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Abstract. The study of voice signals is an important issue, since a part of society
has hearing impairments. This implementation aims to help people with hearing
problems, through enhanced voice; using a microphone array with hemispheri-
cal methodology broadband beamforming, which can distinguish signals arriv-
ing from different directions. A semi-spherical microphone array adapts better to
human anatomy because it captures finer sound field.
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1 Introduction

The voice is the main form of communication of the human being. The voice process
begins with the thought of a message represented abstractly in the brain of the announcer
and through the complex process of voice production, finally the information becomes
an acoustic signal.

The voice is characterized for being the combination of several frequencies with
their corresponding harmonics. However, compared to the full range of human hearing,
which goes from 20Hz to 20 kHz, the voice covers a relatively small range of frequencies
between 100 Hz to 6 kHz.

The voice is a non-stationary signal, but it can be assumed through intervals (small
sample blocks) as locally stationary. Intervals between 20 and 30ms are themost suitable
for nearly all applications.

The processing of voice signals, for numerous applications, is related to the analysis
of their significant characteristics, for example we can mention the pitch (fundamental
tone or frequency of the vocal cord’s vibration) and its harmonics (peak spectrum of
an audible sound). The male voice has a pitch between 100 and 200 Hz and the female
voice is typically between 150 and 300 Hz.
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1.1 Initial Mathematical Analysis

An array of sensors is a set of isotropic elements distributed in each geometry, in order
to obtain information of the wave fields in the mean in which they propagate. Sensor
arrays allow each sensor to have greater directivity and sensitivity. The most commonly
used sensor arrays are the Uniform Linear Array (ULA) and the Uniform Circular Array
(UCA).

If you have a flat wave that reaches the point �r at a time t you get Eq. 1. A flat wave
is characterized because it has the same amplitude and phase.

s(r, t) = Ae j(β.r−ωt)con

�
β = �β� = 2π

λ
= 2π

ϑ/ f
(1)

Where A is the wave amplitude, β the wave vector (propagation), β wave factor
(number of waves), λ is the wavelength, ϑ wave propagation speed, f is the frequency.

The flat wave signal in Eq. 2 is considered to arrive at a ULA array, as shown in
Fig. 1, at the position
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Fig. 1. Uniform Lineal Array ULA. Source: (Yang, Cho and Choo 2012)

s(r, t) = s(0, t)e jβ(rx cosϕ sin θ+ry cosϕ sin θ+rz cosϕ) (2)

Where ϕ y θ represent the azimuth angle and the elevation angle respectively.

1.2 Signals Processing

Digital processing of voice signals is an interdisciplinary topic that involves phonetics,
physiology, acoustics, among other disciplines, in addition to the theory of digital signal
processing. This last one has had a great advance thanks to the development of the digital
signal processor’s technology, being found innumerable applications in the modern life
whether it is in the voice coding, recognition or synthesis. For the development of
this implementations, it is used the adaptive algorithms of the Householder family,
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the unconstrained algorithms NLMS (Normalized Least Mean Squares) and the CG
(Conjugate Gradient).

Spatial Filtering or Beamforming is a technique that uses an array of sensors; where
the main signal is estimated using linear combinations of the different outputs of each
of the array sensors, so that unwanted disturbances coming from different directions are
attenuated by the phenomenon of spatial directivity or arrangement selectivity (Fig. 2).
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Fig. 2. Narrowband beamforming. Source: (Madisetti 2010)

The study of voice signals is an important issue, since a large part of society has
some form of hearing impairment. Hearing disability is considered as those quantita-
tive alterations in a correct perception of hearing. The present implementation seeks
to help people with hearing problems, by enhancing the voice; using a semi-spherical
arrangement of microphones with the beamforming broadband methodology, that can
distinguish signals coming from different directions. It uses a semi-spherical arrange-
ment of microphones that adapts better to human anatomy, and which will allow to better
capture the sound field, as studied in the thesis project Acoustic Signal Optimization in
a Semi-spherical Microphone Array Using the Beamforming Broadband Methodology.

LCMV adaptive algorithms are divided into three families: Linearly Constrained,
such is the case of CLMS (Constrained Least Mean Square), among others. In addition,
the GSC structure algorithms (Generalized Sidelobe Canceler) that allows any uncon-
strained algorithm to be used as constrained.Andfinally,wehave thosewithHouseholder
structure that through the matrix Q and its Householder’s reflectors, they accomplish as
the GSC but computationally more efficient.

