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Abstract The two-dimensional Blume–Capel model with free surfaces where a surface field
H1 acts and the “crystal field” (controlling the density of the vacancies) takes a value Ds

different from the value D in the bulk, is studied by Monte Carlo methods. Using a recently
developed finite size scaling method that studies thin films in a L × M geometry with
antisymmetric surface fields (HL = −H1) and keeps a generalized aspect ratio c = L2/M
constant, surface phase diagrams are computed for several typical choices of the parameters.
It is shown that both second order and first order wetting transitions occur, separated by
tricritical wetting behavior. The special role of vacancies near the surface is investigated in
detail.

Keywords Tricritical wetting · Blume–Capel model · Anisotropic finite-size scaling ·
Monte Carlo simulations

1 Introduction

In recent years the development of nanoscience has led to new techniques to produce special
patterns of nanostructured surface layers and devices in the nanoscopic size range [1,2], where
surface and interfacial effects, such as wetting phenomena [3–11] may play an important role,
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Two-Dimensional Blume–Capel Model 437

and hence have become a subject of intense research of statistical physics. While for the two-
dimensional Ising model with nearest neighbor exchange J and a free surface at which
a boundary field H1 acts an exact solution [4,12–14] is available and has provided very
valuable insight, no exact solutions are available for extensions such as wetting transitions in
the Blume–Capel model [15,16] and then the use of Monte Carlo simulation methods [17,18]
is appropriate [19]. This extension is of interest, since depending on the choice of parameters
(exchange constant J and “crystal field” D that controls the density of vacancies in this
model) its order-disorder transition may be of first or second order, and a bulk tricritical point
[20] occurs. Applying an extension [19] of finite size scaling methods [21] that is appropriate
for the anisotropic critical phenomena associated with continuous wetting transitions, the
wetting phase diagram near the tricritical point in the bulk has been studied [19].

In the present work, we extend this study by allowing for the possibility that the “crystal
field” in the surface layer differs from the bulk, Ds �= D. Such a choice is very natural phys-
ically, since surface sites of the square lattice no longer experience the full lattice symmetry.
We show that then the possibility of first order wetting transitions and wetting tricritical
points [5,6,8] arises. Note that mean field theory of wetting with short range surface forces
[5–8,22,23] shows that both first order and second order wetting transitions may result. Of
course, in d = 2 dimensions Ginzburg–Landau type [22,23] theories are very unreliable [24],
due to their neglect of statistical fluctuations; but the tricritical wetting behavior in d = 2
beyond mean field was only occasionally considered [25].

The outline of the present paper is as follows: in Sect. 2 we introduce the model, briefly
summarize the theoretical background and the simulation methodology. Section 3 gives our
numerical results, while Sect. 4 summarizes our conclusions.

2 Model; Theoretical Background; and Simulation Methodology

2.1 The Blume–Capel Model in Thin Film Geometry with Free Surfaces and Competing
Surface Fields

As is well-known, the Blume–Capel model [15,16] is a lattice model where spins Si reside
on lattice sites i and may take three states, Si = 0 and Si = ±1. In the bulk, the Hamiltonian
is

H = −J
∑

〈i, j〉
Si S j + D

∑

i

(Si )
2, (1)

where we assume a ferromagnetic exchange J > 0, the summation 〈i, j〉 runs over all pairs
of nearest neighbors on the square lattice once, and the “crystal field” D controls the average
density of the vacancies (i.e., sites with Si = 0). For D → −∞ vacancies are suppressed,
and the model reduces to the exactly solved Ising model [26]. In the absence of magnetic
fields and with a constant crystal field D, which leads to a homogeneous distribution of
nonmagnetic impurities, the two-dimensional Blume Capel model exhibits a nontrivial bulk
phase diagram with a tricritical point [27]. For the square lattice, this tricritical point occurs
at Dt/J = 1.965 and kB Tt/J = 0.609 [27,28]. For D > Dt the transition at Tcb(D) is of
first order, while for D < Dt the transition becomes of second order.

For studying phase transitions in the bulk, one needs to consider the limit where the system
is infinite in both lattice directions. However, when one wishes to study wetting transitions,
the proper geometry is a “semi-infinite” system (Fig. 1), i.e. we have a free surface at the
first row (extending in x−direction) that is located at y = 1 and is labeled by the index
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438 E. V. Albano, K. Binder

Fig. 1 Sketch of the geometry of the model and its state at a temperature T slightly below the temperature
Tw(H1) where in the thermodynamic limit critical wetting transitions occur. The irregular line indicates
a configuration of the fluctuating interface, separating a domain of the spin pointing up phase (above the
interface, indicated by the double arrow pointing upwards) from a domain of spin down phase (double arrow
pointing downwards). For T ≤ Tw(H1) the interface still is (weakly) bound to one of the walls (which are
shown shaded); without loss of generality we have assumed a state where the interface is bound to the lower
wall, so in this state the magnetization m of the L × M strip is positive. Along the x−direction, periodic
boundary conditions are used, while in y−direction the walls are represented by missing spins in the rows
n = 0, n = L + 1, while boundary fields −|H1| and +|H1| act at the rows n = 1 and n = L , respectively. In
addition, at both boundary rows the surface crystal field (Ds ) differs from its bulk value (D). The interfacial
fluctuations are characterized by anisotropic fluctuations, the correlation length ξ|| along the interface is much
larger than the correlation length ξ⊥ perpendicular to it. Local fluctuations of the magnetization inside the
domain are not shown

n = 1. However, systems accessible to computer simulation must be finite in all directions
[17,18]. So the linear dimension in the perpendicular x−direction is taken to be M lattice
spacings, (the lattice spacing is put to unity henceforth), and periodic boundary conditions
in x−direction are used. At this first (n = 1) boundary row a surface magnetic field H1 acts,
and the crystal field parameter Ds is assumed to differ from its bulk value D (unlike our
previous work [19]).

