
SAEI, Simposio Argentino de Educación en Informática

Training teachers in Informatics: a central 
problem in science education

Sylvia da Rosa, Marcos Viera, and Juan Garcia-Garland

Instituto de Computación, Facultad de Ingeniería, Universidad de la República.
{darosa,mviera,jpgarcia}@fing.edu.uy

Abstract. In this paper we describe a didactic approach that seeks to 
include the stages of programming in the process of problem solving in 
mathematics and physics. Secondary education teachers were introduced 
to the strategy in a teacher training course that emphasises the impor­
tance of discrete mathematics and logic as the foundations of Computer 
Science concepts. A functional programming language -named MateFun- 
was used to explore the goals of the didactic strategy. The language 
can animate figures, a feature useful for physics learning experiences in 
the sense that visual representations of solutions to problems can be 
programmed. The didactic approach introduces programming into the 
learning experience beyond the instrumental use of technology and con­
tributes to a natural introduction of Computer Science in other subjects. 
The paper contains examples and conclusions.

1 Introduction

The introduction of Computer Science in education is generally conceived as a 
technological issue. As a result, we find educational approaches that place Com­
puter Science at the instrumental level; as a tool to be used to support learning 
in other subjects through the application of Computer Science. This approach 
to integration can result in very successful learning experiences, provided special 
care is given to planning and execution.

However, integration at the instrumental level is a limited approach that fails 
to introduce students to the foundations of Computer Science, including logic, 
discrete mathematics and the history and philosophy of Computer Science. Ac­
cording to our experience, first year University students have serious difficulties 
to understand concepts related to logic and discrete mathematics. For instance, 
they are restricted in their understanding of function to the idea of an algebraic 
formula for computing values; they hardly ever use either quantifiers carefully in 
proofs or notions of logic in calculations (i.e. boolean functions); and they treat 
induction as a recipe to solve certain problems, often involving sums of numbers.

The digital era our students face today requires certain competencies which 
can only be delivered through a more holistic integration of Computer Science 
in education.

50JAIIO - SAEI - ISSN: 2683-8958 - Página 28



SAEI, Simposio Argentino de Educación en Informática

2 S. da Rosa et al.

Informatics Europe1 analyzed several reports from 2013 to 2020 about Infor­
matics education in Europeans countries concluding that despite advances much 
needs to be done before a real solution can be achieved [10].

1 Informatics Europa is part of The Informatics for All Coalition, with ACM Europe 
Council and Council of European Professional Informatics Societies (CEPIS).

The work cited above includes a position paper from 2020 [14] where the 
authors point out that “... teaching Informatics to all, both as independent 
subject and integrated in other subjects, calls for a need to rethink in overall 
terms what to teach (both breadth and depth) and how to teach it.” They 
address the point through mainly three challenges that we summarise as follows:

— Define schools curricula in a way that respects the process of learning,
— Educate and support teachers at all levels to teach a discipline,
— Test and verify that both previous items are appropriately designed for the 

various levels of education. This aspect requires didactic investigations.

The education system in our country faces these challenges as well.
In this paper we describe a programming course aimed at teachers of mathe­

matics and physics that tries to address some of the problems mentioned in this 
introduction by proposing a didactic strategy that explores:

— how to formulate algorithmic problems
— how to design solutions (algorithms) and make efficient programs
— how to interpret physical processes as information processes that can be 

simulated on a computer

In other words, the goal is for teachers to learn the basis of Computer Science 
and experience the benefits of such learning. Learning Computer Science means 
learning how to create new technologies, rather than simply using them, and 
how to do computational science [5,12].

The programming language used in the course is part of the functional 
paradigm, in the understanding that this is a good vehicle to introduce Computer 
Science concepts related to their mathematical foundations. Moreover, mathe­
matics and physics courses in secondary education are sources of several types of 
algorithmic problems whose solutions can be easily programmed and visualised.