2 Adaptive Algorithms

LCMV (Linearly Constrained Minimum Variance) adaptive algorithms aim to restrict
beamformer in amplitude and output phase to signals coming fromone ormore directions
of no interest. The filter weights are selected in such a way that it minimizes the variance
or power of the error subject to a set of linear constraints, as shown in Eq. 3. In Fig. 3
it is shown an adaptive broadband beamforming structure with M sensors y N weights
(number of filter coefficients).

min
w

ξ [k] subject to a CHw = f (3)
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Fig. 3. Adaptive broadband beamforming structure. Source: (Apolinario and de Campos 2014)

Where signal error e[k] is related with the target function ξ [k] = E
�|e[k]|2� =

E{e[k]e∗[k]}, C is the dimension restriction matrix MN x p, being p the number of
restrictions and f the dimension gainance vector p x 1.

By imposing linear restrictions, the need for a signal can be often dismissed d[k] = 0
LCMV adaptive algorithms are divided into three families: Linearly Constrained, with
GSC (Generalized Sidelobe Canceler) structure, that allows that any unconstrained
algorithmZZZ be used as constrained and finally there are those of Householder
structure.

TheHouseholder structure is the onewith the best performance compared to the other
two structures with unconstrained NLMS (Normalized Least Mean Squares) adaptive
algorithms and CG (Conjugate Gradient) for the development of this implementation.

The matrix Q is an orthogonal rotational matrix that is used as the transformation
that will generate a vector of modified coefficient w[k] that relates to w[k].

The matrix Q should be chosen in such a way that QQH = I.

w[k] = Qw[k] (4)

C
�
C

H
C

�−1
C

H =
	
Ip×p 0
0 0



(5)

Then C = QC satisfies f = C
H
w[k + 1] and the projection matrix transformation

is given by:

P = QPQH = I − C
�
C

H
C

�−1
C

H =
	
0p×p 0
0 I



(6)

If w[0] is initialized according to

w[0] = C
�
C

H
C

�−1
f = QF (7)

The first p elements of w[0] don’t need to be updated. The solution w[k] is based on
the transformation Q to the output signal and therefore the output error is not modified
by the transformation.
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The HNCLMS algorithm has a slow speed of convergence and its computational
cost is low (2p + 3)N − (p2 + p − 1), so the algorithm becomes desirable for the
implementation on devices with limited hardware capabilities.

The HCCG algorithm has a fast convergence and its computational cost (3N2 +
(10 − 4p)N+ p2 − 8p+ 2) is higher compared to the HNCLMS algorithm one, so it is
desirable when its implementation on a hardware has abundant resources.

2.1 Calculations in Finite Precision

In a digital implementation of an adaptive filtering algorithm, the input data and internal
calculations of the algorithm are performed with finite precision, and the cost of digital
implementation of an algorithm is influenced by the number of bits (precision) available
to perform numerical calculations associated with the algorithm.

The simulation will be done with the Matlab® tool that emulates the operation of
finite precision; working with the number of bits with which the hardware works, in this
case of 16 bits. The simulation will be performed for 8, 12 and 16 bits.

The theory of adaptive filtering considers that all variables involved in calculations
and input signals can be represented in finite precision, thus facilitating mathematical
analysis, but the practical implementation in digital signal processors is limited by the
number of bits that can be used in internal mathematical calculations and the accuracy
with which the values used are stored.

In a digital implementation of an adaptive filter there are essentially two sources of
quantization errors to be considered:

• Analogue Conversion – digital
• Finite length of word arithmetic

Analogue Conversion/Digital
The analogue-digital conversion (A/D) can be visualized by an ideal continuous-discrete
converter (C/D), followed by a quantizer. The quantization operation will be represented
by:

x̄[k] = Q{x[k]} (8)

Where the operator Q{.} performs a non-linear rounding operation of the value of
x[k] for the nearest quantization level. The spacing of quantization levels defines the
step of quantization, uniform or not uniform. For example, a 3-bit uniform quantization
is seen in Fig. 4. It is noted that the 3 bits correspond to 23 = 8 levels of quantization.
In addition, it is shown on the figure that x(k) > 7


2 or x(k) = −9

2 , is going to

have a saturation. In digital signal processing, we have an output to the A/D converter,
value belonging to one of the possible quantization levels, represented according to a
numbering system.