Now the linear dimension L in y−direction also must be finite, and the crucial question
is what boundary condition is used at the last row (n = L). In early simulations of wetting
transitions in the d = 2 and d = 3 Ising model both the lower and the upper boundary were
treated fully symmetrically [29–31]. However, this choice has the disadvantage that for any
finite value of L phase coexistence between the “spin up” and “spin down” phases no longer
occurs for zero bulk field, but at a shifted value (this effect is nothing but the well-known
capillary condensation [8,32]). This shift of “bulk” coexistence is avoided when one chooses
the boundary condition of strictly antisymmetric surface fields [33]. Thus, the Hamiltonian
becomes

H = −J
∑

〈i, j〉
Si S j+D

∑

i∈n=2,...,L−1

(Si )
2+Ds

∑

i∈n=1; i∈n=L

(Si )
2−|HL |

∑

i∈n=L

Si+|H1|
∑

i∈n=1

Si

(2)
(Fig. 1). Note that it is natural to choose the “surface crystal field” symmetric, D1 = DL ≡
Ds .
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2.2 Brief Details of the Monte Carlo Simulation Method

Monte Carlo simulations are performed by using the standard Metropolis algorithm (see e.g.
[17] for a review). Typical runs are performed over a length of 107 Monte Carlo steps per lattice
site (MCS), disregarding the first 2×106 MCS to allow the system to reach equilibrium. Note
that for systems far below bulk criticality exposed to boundary fields cluster algorithms do
not present any advantage [34]. The square lattice with a rectangular geometry of size L × M
is used in the simulations. According to the description of Fig. 1 we assumed free boundary
conditions along the M−direction (horizontal) where the surface fields are applied, while
periodic boundary conditions are taken along the perpendicular (vertical) direction. Along
the simulations we recorded the magnetization m per lattice site (N = L M), given by

m = 1

N

N∑

i=1

Si ; (3)

and we compute its thermal expectation value 〈m〉T . Furthermore, relevant moments of the
nagnetization, i.e. 〈m2〉T , 〈m4〉T , and the cumulant 〈U 〉T = 1 − 〈m4〉T /3(〈m2〉T )2, are also
evaluated.

With the statisitcal effort quoted above, the relative error of our estimates typically is of
the order of 2 % (or less ). Therefore error bars in the figures that will follow typically are
smaller than the size of the symbols, and therefore not shown. More details of the simulation
method used in this work can be found in reference [19].

2.3 Finite Size Scaling Methodology

Now in order to locate any phase transition of a model system within the framework of Monte
Carlo simulations, it is necessary to carry out an extrapolation to the thermodynamic limit
(L → ∞, M → ∞) via a finite size scaling analysis [17–19,21,35,36]. For this L × M ,
geometry, normally there are three ways considered to take the thermodynamic limit:

(i) Keeping the aspect ratio M/L of the system constant [37]. This is the appropriate
choice if one wishes to study the bulk phase transition of the model (which belongs to
the universality class of the Ising model, of course, where correlations are isotropic at
criticality [38]).

(ii) Keeping L finite and taking the limit M → ∞. However, this system is quasi-one-
dimensional and can exhibit a phase transition at T = 0 only [39–41].

(iii) Keeping the generalized aspect ratio c = L2/M constant [19]. As discussed in detail
in our previous paper [19], this is the appropriate choice to study critical wetting in
d = 2, since the correlation lengths ξ||, ξ⊥ of interfacial fluctuations (Fig. 1) are known
[4–6,25] to diverge with different critical exponents ν||, ν⊥, namely

ξ|| ∝ t−ν|| , ξ⊥ ∝ t−ν⊥ , ν|| = 2, ν⊥ = 1, (4)

where t is the reduced distance in temperature (t = T/Tw(H1) − 1) or surface field
(H1/H1c(T ) − 1) from the wetting transition, which occurs at T = Tw(H1), if T is var-
ied at constant H1, or at H1 = H1c, if H1 is varied at constant temperature T . Of course,
H1c(T ) is nothing but the inverse function of Tw(H1) in the (T, H1) plane. We have shown
[19,42] that the average absolute value of the magnetization 〈|m|〉 of the strip, as well as
〈m2〉 and the cumulant U = 1 −〈m4〉/(3〈m2〉2) exhibit a simple finite size scaling behavior,
when M is varied at constant c = L2/M , for large enough L , given by
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〈|m|〉 = f1(Lt, c), (5)

〈m2〉 = f2(Lt, c), (6)

and
U = f4(Lt, c), (7)

where f1, f2 and f4 are scaling functions, respectively. From Eqs. 5–7 it follows that when
one considers any of these quantities as function of t , one obtains for t = 0 just constants
(which depend on c only, but no longer on L). As a consequence, by plotting 〈m〉, 〈m2〉 and
U vs. t and several choices of L (or M , which is equivalent since using L = √

Mc one can
always substitute M for L), these curves must intersect at t = 0; yielding an “intersection
method” to locate where the critical wetting transition occurs. It is worth to recall that the
method works for physical observables that are increasing (decreasing) functions of the
sample size for t < 0 (t > 0), or viceversa, in the neighborhood of the critical point, as
e.g. the quantities given by Eqs. (5)–(7). This method of finite size scaling analysis has
also been used successfully for a slightly different model, where instead of boundary fields
a fixed spin boundary condition was used [43], as well as for the case of inhomogenoeus
short-range surface fields [44]. The intersection method gives rather accurate critical points
for modest lattice sizes, as it follows e.g. by comparing exact results derived by Abraham
[12] for the critical wetting of the Ising model (Eq. (2) with D = −∞) with simulation
results [19,42]. Based on this observation and the fact that the aim of the manuscript is to
provide a general overview of the critical and tricritical wetting of the Blume–Capel model
in a four dimensional space of parameters, rather than to determine accurate locations of
critical points, we have made no attempts in order to either introduce scaling corrections to
Eqs. (5)–(7) or to perform extrapolations to the limit of large lattice sizes.