The sections of the paper are organised as follows: In the next section we 
present a brief description of the main features of MateFun. In Section 3 we 
introduce the main characteristics of the course and the didactic strategy, while 
in Section 4 we present some interesting math and physics exercises done by the 
teachers. Finally, we conclude with considerations for future work.

2 MateFun

Since teachers have normally no knowledge of programming we use the language 
MateFun [3], which is a programming language designed with the aim to be a 
tool to learn mathematical functions. Its syntax is very similar to mathematics, 
and its use encourages the goals of the activities.

50JAIIO - SAEI - ISSN: 2683-8958 - Página 29



SAEI, Simposio Argentino de Educación en Informática

Training teachers in Informatics: a central problem in science education 3

Fig. 1: MateFun IDE

2.1 Description

MateFun is purely functional, meaning that functions do not introduce side 
effects and they only depend on their arguments. MateFun is an interpreted 
language. To be easily approachable it is available as a web integrated develop­
ment environment (Matefun IDE2), as shown in Figure 1. The left framework is 
where the program is written and the right framework is where the expressions 
are evaluated.

2 https://fing.edu.uy/proyectos/matefun/#/en/login

Syntax and semantics of MateFun are both influenced by the seek to be 
a tool to express mathematics. The syntax is minimal and near to the usual 
mathematical notation. Semantically, it has the peculiarity of being strongly 
typed, while having no type inference. The skill to specify the domain and range 
of a function is part of the learning process when learning about functions. In 
MateFun type information must be given by users.

A MateFun script is a list of set definitions and function definitions over such 
sets. Predefined sets such as R (representing real numbers) or Z (representing 
integer numbers) are available as built-in constructs.

The user can define new sets either by comprehension or by extension just 
as usually presented in mathematics courses. In the following example we define 
the sets of natural numbers (N), non-zero real numbers (Rno0) and days of the 
week (Day).

1 set N ={xinZ|x>=0}
2 set Rno0 = { x in R | x /= 0 }
3 set Day = { Mon , Tue , Wed , Thu , Fri , Sat , Sun }

Sets such as Rno0, defined by comprehension, take a base set (R in this case) 
and refine them with a predicate. Predicates can be composed using relational 
operators and conjunctions of predicates.

Functions are defined giving a signature and a proper definition. For instance, 
one could define the inverse function over the -nonzero- real numbers:

50JAIIO - SAEI - ISSN: 2683-8958 - Página 30

https://fing.edu.uy/proyectos/matefun/%2523/en/login


SAEI, Simposio Argentino de Educación en Informática

4 S. da Rosa et al.

4 f :: Rno0 -> R 
s f (x) = 1/x

MateFun supports some of the usual idioms used to define functions in math­
ematics. For instance, piecewise functions can be defined. The following MateFun 
definition specifies the absolute value function over the real numbers:

6 abs :: R -> R
7 abs (x) = x if x >= 0
8 or -x

This program resembles the definition 
given by:

in the usual mathematical notation

abs : R —> R

abs(x) = {x

—x
if x > 0 
otherwise

Piecewise function definitions are the standard way to define functions in high 
school mathematics. For this reason, MateFun supports neither pattern matching 
nor conditional expressions, avoiding extra constructs in the language.

To emphasise that not all functions are numeric, MateFun allows to define 
non-numeric sets (eg. Day) and functions between those sets, such as nextDay:

9 nextDay : : Day -> Day
10 nextDay (d) = Tue if d == Mon
11 or Wed if d == Tue
12 or Thu if d == We d
13 or Fri if d == Thu
14 or Sat if d == Fri
1s or Sun if d == Sat
16 or Mon

Functions with multiple variables can be defined using n-tuples (the gener­
alization of cartesian products). For example, the following function computes 
the area of a triangle, given its base and height:

17 areaTria :: R X R -> R
18 areaTria (b, altura) = (base * altura) / 2

We can also define sequences of elements of a given set; usually called lists in 
programming. For instance, the sequence set N* (sequence of naturals) is defined 
inductively as:

— [], the empty sequence
— n:ns, a sequence composed by an element n belonging to N and a sequence 

ns belonging to N*.