The quantization introduces an error (quantization error) defined by:

e[k] = x[k] − x̄[k] (9)
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Fig. 4. 3 bits quantification examples

So that, in the case of an example of uniform quantization, there is no saturation
(overflow) −
/2 ≤ e(k) ≤ 
/2.

The average error is zero, and its variance is given by:

σ 2
e = 
2

12
= 4X2

m2
−2#

12
= X2

m2
−2(#−1)

12
(10)

Where # is the bits numbers.

2.2 Programming

The Matlab® simulation tool works internally with a high numerical accuracy of 32
or 64 bits. In this project the implementation hardware a FPGA NI myRIO works with
16 bits, so to carry out finite precision analysis it is used the qround function, which
emulates the nearest integer.

The ground function will allow to quantify the decimal part of each variable by
rounding b bits, as can be seen below.

function Vq = qround(V,b)

Vq = 2ˆ(-b)*round(V*2ˆb);

end

3 Results Analysis

Byvarying the number of bits between 8, 12 and 16 for theHNCLMSalgorithm, theMSE
starts to suffer variations, so as the number of bits increases the HNCLMS algorithm
presents a better performance, decreasing its MSE, as can be seen in Fig. 5.

Figure 6 shows the behavior of the HCCG algorithm by varying the size of bits from
8, 12 and 16. In the HCCG algorithm, its performance varies with the increasing of bit
size, as its MSE starts to decrease, the number of bits increases.
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Fig. 5. HNCLMS algorithm for different bits sizes

Fig. 6. HNCLMS algorithm for different bits sizes

3.1 Comparison of Results

As mentioned, the cost of digital implementation is influenced by the number of bits
available to perform numerical calculations associated with the algorithm. For the algo-
rithms to be implemented, the computational complexity of the algorithms is given by
the number of multiplications detailed in Table 1.

Table 1. Computational cost of LCMV algorithms

Algorithm

NLMS (2p + 3)N − (p2 + p − 1)

CG 3N2 + (10 − 4p)N + p2 − 8p + 2
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Where N is determined to represent the number of taps and p the number of restric-
tions. In Table 2, it can be analyzed that the algorithms of lower computational cost are
NLMS and the one of higher cost is CG. The structure that has the lowest computational
cost is the Householder.

Table 2. MSE in dB for HNCLMS and HCCG algorithms

Algorithm 8 bits 12 bits 16 bits

HNCLMS −26.0071 −29.6076 −29.6826

HCCG −5.1213 −32.3649 −36.4347

Table 2 presents a summary of the MSE for the different bit numbers used for the
HNCLMS and HCCG algorithms, as can be observed when the number of bits increases
the MSE is smaller for each of the algorithms, and because the number of bits is smaller
there is an increase in operations and therefore a propagation of the error.

3.2 Lattice Structure

The RLS (Recursive Least Squares) algorithm which, compared to other adaptive algo-
rithms, presents a faster convergence rate and a better response in the presence of dis-
turbance, but with the disadvantage that its hardware implementation is quite difficult
due to its high computational complexity and problems with numerical stability.

Theoretically there are several algorithms that solve the problem of least squares
recursively. In particular, theLattice structure allows to reduce computational complexity
(in the order of N). Therefore, the LRLS (Lattice Recursive Least Squares) structure is
considered a quick implementation for the RLS algorithm problem.

The LRLS algorithm is a cascade structure based on forward and backward linear
prediction filters that allows to describe the properties of the input signal, based on the
development of least squares to reduce the quadratic error of the mentioned filters, it
also updates the reflection coefficients as a function of time.

The performance of LRLS algorithms when implemented with infinite precision
arithmetic is identical to those of any RLS algorithm, but with finite precision arithmetic,
each algorithm has a different response.