2.4 Ground State Surface Phase Diagram

At zero temperature, a semi-infinite (L → ∞) Blume–Capel model where at the free surface
(the row n = 1 in Eq. 2) the surface field H1 and the surface crystal field Ds acts, may be in
three different surface phases. Without loss of generality, but for D/J < 2, we assume that
the bulk of the system is in the state with spins Si = −1. So the surface phases are:

(i) The surface is nonwet (and ordered). Having assumed that in the bulk the magnetization
is negative the layer magnetization (mn = −1 for large layer index n), in the ground
state then actually mn = −1 for all n, including the layer n = 1.

(ii) The surface is wet (and ordered). Then m1 = +1 although mn = −1 in the bulk. Since
in the ground state there is a single straight interface in the system, separating � rows
of up spins oriented parallel to the free surface from the rows of down spins that extend
into the bulk, there is a degeneracy with respect to �: for the model of Eq. 2, all choices
� = 1, 2, 3, . . . are energetically degenerate. Of course, at nonzero temperature entropy
requires � → ∞ in the wet state, in order to avoid any constraint on the interfacial
fluctuations. However, at T = 0 the surface excess energy of the wet state of the surface
can be computed from the simple case � = 1, a single row of up spins is separated by an
interface (that involves an energy cost of 2J per spin) from the domain of the down spins.

(iii) The surface is nonwet and disordered, all spins in the layer n = 1 take the value Si = 0,
so H1 has no effect. In this case there is no degeneracy, the interface must be between
layer 1 (where m1 = 〈Si 〉i∈n=1 = 0 and layer 2 (where m2 = −1, like in all layers n
with n ≥ 2). This “nonwet disordered state” of the surface has previously been identified
as a “prewetting” ground state by Fytas and Selke [43] in studies of the wetting behav-
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ior of the Blume–Capel model where, instead of considering antisymmetric boundary
fields, spins pointing up and down are fixed at opposite walls where a reduced coupling
constant (α) is assumed. Under these assumptions and for D/J ≥ 2 − α [43] there is
also a single line of spins Si = 0 at the surface layer. On the other hand, the prewetting
of a single layer of zero spins included between a microscopic interface of +/− spins
has also been discussed by Hryniv et al. [45] in a study of the surface tension of the
Blume–Capel model at low temperatures (see also reference [46].)

Note that in the groundstate of the model there cannot be any vacancies (for D < 2J since
at D = 2J the transition in the bulk occurs) in any interior row. While the surface field H1

can create a domain of up spins that is � rows thick (with � arbitrarily large) separated from
the bulk phase where in the groundstate all spins Si = −1, the surface crystal field Ds can
only stabilize a single row (n = 1) that has Si = 0, it can not induce a “wetting-like” layer
of multiple rows with Si = 0 at T = 0. Thus, there is a qualitative difference between the
effects that the surface field H1 and surface crystal field Ds can cause.

We now establish the ground state phase diagram to clarify where the three surface states
described above are stable. Noting from Eq. 1 that in the bulk the energy per spin is Ub

= −2J + D, we find by a “bond-counting” argument easily the surface excess energies of
the three surface states nonwet and ordered (i), which we will denote by the index “nwo”,
wet (ii), and nonwet and disordered (iii), denoted as “nwd”:

U nwo
s = 1

2
J + H1 + Ds − D, (8)

Uwet
s = 5

2
J − H1 + Ds − D, (9)

and

U nwd
s = 5

2
J − D. (10)

The total surface excess internal energies (due to both surfaces) are defined simply from the
expectation value of the total Hamiltonian per spin, subtracting the bulk energy per spin, and
multiplying by the number L of layers, for proper normalization. Eqs.(8)–(10) refer to the
surface excess energy at T = 0 due to a single surface only. Surface excess free energies are
defined analogously.

The transitions between the above discussed states then occur at fields H1c that are simply
found from equating these energies,

wet → nwo : H1c/J = 1, (11)

nwo → nwd : H1c/J = 2 − Ds/J, (12)

and
wet → nwd : H1c/J = Ds/J. (13)

These results are summarized in the groundstate phase diagram (Fig. 2). Note that we
predict that at nonzero temperature the transition nwo–nwd is always rounded. The transitions
wet–nwo and wet–nwd then join into a single transition near the special point H1c/J = 1,
Ds/J = 1, where all transition lines at T = 0 meet. Of course, at finite temperature the two
phases, nwo and nwd, which the wet state at T = 0 transforms to, are no longer distinct,
but part of the same phase, whose characteristics gradually change when the line nwo–nwd
(where only at T = 0 a transition occurs) is crossed. Therefore we predict on the basis of these
qualitative considerations, that at constant but low temperature the surface phase diagram
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Fig. 2 Surface phase diagram
corresponding to the groundstate
of a semi-infinite Blume–Capel
model in the region where the
bulk is ordered (D/J < 2) in the
plane of the variables reduced
surface field (H1/J ) versus
reduced surface crystal field
Ds/J . The surface phase
transitions are shown as full
straight lines (metastable
continuations are indicated as
broken straight lines). Three
phases occur, a wet surface, a
nonwet ordered surface (nwo)
and a nonwet disordered surface
(nwd), as explained in the text -3 -2 -1 0 1 2 3 4

Ds/J

-1

0

1

2

3

H
1
/J

Wet

Nonwet Ordered

Nonwet

Disordered

will contain a single phase boundary wet–nonwet, which is almost a horizontal straight line
with H1c/J = const < 1 as a function of Ds/J up to a value of almost Ds/J = 1, and
then the transition curve should bend over to become almost a straight line parallel to the line
given by Eq. 13.