There exist some primitive functions to operate with sequences: first(s) re­
turns the first element of the sequence s, rest(s) returns the sequence s without 
its first element, and range(n,m,k) returns a sequence of numbers (n, n + k,n + 

50JAIIO - SAEI - ISSN: 2683-8958 - Página 31



SAEI, Simposio Argentino de Educación en Informática

Training teachers in Informatics: a central problem in science education 5

2k,...) from n to m with step k. With range, combined with a function to sum 
the elements of a sequence, we can for instance easily implement the summatory 

n 

E *.
i=m

19 summatory :: N X N -> N
20 summatory (m, n) = sum (range (m , n, 1))
21

22 sum :: R* -> R
23 sum (xs) = 0 if xs == []
24 or first(xs) + sum (rest (xs))

Notice the use of recursion in the implementation of sum.
The language includes the sets Figure and Color, and a set of primitive 

functions to create and transform figures. For example, the following function 
returns a red-colored circle of a given radius, centered in the (0, 0) point of a 
Cartesian plane.

25 redCirc :: R -> Fig
26 redCirc (r) = color(circ(r), Red)

Animations are sequences of figures. The following function takes a figure 
and a number n of steps, and returns an animation in which the figure is moved 
n times one step to the right in the x-axis:

27 moveRight : : Fig X Z -> Fig*
28 moveRight (f, n) = [] if n == 0
29 or f : moveRight(move(f,(1,0)),n-1)

3 Main features of the course

The course is developed using the Moodle platform, during three months in 
which some video conferences instances3 take place. The participants work in 
groups and they are assisted through the forums. In the first part of the course 
(approximately 6 weeks) they solve exercises to practice and learn the language 
MateFun. To assess the degree of learning achieved with the exercises, teachers 
must submit an assignment. In the rest of the course, the teachers have to design 
a didactic sequence of activities and carry them out with their students. These 
activities are evaluated as final work.

3 Because of covid 19, normally these are face to face instances.

One of the main characteristics of the course is that teachers' knowledge and 
opinions are taken into account, in the sense that course teachers (university 
researchers) provide tools and general guidelines, and the participants design the 
didactic instances of the final work, as well as the modalities of work with their 
students. In this way, an attempt is made to promote a collaborative learning 
community where knowledge is co-produced, rather than imposing ideas.

50JAIIO - SAEI - ISSN: 2683-8958 - Página 32



SAEI, Simposio Argentino de Educación en Informática

6 S. da Rosa et al.

The general guidelines seek to facilitate the learning of mathematical con­
cepts that are the foundation of Computer Science. We understand that pro­
gramming a solution to a problem reveals aspects of the resolution process that 
are otherwise unconscious. At the same time, the fact that the problem is firstly 
mathematically solved, encourages the acquisition of good programming prac­
tices and discourages the idea that to program is “just making programs work”.

3.1 The didactic strategy

In order to specify the approach used to build the teacher training course, we will 
outline the main features of the didactic strategy: First; we ground the approach 
on the definition of algorithmic problem as written by [8]:

An algorithmic problem consists of:

1. a characterisation of a legal, possibly infinite, collection of potential input 
sets, and

2. a specification of the desired outputs as a function of the inputs

The function by which the input data is converted into the required result is the 
algorithm that solves the problem. In other words, an algorithm is a solution to 
an algorithmic problem.

Hence, the problem-solving process begins with the interpretation of the 
statement in terms of input-output as a first approximation towards thinking 
computationally.

Programming in MateFun requires teachers to rigorously state the problem, 
including the signature of functions (input and output). This is particularly 
important when considering how secondary education teachers will often state 
problems forgetting details that are taken for granted (for instance domain and 
co-domain of functions). Indeed, using a programming language will develop 
skills in rigorous problem formulation through practices such as handling the 
computer, finding symbols on the keyboard, the syntax, etc.