3.3 Recursive Least-Squares Prediction

Forward and backward RLS predictions are essential to derive the order-updating equa-
tions inherent in LRLS algorithms. For both cases the results are obtained by following
the derivation procedure of the conventional RLS algorithm, since the only distinguish-
ing feature of the prediction problems is the definition of the reference signal d[k]. In the
case of forward prediction, you have that d[k] = x[k], while the input signal vector has
the sample x[k−1] as themost recent data. For backward prediction d[k] = x[k−i−1],
where the index i defines the sample of the past to be predicted and the input vector signal
x[k] has as the most recent data.
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The goal of forward prediction is to predict a future sample given an input sequence,
using the current information of the available sequence. For example, you can try to
predict the value x[k] using samples passed as x[k−1]x[k−2] through a FIR prediction
filter with i + 1 coefficient as shown in the following equation:

y f [k, i + 1] = wT
f [k, i + 1]x[k − 1, i + 1] (11)

Where y f [k, i + 1] is the output prediction signal

w f [k, i + 1] = �
w f o[k]w f 1[k] . . .w f i [k]

�T (12)

This is the vector of forward FIR prediction coefficients

x[k − 1, i + 1] = {x[k − 1]x[k − 2] . . . x[k − i − 1]}T (13)

x[k−1, i+1] is the available input signal vector. The second variable included in the
vector of Eq. (11) shows the dimension of the vector and is required in the order-updating
equations of the LRLS algorithm.

The subsequent instant error of the forward prediction is given by:

ε f [k, i + 1] = x[k] − wT
f [k, i + 1]x[k − 1, i + 1] (14)

For the RLS formulation of the forward prediction problem, the next prediction
weighted error vector is defined as:

ε f [k, i + 1] = x
�[k] − XT [k − 1, i + 1]w f [k, i + 1] (15)

Where:

x
�[k] =

�
x[k]λ1/2x[k − 1]λx[k − 2] . . . λk/2x[0]

�T
(16)

ε f [k, i + 1] =
�
ε f [k, i + 1]λ1/2ε f [k − 1, i + 1]λε f [k − 2, i + 1] . . . λk/2ε f [0, i + 1]

�T
(17)

[k − 1, i + 1]

=

⎡
⎢⎢⎢⎢⎣

x[k − 1] λ1/2x[k − 2] . . . λ[k−2]/2x[1] λ[k−1]/2x[0] 0 0
x[k − 2] λ1/2x[k − 3] . . . −λ[k−2]/2x[0] 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

x[k − i − 1] λ1/2[k − i − 2] · · · 0 0 0 0

⎤
⎥⎥⎥⎥⎦

(18)

The error vector ε f [k, i + 1] can be defined as:

ε f [k, i + 1] = xT [k, i + 2]
�

1
−w f [k, i + 1]

�
(19)

The objective function to be minimized in the forward prediction problem is given
by:

ξdf [k, i + 1] = εTf [k, i + 1]ε f [k, i + 1] (20)
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ξdf [k, i + 1] =
k�

i=0

λk−1ε2f [l, i + 1] (21)

ξdf [k, i + 1] =
k�

l=0

λk−1
�
x[l] − xT [l − 1, i + 1]w f [k, i + 1]

�2
(22)

The optimal solution for the coefficient vector is:

w f [k, i + 1] = R−1
Df [k − 1, i + 1]pDf [k, i + 1] (23)

Where RDf [k − 1, i + 1] is equal to deterministic correlation matrix RD[k − 1] of
order i + 1 y pDf [k, i + 1] is the deterministic vector of cross-correlation between x[l]
and x[l − 1, i + 1].

The minimum value of ξdf [k] is given by:

ξdf min[k, i + 1] = σ 2
f [k] − wT

f [k, i + 1]pDf [k, i + 1] (24)

Combining Eqs. 23 and 24 you obtain:

RD[k, i + 2]
	

1
−w f [k, i + 1]



=

�
ξdf min[k, i + 1]

0

�
(25)

Where RD[k, i + 2] is equal to RD[k] of dimension i + 2. The previous equation
refers to the deterministic order correlation matrix i + 2.