3 Monte Carlo Results and Their Analysis

In our previous work [19] we have studied the present model for the special case Ds = D,
and have found that for the regime D/J < Dtri/J , where the phase transition in the bulk
is of second order (while at the tricritical point D/J = Dtri/J ≈ 1.965(5) the order of
the transition changes from second order to first order [20]), the wetting transition is always
continuous. For instance, for the special case D/J = 0 it was found that for the choice of
H1/J = 0.55 this critical wetting transition occurred for kB Tw(H1)/J = 1.393 ± 0.004.
We now ask what is the effect of choosing now Ds �= D in such a situation, leaving all other
parameters unchanged. As an example, Fig. 3 presents an extreme case, Ds/J = −19.65.
This is close to the Ising limit, for Ds → −∞ vacancies at the walls would be completely
suppressed. Therefore the boundary excess free energies of both walls get somewhat larger in
magnitude (the chosen field H1/J = 0.55 leads to a larger wall excess free energy, since it has
an effect at practically all lattice sites adjacent to the wall, while for Ds/J = 0 some of these
sites will be taken by vacancies, and then on these sites the surface field has no effect). Since
the location of the critical wetting transition depends on the wall excess free energy difference
f (+)
s − f (−)

s between semi-infinite systems with positive (+) and negative (−) spontaneous
magnetization (both exposed to a positive boundary field (H1/J = 0.55 in the present
example)), we expect now the transition to occur at a somewhat lower temperature: wetting
occurs, according to Young’s criterion [3–11], when f (+)

s − f (−)
s = fint (T ), where fint (T )

is the interfacial tension between bulk coexisting phases. When we increase f (+)
s − f (−)

s ,
as we do by choosing Ds strongly negative, wetting can only occur at a lower temperature,
since fint (T ) (that monotonically grows from fint (Tc) = 0 to larger values as T is lowered)
must become correspondingly larger, which happens only at a lower temperature. Indeed, the
data of Fig. 3 indicate that kB Tw(H1 = 0.55J )/J = 1.191(4), consistent with the predicted
trend. As it should be, the three sets of curves exhibit common intersection points at the same
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Fig. 3 Plots of the average absolute value of the magnetization 〈|m|〉T (a), the magnetization square 〈m2〉 (b)
and the fourth order cumulant U = 1−〈m4〉/(3〈m2〉2) (c), versus temperature. All data are for L × M lattices
in the geometry of L × M with L = 12, 24, and 36, where c = L2/M = 9/8 is kept constant, choosing
D = 0, Ds/J = −19.65. Curves connecting the simulation data (shown by symbols) are only meant as guides
to the eye

temperature, kB Tw/J = 1.191(4). As expected, the wetting transition Tw(H1) now indeed
occurs at a distinctly lower temperature.

An unexpected feature, however, is the observation that the critical values 〈|m|〉cri t ,

〈m2〉cri t , and Ucrit where these intersections occur for Ds < D are distinctly larger than their
counterparts for Ds = D (see [19]). This finding illustrates once more the important fact that
in finite size scaling there occurs much less universality than one might have expected: the
finite size scaling “invariants” f1(o, c), f2(0, c) , and f4(0, c) (Eqs. 5 –7) at the transition
not only depend on the generalized aspect ratio c, as the notation of Eqs. 5–7 suggests, but
they do also depend strongly on the details of the boundary conditions used. Different choices
of Ds/J then must be considered as different boundary conditions at criticality.

We have studied the wetting transition for this choice of Ds/J also for many other choices
of D/J . While for a range of values of D/J roughly when D/J < 1 (e.g. for H1/J = 0.55)
the behavior is qualitatively similar as in the case shown in Fig. 3, for larger values of D/J
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Fig. 4 a Temperature variation of the absolute value of the magnetization, for the case H1/J = 0.55, D/J
= 1.50, Ds/J = −19.65, and lattices of size 24 × 512 and 36 × 1152, respectively. Initial conditions
were either putting all spins pointing up (data points denoted by circles) or putting spins pointing up in rows
from 1 to L/2 − 1, pointing down in rows from L/2 + 1 to L , but Si = 0 if i is in row L/2 (triangles and
squares). b Dependence of tha absolute value of the magnetization on the surface field (H1/J ), obtained for
kB T/J = 0.60 by using lattices of size 18 × 288 and 24 × 512, and two choices of the surface crystal field,
as indicated

an unexpected and qualitatively different behavior occurs, namely discontinuous wetting
transitions. An example for a wetting transition that is strongly of first order is shown in
Fig. 4a. Obviously the data are not very sensitive to the chosen initial condition, so there
is little hysteresis, and one can locate the transition rather precisely (Tw(H1)/J ≈ 0.585
in Fig. 4). Furthermore, the absence of strong finite size effects is also observed. On the
other hand, first order wetting transitions can also be obtained by scanning different set of
parameters, as e.g. in plots of 〈|m|〉T versus the surface field (cf. Fig. 4b), see also below the
phase diagram shown in Fig. 10b).

Note that the rather large value of 〈|m|〉T in the wet phase (characterized by a fluctuating
interface in the center of the strip, see Fig. 5) imply that in the wet phase huge capillary-wave
type fluctuations of the delocalized interface in the center of the strip occur. Due to our choice
of elongated systems with constant aspect ratio (L2/M = 9/8) this situation of complete
wetting is a kind of critical state, and thus we do not find that 〈|m|〉T tends to zero with
increasing L in this region.