Second; we pay special attention to the design of solutions (algorithms) and 
efficient programming. The starting point here is the teachers' own solutions 
to the stated problem. From these we introduce basic notions of algorithmic 
complexity and program correctness, and discuss how more efficient solutions 
can be obtained. We illustrate this point in the next section with the definition 
of firstM2 function, introduced from firstM as given by the teacher. Once the 
teacher has arrived at multiple solutions, we introduce the principle of structural 
induction and demonstrate how it can be used to prove that the definitions are 
equivalent, as shown in 4. More examples can be found in [16].

The third and final feature of our didactic strategy is its broad applicability. 
While we initially sought to produce a didactic practice which brings program­
ming into Mathematics lessons, we have gradually developed an approach which 
can be used in other disciplines. In the examples we present in the next section, 
we includes a physics exercise which illustrates this point 4.3. Furthermore, we 
can see the benefits of introducing similar approaches in other sciences as well.

50JAIIO - SAEI - ISSN: 2683-8958 - Página 33



SAEI, Simposio Argentino de Educación en Informática

Training teachers in Informatics: a central problem in science education 7

Following the vision of P. Denning and M. Tedre and their review of how compu­
tational thinking became central to the sciences, we seek to bring the experiences 
and practices of computational science to science education and teaching more 
broadly [5].

4 Selected exercises

In this section we present some examples of exercises that mathematics and 
physics teachers did with their students in the classroom. The posed problems 
are mostly taken from their courses so they know how to solve them and they 
learn how to implement the algorithms in MateFun. The topics that teachers 
choose vary according to the level of their groups (from 1st. to 6th. of secondary 
education). They have to take also account of the program of the school year. 
Popular topics are divisibility, lineal and quadratic equations, statistic, succes­
sions, analytic geometry, among others. Physics teachers take advantage of Mate­
Fun facilities to create graphics, figures and animations to illustrate concepts of 
their subject.

4.1 Successions

One of the topics where the mathematics teachers found that programming helps 
students' understanding is related with successions. As example we include the 
following exercise:
Given the succession below:

an : N R

1 if n = 1
((n — 1)/n) * an-1 otherwise

1. write a MateFun function to obtain any term.
2. write a MateFun function that given a value m, returns a sequence with the 

first m terms of the succession.
3. write a MateFun function that given a value m calculates the sum of the first 

m terms of the succession.

Below are some of the solutions that teachers worked with the students in 
the classroom.

30 {-Part 1: any term of the succession -}
31 anyTerm N -> R
32 anyTerm (n ) = 1 if n == 1
33 or (( n- 1) / n) * anyTerm(n-1)
34

3s {- Part 2: sequence of the first m terms of the
succession -}

36 firstM N -> R*

50JAIIO - SAEI - ISSN: 2683-8958 - Página 34



SAEI, Simposio Argentino de Educación en Informática

8 S. da Rosa et al.

37 firstM (m) = [] if m == 0
38 or anyTerm( m) : firstM(m-1)
39

40 {- Part 3: s um of the first m terms of the succession
-}

41 sumFirstM : : N -> R
42 sumFirstM ( m) = sum( firstM( m ))

For part 2 we introduce firstM2, a solution that merges the construction of 
the sequence with the formula to construct a term. Although more efficient, this 
solution sacrifices clarity in the definition with respect to firstM.

43

44 {- A more
-}

efficient definition of the function of part 2

45 firstM2 N -> R*
46 firstM2 (m ) = [] if m == 0
47 or addTerm(m,firstM2(m-1) )
48

49 addTerm N X R* -> R*
50 addTerm (n , rs ) = 1: rs if n == 1
51 or ((n-1) / n) * first(rs) rs

This is an interesting new computational dilemma for teachers, that illus­
trates the second point of our strategy.

