtdEq′f0(Eq′)

∫ ∞
R2

dEl′
f0(El′)
|~q − ~q′|

{Au[...] +Bu[...] + Cu[...]} , (B.1)

where the terms accompanying the factors {Au, Bu, cu} are specified in equations (A.66),
(A.67). Continuing the procedure as we did for C1 will require the moments for the background
distribution function, which is exactly the quantity we are trying to obtain. Here instead
of doing that, we will express this integral in such a way that it depends on the integral of
a function times the background DF itself: we want to obtain a convenient expression for
the integration kernel to be used in the equation for f0. To do that, we will integrate in t,
given that the background DF does not depend explicitly on this variable. A complication in
this approach comes from the fact that a simple modification of the order of integrals will
not work, as the boundary for the integral in El′ , R2, depends explicitly on t. In order to
circumvent this, let us first define the variable P

P = |~q − ~q′|

√
1− 4m2

t
. (B.2)

We change variables from t to this new variable P in the integral:

∫ t(cos θ=1)

t(cos θ=−1)
dt(...) = 2

∫ Eq+Eq′

|Eq−Eq′ |+2m
dP

2Pt2

|4m2(Eq − Eq′)2 − t2|
(...) . (B.3)

Now, we rewrite the integration limits as a series of Heaviside theta functions

∫ Eq+Eq′

|Eq−Eq′ |+2m
dP

∫ ∞
R2

dEl′ =
∫
dPdEl′Θ(El′ −R2)Θ(P − (|Eq −Eq′ |+ 2m))Θ(Eq +Eq′ −P ) .

(B.4)
Then, using the relations

Θ(Eq+Eq′ − P )Θ(2El′ − Eq + Eq′ − P ) =

Θ(El′ − Eq)Θ(Eq + Eq′ − P ) + Θ(Eq − El′)Θ(2El′ − Eq + Eq′ − P ) ,
(B.5)

Θ(2El′ − Eq + Eq′ − P )Θ(P − |Eq − Eq′ | − 2m) =

Θ(Eq − Eq′)Θ(2El′ − Eq + Eq′ − P )Θ(P − Eq + Eq′ − 2m)

+ Θ(Eq′ − Eq)Θ(2El′ − Eq + Eq′ − P )Θ(P − Eq′ + Eq′ − 2m) ,

(B.6)

it can be found out that the integration splits into four parts:

∫ Eq

m
dEq′

[∫ Eq

Eq−Eq′+m
dEl′

∫ 2El′−Eq+Eq′

Eq−Eq′+2m
dP +

∫ ∞
Eq

dEl′
∫ Eq+Eq′

Eq−Eq′+2m
dP

]

+
∫ ∞
Eq

dEq′

[∫ Eq

m
dEl′

∫ 2El′−Eq+Eq′

Eq′−Eq+2m
dP +

∫ ∞
Eq

dEl′
∫ Eq+Eq′

Eq′−Eq+2m
dP

]
.

(B.7)
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Here, each of the four parts is first integrated in an angular variable and then in the energies.
Using this procedure for the integral (B.1) the collision integral can be expressed as:

D1[f ] = g3
i

16Eqq(2π)3

4∑
i=1

∫
Ii
dEq′dEl′f0(Eq′ , τ)f0(El′ , τ)ki(Eq, Eq′ , El′ , τ) , (B.8)

where Ii refers to the integration method in energies specified in (B.7) and defined in (3.8)
and the kernel functions ki are expressed as in (3.9).

There, we have labeled the kernels with i = 1, ..., 4 according to the integration regions
Ii in the order in which they appear in equation (B.7). We have chosen to return the integrals
to their original angular variable t instead of P , as the integrands themselves are functions
of t and can’t be expressed neatly in the new variable and the integration measure is also a
function of both P and t. The integrals labeled i = 2, 4 possess the original limits on t, as the
integration scheme has not modified the bounds in P appearing in (B.3). The ones labeled
i = 1, 3 are the (two) solutions of the equation P (t1,2) = 2El′ − Eq + Eq′ . The integrands
themselves are expressed in equation (3.10) on a similar way as in equation (A.69).

C The DM-DM collision term for a Massless Mediator

Here, we will give the form of the DM-DM collision term for the case of an actually massless
mediator, out of the models considered in section 3.3 and the ansatz (2.4). In this case, we
should start by noting that, as the mediator population is not Boltzmann suppressed, this
is one of the three relevant collision terms in the full evolution of the system: not only the
population and DF of the DM need to be tracked but also of the mediators (hereby called
DR, Dark radiation) and the other two collision terms between the DR-DR and DR-DM. In
this appendix we calculate only the DM-DM collision term.