The snapshot configurations of Fig. 5 show the abrupt change in the composition of the
system due to a tiny variation of the temperature, as expected for first order transitions
(compare Fig. 5a, b). Also, the enrichment of vacancies at the interface already reported for
critical wetting [19,43] is observed here for complete wetting. In a recent paper Fytas and
Selke [43] have provided evidence on the critical behavior of the interfacial adsorption of
vacancies, which follows from a careful study of the temperature derivative of the excess
density of vacancies caused by the presence of the wetting interface. Of course, it would be
worthwhile to analyze the possible onset of criticality upon interfacial adsorption in the case
of complete wetting reported in this paper, however this task requires a huge computational
effort [43], so that it is beyond the aim of the present paper that was aimed to explore the
occurrence of tricritical wetting in a four dimensional space of parameters of the Blume
Capel model.
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Fig. 5 Typical snapshot
configurations of the
Blume–Capel model in d = 2
dimensions for conditions near a
first order wetting transition
obtained for a system size of
L = 24 and M = 512. The
surface field H1/J = 0.55 acts
always on the right boundary of
the strip and while
−|H1|/J = −0.55 acts at the left
boundary of the strip. D/J = 1.5
and Ds/J = −19.65 are chosen.
Spins pointing up are shown in
blue (dark-grey when the figure is
displayed in black/white tones),
spins pointing down in white, and
spins Si = 0 in red color (gray
when the figure is displayed in
black/white tones), respectively.
Three temperatures are shown,
kB T/J = 0.579 (left), 0.591
(middle), and 0.603 (right). Note
that vacancies occur in both “spin
up” and “spin down” phases in
the bulk, and are strongly
enriched at the fluctuating,
meandering interface, while they
are completely expelled from the
surface (Color figure online)

Figure 6 shows then the location of these wetting transitions in relation to the bulk phase
diagram, and to the line of critical wetting transitions that occur for Ds = D (taken from
[19]). Interestingly, the present model where vacancies are expelled from the boundaries
(Fig. 5) exhibits a case of two-dimensional tricritical wetting. To our knowledge, this is the
first time that a specific model with this behavior is discussed; of course, from the general
renormalization group theory of wetting in d = 2 dimensions the possibility of tricritical
wetting has already been pointed out [25], and the tricritical exponents were proposed. While
for Ds = D the wetting transition stays second order until the line Tw(H1)/J hits the bulk
first order phase boundary Tcb(D)/J where it then ends, for at least sufficiently negative
values of Ds as shown in Fig. 6 a different behavior occurs. However, a systematic variation
of Ds and D to clarify when tricritical wetting transitions first appear is beyond the scope of
the present paper.

The fact that reducing the vacancy concentration near the boundaries is enough to turn
at low temperatures the wetting transition from second order to first order certainly is unex-
pected: a naive expectation would be the argument that removing vacancies from the bound-
aries just “renormalizes” the boundary field H1 to a larger value (since at sites taken by
vacancies, occurring for Ds = D also at the boundaries, the boundary field has no effect).
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Fig. 6 Wetting phase transitions in the plane of variables D/J and kB T/J , for the particular choice H1/J
= 0.55 and two choices of the surface crystal field, namely Ds = D (open triangles) and Ds/J = −19.65 (full
triangles, critical wetting, and diamonds, first order wetting). First order wetting points are evaluated by using
lattices of size L = 24, and M = 512. Second order wetting points are evaluated by using the intersection
method described in Sect. 2.3 with lattices of size L = 12, 24, and 36, by keeping c = L2/M = 9/8
constant. The full circles (connected by broken lines) show the bulk second order transition of the Blume–
Capel model, while the squares show the bulk first order part of this transition line. Here, the bulk tricritical
point at kB T tri

b /J � 0.609, Dtri /J � 1.965 is highlighted by a diamond. Note that the wetting transition
line for Ds/J = −19.65 exhibits a wetting tricritical point (highlighted by an open square)

Thus it is of interest to study the effect of the lack of vacancies in the boundary rows in more
detail when one changes D/J at fixed H1/J and Ds/J , comparing profiles of the magneti-
zation and density of vacancies across the film, when one moves (in the wet phase where the
interface is centered in the middle of the strip) from the regime where second order transitions
occur (Fig. 7a, b). One can see that in the second order case the magnetization profiles show
an almost linear variation across the strip, while in the first order case (Fig. 7c, d) a pro-
nounced S-shape occurs; while in the second order-case the vacancy distribution (distinctly
nonzero vacancy densities are only found in the rows n = 2 to n = L − 1, while in the rows
1, L where the surface crystal field acts the vacancy density is essentially zero) shows only a
small dependence on D. In the range where first order transition occurs vacancies are much
more localized in the middle of the strip, reflecting the interfacial enrichment of vacancies
also seen in the snapshot (Fig. 5).