This kind of exercises help the students in constructing the concept of suc­
cession as a function from N to any set; R in the case of the example. The third 
part of the exercise is also solved with the formula below, which is traditionally 
presented to students.

m

y^^a-í = m * (ai + «m)/2
i=1

Students are encouraged to implement it in MateFun and with teacher's help 
they arrive to:

53 sumFirstM' :: N -> R
54 sumFirstM' (m) = m * (anyTerm(1) + anyTerm(m)) / 2

Since both definitions (sumFirstM and sumFirstM') reveal two methods of 
calculating the sum of terms in a succession, in our course teachers are asked to 
prove that these are equivalent. The following property is stated:

Property 1. V n G N, sumFirstM(n) = sumFirstM'(n).

The property is proved using the principle of structural induction:

1. Base case: prove property for n = 1
2. Inductive case: V n > 1, if sumFirstM(n) = sumFirstM'(n) then sumFirstM(n+1) 

= sumFirstM'(n+1)
3. If 1) and 2) then Property holds.

50JAIIO - SAEI - ISSN: 2683-8958 - Página 35



SAEI, Simposio Argentino de Educación en Informática

Training teachers in Informatics: a central problem in science education 9

Base case:

sumFirstM(1)
= sum(FirstM(1))
= sum(anyTerm(1) : [])
= sum(1 : [])
= first(1 : []) + sum(rest(1 : []))
= 1 + sum([])

= 1 + 0
= 1 * (1 + 1)/2

= 1 * (anyTerm(1) + anyTerm(1))/2 

= sumFirstMz(1)

{ def. sumFirstM } 

{ def. FirstM } 

{ def. anyTerm }

{ def. sum } 

{ def. (first, rest) }

{ def. sum } 

{ arith } 
{ def. anyTerm } 

{ def. anyTerm' }

For space reasons the proof of the inductive case is not included4. Observe 
that in the language used to prove such properties every step has to be well 
founded, stating a rigorous equational reasoning. Through these exercises, the 
relationship between mathematics and Computer Science comes out in an easily 
understandable way. Even more, teachers could introduce their students in the 
topic of inductive proof in cases they consider adequate.

4 It remains as an exercise for the reader.

4.2 Advanced examples

The teachers usually work with GeoGebra [9] that is an interactive geometry, 
algebra, statistics and calculus application, intended for learning and teaching 
mathematics and science from primary school to university level. They find a 
challenge in solving exercises that they have previously solved with GeoGebra. It 
is worth saying that some teachers give a great importance to the possibility of 
solving exercises and drawing the solution as they do with GeoGebra. We point 
out that a programming language like MateFun allows to construct the math­
ematical solution as an object - the program - putting into practice from more 
basic notions to advanced concepts. Even more, the program can be executed 
and we can see our solutions in action. The example below illustrates the case.

Given a function f it is possible to compute an approximation of the definite 
integral

f(x)dx

using the rectangle method (or Riemann sum). The method consists of partition­
ing the interval [a, b] in n equidistant sub-intervals [xi, xi+1] where i G {0 ... n} 
xi = a + i (. For each sub-interval a point x* is chosen. A rectangle of 
width and height f (x*) is an aproximation of J'X''' f (x)dx and the sum of
rectangles approximates the full integral, improving with a bigger n.

50JAIIO - SAEI - ISSN: 2683-8958 - Página 36



SAEI, Simposio Argentino de Educación en Informática

10 S. da Rosa et al.

Taking the leftmost point at each interval (left Riemann sum) the approxi­
mation is given by the expression:

n

^3/(a + (i — 1) * w) * w
i=1

where w = n

Given, for example, the function /(x) = the problem is solved in MateFun
in the following way.