The purpose of the return prediction is to generate an estimate of a past sample of a
given input sequence, using the current available sequence information

yb[k, i + 1] = wT
b [k, i + 1]x[k, i + 1] (26)

Where yb[k, i + 1] is return prediction output signal, and

wT
b [k, i + 1] = {wb0[k]wb1[k] . . . wbi [k]}T (27)

It is the return FIR prediction coefficient vector. The return instant prediction error
is given by:

εb[k, i + 1] = x[k − i − 1] − wT
b [k, i + 1]x[k, i + 1] (28)

The weighted backward error vector is represented by:

εb[k, i + 1] = x
�[k] − XT [k − 1, i + 1]wb[k, i + 1] (29)

Where:

x
�[k − i − 1] =

�
x[k − i − 1]λ1/2x[k − i − 2] . . . λ[k−i−1]/2x[0]0 . . . 0

�T
(30)

εb[k, i + 1] =
�
εb[k, i + 1]λ1/2εb[k − 1, i + 1] . . . λk/2εb[0, i + 1]

�T
(31)
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x[k, i + 1] =

⎡
⎢⎢⎢⎣

x[k] λ1/2x[k − 1] . . . λ(k−1/2x[1] λ(k)/2x[0]
x[k − 1] λ1/2x[k − 2] . . . −λ[k−2]/2x[0] 0

...
...

...
...

...

x[k − i] λ1/2[k − i − 1] · · · 0 0

⎤
⎥⎥⎥⎦ (32)

The error vector εb[k, i + 1] can be defined as:

εb[k, i + 1] = XT [k, i + 2]
� −wb�k, i + 1�}

1

�
(33)

The objective function to be minimized in the return prediction problem is shown
as:

ξdb [k, i + 1] =
k�

l=0

λk−1
�
x[l − i − 1] − xT [l, i + 1]wb[k, i + 1]

�2
(34)

The optimal solution for the coefficient vector is:

wb[k, i + 1] = R−1
Df [k, i + 1]pDf [k, i + 1] (35)

Where RDb[k, i + 1] is equal to deterministic correlation matrix RD[k] of order i +
1 and pDb[k, i + 1] is the deterministic vector of cross-correlation between x[l − i − 1]
and x[l, i + 1].

The minimum value for ξdb [k] is given by:

ξdbmin[k, i + 1] = σ 2
b [k] − wT

b [k, i + 1]pDb[k, i + 1] (36)

Combining Eqs. 35 y 36, you get:

RD[k, i + 2]
	−wb�k, i + 1�

1



=

	
o

ξdbmin[k, i + 1]



(37)

WhereRD[k, i +2] is equal toRD[k] of dimensions i + 2. The above equation refers
to the deterministic order correlation matrix i + 1.

4 Algorithm Implementation

A microphone serves as an acoustic sensor to record audio signals and monitor sounds
levels. MEMS ADMP504 microphones were used for this project. The ADMP504 con-
sists of a MEMS microphone element, an impedance converter and an output amplifier.
The sensitivity specification makes it an excellent choice for both near field and far field
applications.TheADMP504hasveryhigh signal/noise ratio andextendedbroadband fre-
quency response, resulting in a natural sound with ba high intelligibility (Figs. 7 and 8).
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Fig. 7. Microphone MEMS ADMP504 Fig. 8. Functional microphone MEMS ADMP504
block diagram

4.1 Data Acquisition

The response of the microphones used in this project was evaluated. The array of sensors
must have an isotropic behavior.

For the analysis we performed a ULA arrangement that complies with the Nyquist
theorem, where the sampling frequency is greater than or equal to twice the maximum
component of signal frequency and thus avoid aliasing (overlap) frequently. The over-
lap occurs when the separation between the microphones is not correct, causing the
microphones to be unable to differentiate the incoming signals from different directions.

Based on the Nyquist criterion, 4 microphones were used equidistant between them
by 0.1 m. in front of a source that casts AWGN signals that by its mathematical char-
acteristics its spectrum covers all frequencies spaced to 1 m. relative to the microphone
array and 90 to a microphone to which we will nominate M4, as shown in Fig. 9.

rx

M4
0.1 m

M3 M2 M1
0.1 m 0.1 m

1m1 m

FUENTE EMISORA

Fig. 9. Microphone ULA arrangement

4.2 NI myRIO 1900 Card Technical Specifications

It has aCortex™-A9 dual core processor of real-time performance and customized I/O,
taking advantage of the default FPGAconfiguration,which they can customize according
to the projects, bymeans of their components internal data, access to transparent software
and resource library. Programable with Labview, C or adaptable.
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4.3 Construction of the MEMS Microphone Interface Circuit

The amplifier circuit for microphones is constructed as seen in Fig. 10, where the micro-
phone output signal will be connected directly to the analog MXP inputs of the NI
myRIO card.