For completeness, we briefly discuss the behavior when Ds/J is positive and sufficiently
large. Already from the analysis of the groundstate of the model, Fig. 2, one has to expect
that no wetting transition can occur, and this expectation is confirmed by the simulations.
Figure 8a and b give typical examples of the behavior of the profiles of magnetization and
vacancy density when the temperature is scanned through the transition point of the bulk,
respectively. Irrespective of temperature, the rows n = 1 and n = L for large D/J are
exclusively taken by vacancies, and hence have zero magnetization. Effectively, we have a
strip of linear dimension L − 2 across the system, neither the value of H1/J nor the precise
value of Ds/J matter. The rows n = 2, n = L − 1 behave similarly as in a system with
free surfaces and no surface field and no surface crystal field. Hence the magnetization in
these rows is reduced in comparison with the bulk, and the density of vacancies is enhanced.
Since the data shown in Fig. 8a are taken close to the bulk critical point at all temperatures
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Fig. 7 Profiles of the
magnetization (a) and density of
vacancies (b) for the case of
critical wetting with |H1|/J
= 0.55, Ds/J = −19.65,
L = 24, M = 512, and the three
choices of the bulk crystal field
and the temperature, namely
D/J = 0.25 (kB T/J = 1.14),
0.50 (kB T/J = 1.05), and 0.75
(kB T/J = 0.96), respectively. c
and d same as a and b, but for the
case of first order wetting with
L = 36, M = 1152, and
D/J = 1.5 (kB T/J = 0.585),
1.25 (kB T/J = 0.731), and 1.0
(kB T/J = 0.859)
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the correlation length is rather large in all cases, and hence a completely flat behavior of the
profiles is only reached deeply in the interior of the strip. Note, however, that the data of
Fig. 8a refer to a rather elongated system, L × M = 36×576. For such elongated geometries
it is well known that the system at temperatures slightly below criticality typically does not
develop a monodomain configuration, but rather several domains with opposite magnetization
separated by boundaries that are oriented perpendicular to the external wall exist. These
domains are readily recognized when one examines configuration snapnshots (not shown
here since they are very similar to the corresponding ones in the Ising model [37]). These
domain states are responsible for significant finite size effects (Fig. 8c) at temperatures
somewhat lower than the critical temperature. Nevertheless a finite size scaling analysis
of the phase transition from the ordered to the disordered phase is fairly straightforward:
critical correlations grow isotropically as the transition is approached, irrespective of system
geometry one has for the correlation length ξb ∝ |1 − T/Tcb|−ν with ν = 1 the standard
Ising model critical exponent [26]. In fact, the universality principle [38] puts the Blume–
Capel model in the same universality class as the Ising model, and also the exponent of
the spontaneous magnetization, β = 1/8 [26] (recall that 〈m〉 ∝ (1 − T/Tcb)

β in the
thermodynamic limit). Since the correlations grow isotropically, and Eq. 4 does not apply
here, the standard aspect ratio L/M (and not the generalized aspect ratio L2/M appropriate
for a study of wetting transitions in d = 2 dimensions) needs to be kept constant in the finite
size scaling “data collapsing” analysis (Fig. 8). Indeed, one finds that the data points fall on
a master curve reasonably well. Only for 〈|m|〉Lβ/ν > 1, however, is this master curve the
expected straight line on the log-log plot (necessary to recover the exponent β, as quoted
above). The rapid fall-off of the scaling function for 〈|m|〉Lβ/ν < 1 (which then stabilizes
for T = Tcb at a rather small value of about 0.15) reflects the breakup of the uniform
magnetization into a state with at least 2 domains (for (1 − T/Tcb)L1/ν ≈ 1 the typical

123



448 E. V. Albano, K. Binder

n
0

0.2

0.4

0.6

0.8

1

M
ag

ne
tiz

at
io

n 
pr

of
ile

s

k
B
T/J = 1.49

k
B
T/J = 1.61

k
B
T/J = 1.67

n
0

0.2

0.4

0.6

0.8

1

V
ac

an
cy

 d
en

si
ty

 p
ro

fi
le

s(a) (b)

(k
B
/J)|T - T

cb
| L

1/υ

10
-1

10
0

<
|m

|>
T
L

β/
υ

L = 18
L = 24
L = 36

0 12 24 36 0 12 24 36

1 101.2 1.4 1.6 1.8

k
B
T/J

0

0.2

0.4

0.6

0.8

1

<
|m

|>
T

β

(c) (d)
t < t

c

t > t
c

Fig. 8 Magnetization profiles (a) and profiles of the vacancy density (b) for a strip choosing L = 36,

M = 576, D = 0, Ds/J = 19.65, H1/J = 0.55 and three choices of the temperature kB T/J , as indicated.
c The absolute value of the average magnetization 〈|m|〉T is plotted versus the reduced temperature kB T/J
for three system sizes, L = 18, 24, and 36, choosing a constant aspect ratio L/M = 1/16. d Presents a
standard finite size scaling [21,35–37] plot of the data on the left side, i.e. 〈|m|〉T Lβ/ν is plotted versus
(kB |T − Tcb|/J )L1/ν , using d = 2 Ising model critical exponents (β = 1/8, ν = 1 [26]). The only adjusted
value is the critical temperature kB Tcb/J = 1.695(5) corresponding to the order disorder transition of the
Blume Capel model in the bulk for D = 0. A straight line with exponent β = 1/8 is also included to show
the consistency of the data

number of domains for L/M = 1/16 actually is 4); due to the periodic boundary condition
in the x−direction along the free boundaries, only domain states with an even number of
domains can occur. The situation depicted in Fig. 8 is qualitatively similar to early studies
of the Ising model with periodic boundary conditions [37] (although there the magnetization
profile across the strip is strictly constant) and to studies of capillary condensation [47,48]
(where one uses symmetric rather than antisymmetric boundary fields). We emphasize that in
the present work we use antisymmetric boundary fields also for the profiles shown in Fig. 8,
but a symmetric magnetization profile nevertheless results there because the large vacancy
density in the rows n = 1 and n = L (that is practically indistinguishable from its saturation
value, unity) means that the effects of the surface fields are effectively removed completely.