1 f :: R -> R
2 f (x) = 0.1 * x * 2
3

4 integral_f :: R X R X N -> R
s integral_f (a, b, n) = summatory_f (1, n, a, (b - a) / n)

where summatory_f is a function computing recursively the sum of the areas of 
the n — i +1 rightmost rectangles, implemented as:

6 summatory_f : : N X N X R X R -> R
7 summatory_f ( i , n, a, w)
8 = 0 if i >n
9 or f(a + (i-1) * w) * w + summatory_f(i+1, n, a, w)

Another version, with a more compositional style, using the function sum can 
be implemented. First, compute the sequence of areas:

10 areas : : R X R X R -> R*
11 areas (a,n,w) = [] if n == 0
12 or f(a) * w : areas(a+w, n-1, w)

And then apply the known function sum.

13 integral :: R X R X N -> R
14 integral (a ,b ,n) = sum(areas(a, n, (b-a)/n))

It is possible to plot a representation of the rectangles used to approximate 
the area. The result for twenty rectangles in the interval 0-10 is showed in Fig­
ure 2.

This is accomplished by the following functions:

1s

16 drawArea :: R X R X R -> Fig
17 drawArea (a, b, n) = joinFigs(rectangles(a, n, (b-a)/n))
18

19 rectangles :: R X R X R -> Fig*
20 rectangles (a, n, w)
21 = [] if n == 0
22 or rectBase(a,w,abs(f(a+w/2))) : rectangles(a+w,n-1,w)
23

24 rectBase :: R X R X R -> Fig
2s rectBase (i, b, h) = move(rect(b, h), (i, h/2) )

50JAIIO - SAEI - ISSN: 2683-8958 - Página 37



SAEI, Simposio Argentino de Educación en Informática

11

Through this example the power of MateFun can be appreciated with clarity: 
not only it makes possible to implement the solution of the problem using a 
syntax similar to mathematics, but also the visual representation of the solution 
can be programmed by the student. In other words, MateFun allows to program 
the graphic representations in contrast to other tools in which these are provided 
to the user.

4.3 Two dimensional kinematics

As an example of a physics application we present how an animation of two­
dimensional projectile kinematics can be implemented.

In MateFun, animations are sequences of figures. When a value of type Fig* 
is evaluated the animation is displayed to the user. The goal in this particular 
exercise is to compute a sequence of figures showing the position of the projectile 
for uniformly increasing values of time t.

Let us consider an object thrown from the position (0,yo) with an initial 
speed of magnitude vo with an angle a from to the x axis; i.e. the initial speed 
vector is (vo,a) in polar coordinates, or (vo cos a,vo sin a) in euclidean coordi­
nates. The unit of measure for distance is the meter, for angles is the degree.

To compute the position of the projectile the motion is decomposed among 
the horizontal and vertical components. In the horizontal component the speed 
is constant. Given the parameters a and vo and a time t relative from the launch 
time, the position can be computed by the following formula:

1 posX :: R X RPos X RPos -> R
2 posX (alpha,v0,t) = v0 * cos(alpha) * t

Vertically, the motion is constantly accelerated thanks to the gravitational 
acceleration g. Currently, users can define functions and sets in the MateFun 
Language, but not constants. To define a constant the unit set “()” -a set with 
an unique member denoted by “()”- comes handy:

50JAIIO - SAEI - ISSN: 2683-8958 - Página 38



SAEI, Simposio Argentino de Educación en Informática

12 S. da Rosa et al.

3 g :: () -> R
4 g () = 9.8

Given the parameters a, v0, y0 and t we can compute the vertical position 
relative to the initial coordinate:

5 posY : : R X RPos X RPos X RPos -> R
6 posY (alpha, v0 , y0, t)
7 = y0 + v0 * sin(alpha) * t - g() * t“2 / 2

Finally the sample of images representing the projectile motion can be com­
puted. Given the initial angle a, an initial speed v0, a start time t (usually 0), 
the height y0 of where the projectile is launched, and a positive number dt indi­
cating the period (the time between frames); the projectile function computes 
the animation:

8 projectile :: R X RPos X RPos X RPos X RPos -> Fig*
9 projectile (alpha, v0, t, y0, dt)