Fig. 10. MEMS microphone circuit with Analog Input (AI)

4.4 Interface with NI Labview

Data acquisition will be done from the FPGA card. A FPGA.vi file is generated where
analog inputs are created for the 4 microphones that are connected (Fig. 11).

Fig. 11. Analogous entries for data acquisition in the FPGA

The data acquisition must be executed at 8000 Hz, which is no more than the voice
encoding process, using the Timed Loop icon that executes each loop iteration in the
period specified in this case.

Data acquired at a constant rate (125µs) will be displayed using theWaveformChart
icon, which is a numerical indicator that maintains a data history.

history length = 8000 samples/s × 40 s = 320, 000 samples (38)
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4.5 Frequency Microphone Response Interface

Frequency microphone responses are presented in Fig. 12, where the behavior of micro-
phones is seen to be different. In order to compensate for the differences between the
microphones used in their manufacture, the system identification structure is applied and
the M1 is used as a reference.

Fig. 12. Frequency microphone response for a ULA array

Because the signals were not acquired in an anechoic cabin (a room designed to
absorb all reflections produced by acoustic or electromagnetic waves on any of the
surfaces forming it (floor, ceiling and side walls), in turn, the camera is isolated from the
outside of any external noise source or sound influence) is executed the RLS algorithm
to obtain the same reference signal that is acquired by taking the white noise signal as
a signal desired and the input signal of the M1 microphone, this acquired signal is the
reference signal for M2, M3 and M4 in the system identification structure.

By offsetting the delay of the signals, which occur due to the hardware, processing
and propagation of the signal, it is seen in Fig. 13 that the response of the microphones
in frequency has changed and the behavior between them is similar. The identification
structure of the system generates the coefficients with which a transfer function is esti-
mated to perform the equalization of the channel and thus compensate for the linear
distortion caused by the channel.

NImyRIO is an embedded hardware specifically designed to develop advanced engi-
neering systems more quickly. NI myRIO has a fully programmable dual-core ARM
Cortex-A9 processor that runs a real-time OS, as well as a FPGA. The system identifica-
tion structure generates the coefficients with which a transfer function will be estimated
to perform the equalization of the channel and thus compensate for the linear distortion
caused by the channel.

The MSE is further illustrated in Fig. 14 where the two algorithms are represented
with all interactions, it can be observed how the algorithms converge reaching the
HNCLMS algorithm an average MSE of −28.8352 dB, while the HCCG algorithm
reaches an MSE lower than −33.8471 dB. Figure 14 shows the beampattern of the
HNCLMS and HCCG algorithms, according to this figure the angle obtained matches
the input signal of 90°. The two algorithms have a high resolution.
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Fig. 13. Frequency microphone compensated response for a ULA arrangement

Fig. 14. Comparison of Householder algorithms to MSE

The HCCG algorithm has a high performance and this can be corroborated when
comparing the beampattern, as can be seen in Fig. 15, in which the gain of the HCCG
algorithm is acceptable.

Fig. 15. Comparison of Householder algorithms to the beampattern for a semi-spherical array
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5 Conclusions and Recommendations

The theory of sensors arrangements shows that these sensors must have an isotropic
behavior, when performing the analysis it was found that in practical cases does not
comply; this is typical of theirmanufacture, attributed to the physical-chemical properties
of the materials used, therefore their behavior was approximated by the equalization of
the same, taking as reference Mic 1.

The execution time of the HCCG algorithm is 8 ms and the HCNLMS algorithm is
6 ms; due to the acquisition of data, processing of signals, algorithms executed in the
Matlab Math Scrip.

The NLMS and CG algorithms present a similar value in their MSE and a good
execution when performing graph analysis. However, it should be considered that the
HCNLMS algorithm has a shorter run time because its algorithm has a smaller number
of operations.

It is recommended to extend the study of the signals acquired in a suitable environ-
ment, since in the present research AWGN signals are used but these signals were not
acquired in an anechoic cabin, in this way the final result will be improved.
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