Of course, Fig. 8 shows an extreme case, where by choosing a large positive value of Ds/J
we have canceled the effect of the surface almost completely, and the magnetization profile
becomes practically strictly symmetric, m(n) = m(L + 1 − n), n = 1, 2, . . . , but when we
choose |Ds |/J not so large, the vacancy density at the walls does not take its extreme values
zero (when Ds is negative but |Ds |/J � 1) or unity (when Ds/J � 1), but rather takes
on intermediate values, and then an interesting interplay with the surface field is possible
(Fig. 9). Consider for instance a state with negative magnetization in the bulk, for conditions
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Fig. 9 a and b Magnetization
profiles across a strip of width
L = 24 rows (M = 512) for the
choice D = 0,
kB T/J = 1.393, |H1|/J = 0.2,
and several choices of Ds/J , as
indicated. c and d Same as (a–b),
but for the profiles of the vacancy
density
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where the system is in the non-wet state. For the same choice of H1/J < 0, the magnetization
in row n = 1 can be more negative (for Ds/J = −3.93 and −1.965, in the example shown
in Fig. 9a) or less negative (for Ds/J = −0.9825 and −0.4913, cf Fig. 9b) than in the bulk,
while at the other boundary of the strip (n = 24 in Fig. 9a, b), where the sign of the boundary
field is positive, the magnetization always is distinctly less negative, for the cases shown. In
the examples shown in Fig. 9a and b, the symmetry between m(n) and m(L + 1 − n) that
was present in Fig. 8a clearly is lost, as expected. Also the density profile of the vacancies no
longer exhibits an analogous symmetry strictly (Fig. 9b, c). It is clearly seen that the density
of vacancies in the boundary layers is very small for strongly negative values of Ds , and
then it is also smaller than in the bulk (for the example shown here; for Ds/J = −1.4738
and D/J = 0 the vacancy density shows some enhancement already in the rows n = 2
and n = L − 1 adjacent to the boundary rows, however). But then occurs a relatively small
range of values for Ds (still for Ds < 0) where the vacancy density increases. For the sake of
completeness we note that for a large positive value of Ds (DS = 1.965 in Fig. 9d) the density
of vacancies increases rather strongly at the surfaces but it remains constant in the bulk.

Of course, such rather rapid variation of the vacancy density at the boundary can be
considered as a rounded remnant of the sharp transition that occurs at T = 0 when the
nwo-nwd boundary is crossed (Fig. 2). Figure 10a shows the location of critical wetting
transitions in the H1 − Ds plane for the same, rather high, temperature kB T/J = 1.393
as used in Fig. 9. Also, Fig. 10b shows a similar phase diagram as in (a) but obtained at
kB T/J = 0.60. However, note that at this lower temperature one has a line of first order
wetting transitions (see also Fig. 4b) that meets a second order one in a tricritical point
close to Htri

1 /J � 0.945, Dtri
s /J � −0.2. While for sufficiently negative values of Ds the

transition value of |H1c/J | is indeed almost independent of Ds (similar to the groundstate
phase diagram, cf. Fig. 2, see also Fig. 4b), this value at a high temperature is much lower
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Fig. 10 a Phase diagram showing the localization of the critical wetting transition curve in the plane of
variables |H1|/J and Ds/J , for D = 0 along an isotherm kB T/J = 1.393 (full dots). The squares indicate
the crossover of the boundary layer from nonzero boundary magnetization to (essentially) zero magnetization,
due to large vacancy density at the boundary. b as in a but for the choice kB T/J = 0.6. Here full triangles
correspond to first order wetting transitions that meet critical wetting transitions (full circles) at a tricritical
point (TP) indicated by means of an arrow. First order wetting points are evaluated by using lattices of size
L = 24, and M = 512. Second order wetting points are evaluated by using the intersection method described
in Sect. 2.3 with lattices of size L = 12, 24, and 36, by keeping c = L2/M = 9/8 constant. Also, the effective
transition points are determined as described in Fig. 11 by using lattices of size L = 24, and M = 512. The
acronym B-O & S-D indicates a bulk ordered state with a surface disordered state

(e.g. |H1c|/J ≈ 0.37 for kB T/J = 1.393, rather than |H1c|/J = 1.0 for T = 0), but
becomes rather close to the groundstate value at lower temperatures (|H1c|/J � 0.945 for
kB T/J = 0.60). Also, while the increase of |H1c|/J at T = 0 starts discontinuously at
Ds/J = 1, at nonzero temperature the increase starts earlier, and gradually.

From the variation of the surface vacancy density with Ds we can still roughly estimate
some gradual effective “transition” into the nonwet surface disordered regime already identi-
fied as a true phase transition in the groundstate phase diagram of Fig. 2. Of course, while at
T = 0 the density of vacancies at the surface layer is unity for this regime, also identified as a
prewetting state in an early publication [43], this density decreases at non zero temperatures.
We locate these “transition” points just by determining the maximum of the fluctuations of
the surface vacancy density (σSV , cf. Fig. 11). In fact, here one observes rather broad peaks at
finite temperatures that leads to a δ−function just at T = 0. Furthermore, the location of the
peaks close to Ds/J � 1.77(2) is only slightly shifted from the exact value at T = 0, namely
Ds/J = 1.70 for H1/J = 0.3 (see Eq. 12). By using the above described procedure, we
found that in Fig. 10a the “transition” line runs almost vertically along the strip with 1.4 <

DS/J < 2.2. Only on the left hand side of this “transition” region is the magnetization in the
boundary layers significantly different from zero; while at the right hand side one essentially
has a bulk ordered state with a surface disordered state (B-O & S-D). Summing up, the transi-
tion found at T = 0 becomes rounded and shifted at higher temperatures since the boundary
row is a one-dimensional object that can no longer exhibit a sharp transition for T > 0.
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Fig. 11 Log-linear plots of the
fluctuations of the density of
vacancies at the surfaces n = 1
and n = L (σSV ) versus Ds/J ,
with L = 24, M = 512 for the
choice D = 0, |H1|/J = 0.3, and
two temperatures, as indicated.
Here, larger fluctuations are
observed for each temperature, at
the wall where the interface is
bound (recall that all data is taken
within the non wet phase). The
vertical full line placed at
Ds/J = 1.7 shows the
δ−function corresponding to the
groundstate -10 -5 0 5
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Fig. 12 Phase diagram showing the location of the wetting transition in the plane of variables H1/J and
kB T/J for fixed surface and bulk crystal fields Ds/J = −19.65 and D/J = 1.5, respectively. Full squares and
circles identify first- and second-order wetting transitions, while the tricritical point close to Htri

1 /J � 0.225,

kB T tri /J � 0.925 is shown by means of a star. First order wetting points are evaluated by using lattices
of size L = 24, and M = 512. Second order wetting points are evaluated by using the intersection method
described in Sect. 2.3 with lattices of size L = 12, 24, and 36, by keeping c = L2/M = 9/8 constant

After inspection of Fig. 10a and b it follows that for Ds < 0 there should be a line of
tricritical surface fields almost independent of Ds that could be located just by scanning a
suitable temperature interval. As an example to illustrate that scenery, Fig. 12 shows that a
plot of the dependence of H1c on temperature, for D/J = 1.5, exhibits a line of first order
wetting transitions that meets a second order line at the tricritical point Htri

1 /J � 0.225,
kB T tri/J � 0.925.