10 = [] if y < 0
11 or move ( circ (0.5) ,(x,y))
12 : projectile (alpha , v0 , t + dt , y0 , dt)
13 where x = posX(alpha, v0 , t)
14 y = posY (alpha, v0 , y0 , t)

The object is represented as a circle. The animation ends when the object 
reaches the ground (given by the line y = 0). In Figure 3 we present a represen­
tation of the result of calling projectile(45,10,0,10,0.1)); while we cannot 
embed animations in this document, since an animation is a list of figures, we 
used the function joinFigs to generate a “trail” with the full movement of the 
projectile. We presented the example in two dimensions for simplicity, but note 
that this exercise can be extended to a three-dimensional space similarly.

From the didactic point of view, we can see in Figure 3 that at the beginning 
of the fall the circles look very close and as the projectile falls, at the same time 
intervals, their positions are increasingly separated. This clearly illustrates the 
effect of acceleration on the trajectory of the projectile. Through examples like 
this, teachers can develop two of the main competencies to do computational 
science, that is, modelling and simulating natural phenomena.

5 Conclusions and further work

The conclusions that can be drawn go in two directions, on the one hand, the 
course is an adequate approximation to provide students with basic programming 
knowledge. Although Computer Science should be included in secondary educa­
tion as an academic discipline taught by Computer Science teachers, the difficul­
ties still presented lead us to reaffirm what has been argued elsewhere about the 
role of science and mathematics teachers might have in this task [2,4,6,7,13].

On the other hand, our approach agrees with the ideas of Peter Denning 
and Matti Tedre set forth in [5]. Especially in Chapter 7, where the authors

50JAIIO - SAEI - ISSN: 2683-8958 - Página 39



SAEI, Simposio Argentino de Educación en Informática

13Training teachers in Informatics: a central problem in science education

describe the close relationship between Computer Science, natural science and 
engineering, they write:

Computation has proved so productive for advancement of science and 
for engineering that virtually every field of science and engineering has 
developed a “computational” branch.

Our contribution is to begin to build that relationship from the early stages of 
education.

Finally, it is worth saying that from a didactic point of view MateFun has 
shown to be a really helpful tool for understanding the process of solving prob­
lems, without adding technical complications as is often pointed out about other 
tools. Features like a type system providing a way of defining functions includ­
ing the signature (a lack of many languages, for example python!); the error 
messages (usually a difficulty to teachers and students) and the possibility of 
programming visual representations of formulas (through graphics and anima­
tions), make it easier for teachers to introduce the stages of programming and 
motivates the student. This is a twofold benefit: teachers recognise the impact of 
programming in learning science and mathematics, and at the same time basic 
programming knowledge becomes accessible to a great number of students.

Teaching functional programming and mathematics together is not a new 
idea, on the contrary, several authors since many years ago have used diverse 
languages to implement their purposes, notably [11, 17]. To strengthening the 
link between mathematics and computer science both in university level studies 
as in secondary schools has been also a concern of computing teachers [1,15]. One 
of our goals is to create an interdisciplinary community of computing researchers, 
science teachers and students of STEM disciplines (Science, Technology, Engi­
neering and Mathematics). Developing tools according to educational practices 
of our teachers and students -as MateFun- is a factor that stimulates the in­
terchange of ideas and facilitates the mutual comprehension of viewpoints and 
difficulties.

The future work is mainly oriented along two lines. First, MateFun is still in 
development and the activities with teachers and students provide key contribu­
tions to detect weaknesses and introduce improvements. Second, the activities 
carried out have to be compiled to obtain sufficient material and experience. We 
aspire to extend the approach to include teachers of other sciences, such as chem­
istry and biology, in order to strengthen the integration of science, mathematics 
and programming as part of teacher training.

Acknowledgment. We acknowledge Manuela Cabezas for assistance in editing 
the manuscript.