We consider DM scattering of light or massless mediator particles under the Lagrangian
(3.11). We start by considering the scattering amplitude for such a model in the massive DM
particle case [80]

|M|2 = 6g4 + 16m4g4
( 1
s2 + 1

t2
+ 1
u2

)
− 4m2g4(s+ t+ u)2

stu
. (C.1)

We can see from this expression clearly that in the limit m→ 0 the amplitude reduces
to (3.13). As p/m . 1 (with p the typical momentum of the particles in the CoM frame)
the other terms in the scattering amplitude become more relevant, and the massless DM
approximation becomes invalid. As the particle becomes highly nonrelativistic p/m� 1 the
assumption of tree level diagrams being dominant breaks down as ladder diagrams become
more relevant and other approaches are more well suited for the analysis, such as considering
Sommerfeld Enhancement [87, 88].
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As in appendix A we will start by calculating C3 first, then calculate C1 on a similar
fashion and rely on the derivations in appendix B to relate these results to the ones for D1

and D2.

C.1 Calculation of C3[f ]

For the C3[f ] term, the derivations in appendix A.1 remain the same until the specific
form of the ansatz had been used in (A.38). For the sake of readability, we will split the
scattering amplitude (C.1) into three parts: one containing only terms on s (constant on the
t integration), and two others containing mixed {s, t} terms and {s, u} terms respectively

|M|2 = g4
{[

6 + 16m4

s2

]
+
[

16m4

t2
+ 64m6

st(s− 4m2)

]
+
[

16m4

u2 + 64m6

su(s− 4m2)

]}
= |M|2{s} + |M|2{s,t} + |M|2{s,u} .

(C.2)

The s term can be integrated directly using the result (A.42), while the other terms
require special care. We start by the mixed {s, t} term: the integral can be performed directly

∫ t2

t1

dt
|M|2{s,t}√

a
(t)
3 t2 + b

(t)
3 t+ c

(t)
3

=

8πm4g4 (−4m2 (E2
l + 2ElEq + 3E2

q − 4EqEq′ + 2E2
q′

)
+ 2s

(
El(Eq + Eq′) + E2

q − EqEq′ + 2m2)− s2)
s (4m2 − s) |Eq − Eq′ |3

√
s(s−4m2)
E2

q−m2

.

(C.3)
In the case of the {s, u} term integral, it is better to change variables in integral (A.31)

from t to u. By making use of definition (A.32) and that s+ t+ u = 4m2 we can also perform
the integral directly

∫ t2

t1

dt
|M|2{s,u}√

a
(t)
3 t2 + b

(t)
3 t+ c

(t)
3

=

8πm4g4 (−4m2 (3E2
l + 2El(Eq − 2Eq′) + E2

q + 2E2
q′

)
+ 2s

(
E2

l + El(Eq − Eq′) + EqEq′ + 2m2)− s2)
s (4m2 − s) |El − Eq′ |3

√
s(s−4m2)
E2

q−m2

.

(C.4)
After the t integral is done, as in (A.41) it is time to continue solving for the Eq′ integral.

In the case of the {s, t} term, it is convenient to change variables to E1 = Eq′ − Eq. The Eq′
integral for this term then becomes
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∫ R2

R1

dEq′

∫ t2

t1

dt
|M|2{s,t}√

a
(t)
3 t2 + b

(t)
3 t+ c

(t)
3

=

−
∫ R2

R1

dE1
8πm4qg4(

E
2
1s (s− 4m2)

)3/2

{
−4m2(El + Eq)2 + 4ElEqs+ 4m2s− s2 + E1(2Els− 2Eqs)− 8E2

1m
2
}
,

(C.5)
where the integration limits are

R1,2 = 1
2

El − Eq ± ∣∣∣~q +~l
∣∣∣
√

1− 4m2

s

 , (C.6)

and it can be demonstrated that the lower limit R1 is always negative and the upper limit
R2 always positive. Remarkably, the {s, u} term is identical upon the variable change
E2 = Eq′ − El.