It also is of interest to study the location of the wetting transition kB Tw(H1)/J at a
fixed value of |H1|/J in the plane of variables kB T/J and Ds/J (Fig. 13). We see that
for D/J = 1.5 (Fig. 13a) and negative values of Ds the wetting transition is of first order,
and Tw(H1) is almost independent of Ds . However, near Ds/J = 1 the wetting transition
becomes of second order and the wetting temperature starts to rise. So, a tricritical point is

123



452 E. V. Albano, K. Binder

Fig. 13 Phase diagram showing
the location of the wetting
transition in the plane of variables
kB T/J and Ds/J for fixed
surface field; |H1|/J = 0.55, for
D/J = 1.5 (a) and D/J = 0 (b).
Triangles show the location of
the order disorder transition in
the bulk, which is independent of
Ds , of course
(kB Tcb/J = 1.153(D/J = 1.5)

and kB Tcb/J = 1.695(D = 0),
respectively). Full squares and
circles identify first- and
second-order wetting transitions.
In (a) the location of the tricritical
point (TP) is shown by means of
an arrow, while in (b) all wetting
transitions are of 2nd order
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reached close to kB T tri/J � 0.59 and Dtri
s /J � 0.94. Then the transition temperature rises

further with increasing values of Ds , until near Ds/J ≈ 4 where the critical temperature of the
Blume Capel model in the bulk is reached (kB Tcb(D/J = 1.5)/J = 1.153). Subsequently,
one observes a standard order-disorder transition, as discussed in the context of Fig. 8. On
the other hand, for D/J = 0 (Fig. 13b) all wetting transitions are of 2nd order and the bulk
order-disorder transition occurs at kB Tcb/J = 1.695.

Finally, it is of interest to consider the approach of the wetting transition field H1c(T )

as the temperature approaches the bulk transition Tcb (Fig. 14). In our previous work [19]
this problem was already considered for the case Ds = D, and it was shown that H1c(T ) ∝
(Tcb(D) − T )	1 , where the exponent 	1 = 1/2. When we vary Ds at constant D, Tcb(D)

does not change, and hence we expect a family of curves which all merge on the abscissa in
the same point, and this is in fact what we see (Fig. 14). From the universality principle we
furthermore expect that also the exponent 	1 is independent of Ds , so it is only the amplitude
prefactor in the quoted power law that can depend on Ds . The inset of Fig. 14 shows that
our data are indeed compatible with this expectation, although the data are not taken close
enough to Tcb(D) to make this point really convincing.

123



Two-Dimensional Blume–Capel Model 453

Fig. 14 Critical field H1c(T )/J
where the wetting transition in the
Blume–Capel model occurs, for
D = 0 and three choices of Ds as
indicated, plotted as a function of
temperature kB T/J . Inset shows
the same data replotted versus
(kB Tcb/J − kB T/J )1/2
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4 Conclusions

In this paper, we have studied the surface effects (in particular, wetting phenomena) in a
generic model exhibiting both second order and first order transitions between ordered and
disordered phases in the bulk, namely the Blume–Capel model on the square lattice. Due
to the reduced symmetry of lattice sites in the boundary rows, we have assumed that the
Hamiltonian contains two types of surface perturbations, namely both a surface magnetic
field H1, and a surface crystal field Ds different from the bulk. The surface field H1 (at zero
bulk magnetic field, for the phase with magnetization direction opposite to H1) drives the
wetting transition. It is found that for Ds different from the bulk crystal field D both first
and second order wetting transitions occur, and hence tricritical wetting transitions can be
located, while for Ds = D only critical wetting occurs (as long as D is chosen such that one
has a second order transition in the bulk).

While at zero temperature a further surface transition in the nonwet state occurs when
Ds is varied, namely the boundary row undergoes a transition from ferromagnetic order (the
“nwo”-state in Fig. 2) to a disordered state (“nwd”), at finite temperatures the only remainder
of this transition is a large fluctuation in the vacancy density (Fig. 11). This “rounding” of the
transition is expected, of course, since the boundary row of a two-dimensional system is a one-
dimensional system, which cannot exhibit a sharp phase transition at nonzero temperature.
Of course, it will be interesting to consider the generalization of the present model for d = 3
dimensions, where finite temperature transitions in the boundary phase no longer can be
generally excluded a priori; however, such a study is left for future work.

A plausible expectation on the action of changing Ds on the wetting transition is that it
“renormalizes” the strength of the surface magnetic field (that has no effect on sites taken
by vacancies of course) and hence it could only cause a shift of the wetting transition but
not change its order. However, our results clearly show that such a naive idea about “coarse-
graining” our model is not true, and a physical interpretation why the order of the wetting
transition should change when vacancies in the boundary layers are suppressed is lacking.

We also note that the crucial ingredient for our study was the availability of a clearcut and
useful finite size scaling framework for wetting phenomena (Fig. 1, Eqs. 3–6) as has been
developed by us recently [19]. However, since the critical slowing down due to very slow
interfacial fluctuations still is a problem for the accuracy of our data, no attempt to study the
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tricritical wetting exponents could be made. In fact, developing numerical transfer-matrix
type methods could be a powerful alternative for this problem. Thus, we hope that our study
will stimulate corresponding complementary work.
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