References

1. Baldwin, D., Walker, H.M., Henderson, P.B.: The Role of Mathematics in Com­
puter Science. ACM Inroads Volume 4 Issue 4 pp. 74-80 (2013)

50JAIIO - SAEI - ISSN: 2683-8958 - Página 40



SAEI, Simposio Argentino de Educación en Informática

14 S. da Rosa et al.

2. Bradshaw, P., Woollard, J.: Computing at School: An Emergent Community of 
Practice for a Re-Emergent Subject. In: International Conference on ICT in Edu­
cation (2012)

3. Carboni, A., Koleszar, V., Tejera, G., Viera, M., Wagner, J.: Matefun: Functional 
programming and math with adolescents. In: Conferencia Latinoamericana de In- 
formatica (CLEI 2018) - SIESC (2018)

4. CSTA K12 Computer Science Standards. http://www.csteachers.org/?page= 
CSTA_Standards (2011)

5. Denning, P., Tedre, M.: Computational Thinking. Cambridge, MA : The MIT Press 
(2019)

6. Dowek, G.: Quelle informatique enseigner au lycée? Bulletin de l'APMEP, nr. 480 
(2005)

7. Dowek, G.: L'enseignement de l'informatique en France, Il est urgent de 
ne plus attendre. https://www.academie-sciences.fr/pdf/rapport/rads_0513. 
pdf (2013), rapport de l'Académie des Sciences

8. Harel, D., Feldman, Y.: AlgorithmicsThe Spirit of Computing. Addison-Wesley. 
An imprint of Pearson Education Limited (2004)

9. Hohenwarter, M., Jones, K.: Ways of linking geometry and algebra, the case of ge- 
ogebra. Proceedings of the British Society for Research into Learning Mathematics 
27(3), 126-131 (November 2007)

10. Informatics Europe, Informatics Education in Europe: Are We All In The 
Same Boat? https://www.informatics-europe.org/component/phocadownload/ 
category/10-reports.html?download=60:cece-report

11. O'Donnell, J., Hall, C., Page, R.: Discrete Mathematics Using a Computer, Second 
Edition. Springer-Verlag London Limited 2006, ISBN-10: 1-84628-241-1 (2006)

12. Papert, S.: Mindstorms - children, computers and powerful ideas. Basic Books, 
Inc., Publishers / New York (1980)

13. Peyton Jones, S.: Bringing Computer Science Back into Schools: Lessons from the 
UK. SIGCSE'13 (2013)

14. Informatics for All: Educating People for the Digital Age.
https://www.informaticsforall.org/wp-content/uploads/2020/07/ 
Informatics-for-All-position-paper.pdf

15. da Rosa, S.: Designing Algorithms in High School Mathematics. Lecture Notes in 
Computer Science, vol. 3294, Springer-Verlag (2004)

16. da Rosa, S., Viera, M., Garcia-Garland, J.: A case of teaching practice founded on 
a theoretical model. Lecture Notes in Computer Science 12518 from proceedings 
of the International Conference on Informatics in School: Situation, Evaluation, 
Problems pp. 146-157 (2020)

17. VanDrunen, T.: Functional programming as a discrete mathematics topic. ACM 
Inroads Volume 8 Issue 2 (2017)

50JAIIO - SAEI - ISSN: 2683-8958 - Página 41

http://www.csteachers.org/?page=CSTA_Standards
http://www.csteachers.org/?page=CSTA_Standards
https://www.academie-sciences.fr/pdf/rapport/rads_0513.pdf
https://www.academie-sciences.fr/pdf/rapport/rads_0513.pdf
https://www.informatics-europe.org/component/phocadownload/category/10-reports.html?download=60:cece-report
https://www.informatics-europe.org/component/phocadownload/category/10-reports.html?download=60:cece-report
https://www.informaticsforall.org/wp-content/uploads/2020/07/Informatics-for-All-position-paper.pdf
https://www.informaticsforall.org/wp-content/uploads/2020/07/Informatics-for-All-position-paper.pdf