The above integrals in the new variable E exhibit divergences. A proper treatment of
the divergences requires the understanding of the infrared physics of the specific model with
the mediator fields. Here, we will write the divergent contributions as the following integral
terms

In =
∫ R2

R1
dE

E3−n

|E|3
. (C.7)

A possible regularization is to consider that the mediator have a small mass and, following
[68], to introduce a (physical) mass mφ for the mediator in the calculation of the vanishing
denominator on the integrals. For a truly massless mediator case some effect, analogous to
Debye shielding in plasma [52, 89], would be needed to limit the interaction range and provide
an effective length scale that would act as a regulator. In view of the limited purposes of the
present paper, here we leave the results in terms of the divergent integrals (C.7). In terms of
these, the final C3[f ] collision term becomes

C3 = g3
i g

4F (q)
32(2π)3Eqq

∫
dEldsf0(El)

{
(6 + 16m4

s2 )
√

1− 4m2

s

+ 16πm4q

[s (s− 4m2)]3/2

[(
−4s

(
ElEq +m2)+ 4m2(El + Eq)2 + s2) I3 + 2s(Eq − El)I2 − 8m2I1

]}

≡ g3
i g

4F (q)
32(2π)3Eqq

∫
dEldsf0(El)χe .

(C.8)
We remark here that any Lorentz invariant regularization mechanism must fulfill the

property χe ≡ χe(s), as was outlined in appendix D.1 and [76].
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C.2 Calculation of C1[f ]

For the C1 term we would have to perform a similar split in the scattering amplitude,
however in this case the terms similar to (A.69) would be the ones with only t dependence,
and we would have to calculate the {s, t} and the {u, t} terms. This split of (C.1) can be
expressed as

|M|2 = g4
{[

6 + 16m4

t2

]
+
[

16m4

s2 − 64m6

st(4m2 − t)

]
+
[

16m4

u2 − 64m6

tu(4m2 − t)

]}
= |M|2{t} + |M|2{t,s} + |M|2{t,u} .

(C.9)

Again we integrate directly the |M|2{t,u} term, this time on u, to find the expression

∫ u2

u1

du
|M|2{t,u}√

a
(u)
1 u2 + b

(u)
1 u+ c

(u)
1

=

8πm4qg4(
E

2
1t (t− 4m2)

)3/2

{(
4m2(Eq − Eq′)2 + 4EqEq′t− 4m2t+ t2

)
− 2E1t (Eq + Eq′) + 8E2

1m
2
}
,

(C.10)
where E1 = El′ −Eq. For the term |M|2{t,s} we change integration variables from u to s using
(A.63) and s+ t+ u = 4m2 to obtain

∫ u2

u1

du
|M|2{s,u}√

a
(u)
1 u2 + b

(u)
1 u+ c

(u)
1

=

8πm4qg4(
E

2
2t (t− 4m2)

)3/2

{(
4m2(Eq − Eq′)2 + 4EqEq′t− 4m2t+ t2

)
− 2E2t (Eq + Eq′) + 8E2

2m
2
}
,

(C.11)
where E2 = El′ + Eq′ . In this case we can arrive to similar expressions as in (C.8) when we
account for the divergent E1 integral in (C.10). For the case of the term (C.11) the integrals
themselves are very similar, however as E2 = Eq′ + El′ > 2m there is no singularity in the
energy integral and regularization is not needed. The final results for these integrals can be
expressed as

∫ ∞
R2

dEl′f(El′)
∫ u2

u1

du
|M|2{t,u} + |M|2{t,s}√
a

(u)
1 u2 + b

(u)
1 u+ c

(u)
1

=

8πm4qg4

t

√
t (t− 4m2)3

{(
−4m2(Eq − Eq′)2 − 4EqEq′t+ 4m2t− t2

)
J3 + 2(Eq + Eq′)tJ2 − 8m2J1

}
,

(C.12)
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where the results are expressed in terms of the integrals

Jn(Eq, Eq′ , t, τ) =
∫ ∞
−R3

dE
f0(Eq + E)E3−n

|E|3
+
∫ ∞
R4

dE
f0(E − Eq′)

En
, (C.13)

and the integration limits are defined as

R3,4 = 1
2

Eq + Eq′ ±
∣∣∣~q − ~q′∣∣∣

√
1− 4m2

t

 (C.14)

for the sum of all these integrals. Afterwards, we can express the various scattering functions
as:

C1 = g3
i g

4

8(2π)4Eqq

∫
dEq′dtF (Eq′ , t){

8πm4q

t

√
t (t− 4m2)3

[ (
−4m2(Eq − Eq′)2 − 4EqEq′t+ 4m2t− t2

)
J3 + 2(Eq + Eq′)tJ2 − 8m2J1

]

+ π∣∣∣~q − ~q′∣∣∣ 〈f0〉
(

6 + 16m4

t2

)}
.

(C.15)

D Numerical Integration of D2[f eq0 ]

In this section, we will provide the numerical integration scheme used to calculate τ . As was
justified in 5, the expression for this quantity can be set in terms of the kernels introduced in
3.3:

τ−1(Eq) = g3
i

32(2π)3Eq|~q|

∫
dEldsχ(s)f0(El)

As we are not considering Bose enhancement or Pauli blocking, we set the equilibrium
DF as a relativistic Maxwell-Boltzmann distribution

feq0 (Eq, t) ≡ fMB(Eq, T (t)) = e−Eq/T , (D.1)

and the function χ(s) depends of the particular interaction model used. Now, in order to
numerically integrate these equations, it is necessary to adimensionalize this expression. We
define:

τ̃ ≡ mτ , εq ≡ Eq/m , s̃ ≡ s/m2 , T̃ = T/m . (D.2)

Then, the expression for τ̃−1 is
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τ̃−1(εq) = g3
i

32(2π)3εq
√
ε2q − 1

∫ ∞
1

dεlf
MB(εl)

∫ 2εqεl+2+2
√
ε2q−1
√
ε2
l
−1

2εqεl+2−2
√
ε2q−1
√
ε2
l
−1

ds̃χ(s̃) . (D.3)

For any given choice of the kernel function χ(s), this double integral can be readily
calculated. We will now summarize the kernels for the models considered in 3.3:

Constant Amplitude : χ0(s) = C0

√
1− 4

s
, C0 = 6g4 . (D.4)

Massive Scalar : χm(s) = Cm

√
1− 4

s

(
256− 128s+ 19s2

)
, Cm = g4

6

(
m

mΦ

)4
. (D.5)

Vector Field : χV (s) = CV

√
1− 4

s
(74− 29s)(1− s2) , CV = 4

3

(
gVm

mV

)4 1
cos4 θ′W

.

(D.6)

For these models, the results of numerical integration are summarized in fig. 1. In order
to obtain a relevant value of the relaxation time and compare it to a cosmological timescale, it
is usual to obtain a thermal average of τ−1. For any quantity g, a thermal average is defined
as

〈g〉th =
∫
d3q g(~q)feq(Eq)∫
d3q feq(Eq)

, (D.7)

where feq is an equilibrium distribution function. In particular, for the inverse relaxation
time, this thermal averaging can be reduced to the following expression, accounting for
adimensionalization:

〈
τ̃−1

〉
th

=

∫∞
1 dεqεq

√
ε2q − 1fMB(εq)τ̃−1(εq)∫∞

1 dεqεq
√
ε2q − 1fMB(εq)

, (D.8)

where we have assumed the background DF is given by (D.1).

D.1 Parallelism with the Calculation of Abundances of Stable Species

Several similarities exist between the calculation of the thermal average of the relaxation time
and the procedures in [76]. In that paper, the thermal average of the quantity σvmol, i.e. the
cross section times the relative Møller velocity for elastic 4 fermion interaction, is calculated.
This quantity differs from the relaxation time only in the normalization, and a parallelism
between the original quantity σvmol(Θ, s) and χ(s) can be obtained.

The definition of σvmol from [90] can be given through the full Boltzmann equation:

(∂t + u.∇)f = 1
2

∫
d3ldΩ(fq′fl′ − fqfl)σvmol , (D.9)
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with fi ≡ f(~i). If we eliminate the spatial dependency of the DF we can identify this equation
as the Boltzmann equation for the background DF, we can further identify the terms D1 and
D2. By comparing it with the expression we had for D2, it can be found that

χ(s)
4 = 2EqEl(2π)3

g3
i

∫
dΩσvmol = 1

4(2π)

∫
d cos Θcm |M|2

√
1− 4m2

s
, (D.10)

with Θcm the scattering angle measured in the CoM system. This property, apart from
relating χ and σ, reproduces the feature that σvmolEqEl is a function of s only (see [76]).
We can use the procedures outlined in the calculation of thermal averaged annihilation cross
section to obtain an alternative expression for the thermal average of the relaxation time:

〈
τ−1

〉
th

= g3
i

32(2π)2N

∫
dsχ(s)

√
1− 4m2

s

√
sTK1(

√
s/T ) , (D.11)

where T is the temperature of the background Maxwell-Boltzmann DF, Kn is the modified
Bessel function of the second kind of order n and N is a normalization constant defined as

N−1 =
∫
dEqqEqf

MB
0 (Eq) . (D.12)

This expression yields the same results as the one in (D.8), but it is much easier and faster to
implement numerically.
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