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A B S T R A C T

We have recently introduced a new method of searching a time series for periodic variability.

The method uses the Shannon entropy to measure the amount of information provided by a set

of observations that may contain an underlying periodic signal, as a function of the assumed

period of this hypothetical periodic signal. Here we present the analytical arguments that

support this algorithm within the broader frame of information theory. We also show that, in

the absence of a periodic signal, the entropies follow a Gaussian distribution, which then

provides an easy way of assessing the signi®cance of a positive detection. We test this method

using simulated data with non-sinusoidal variability, and we show that it is more sensitive than

the classical periodograms or those variations adapted to deal with cases where harmonics are

involved. Finally, we show that this method is capable of resolving two, almost identical,

frequencies present in a given time series, even in cases where the classical periodograms fail

to do so.
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1 I N T R O D U C T I O N

The methods used to search for periodicity in astronomical time

series may be divided into two groups: Fourier techniques and

phase-diagram analyses. The ®rst group includes the classical

Fourier transform, and its variations introduced to deal with

unevenly sampled data (Lomb 1976; Scargle 1982; Ferraz-Mello

1981). The second one is based on the analysis of the dispersion of

the light curve, observed data folded over a trial period as a function

of phase, for a set of trial periods (Jurkevic 1971; Stellingwerf 1978;

Marraco & Muzzio 1980). Although intuitively simple, the methods

based on the analysis of the phase diagram have not been studied

analytically, and rely on numerical results.

In general, each method has certain advantages and disadvan-

tages in its application, and one has to decide which one is more

appropriate to the type of data available. For instance, while Fourier

analysis is faster and extremely ef®cient, it is much less sensitive to

non-sinusoidal functions than the phase-diagram analysis. Also,

phase-diagram methods are less affected by randomly occurring

gaps in the data, provided that the coverage of the light curve is

reasonably uniform in phase.

In a previous paper, Cincotta, MeÂndez & NuÂnÄez (1995, hereafter

CMN95) introduced a new algorithm based on the analysis of the

entropy of the light curve. It relies on the concept that, from the set

of all possible light curves, that which is folded using the correct

period is the most ordered and therefore the one that contains more

information about the signal. As the entropy measures the lack of

information about a system (the light curve in this case), the entropy

will be minimum when the trial period is equal to the actual period

of the time series.

In a broad sense, this algorithm belongs to the second of the

above-mentioned groups. However, unlike all the other algorithms

based on the analysis of the phase diagram, the entropy method rests

on an analytical theory.

In this paper we show how our technique is contained within the

broader frame of information theory and we use the methods of this

discipline to prove its validity. We also work out here the statistical

properties of the entropy of a signal consisting only of white noise,

and we use these properties to derive a procedure to test any time

series against the null hypothesis that it contains no periodicity. We

include an example of a simulated signal to study its sensitivity in
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comparison to other techniques. Finally, we also study the resolving

power of the entropy for a time series consisting of two periodic

functions with almost identical frequencies, and compare these

results to those obtained using Fourier analysis (for further com-

parisons with other methods see CMN95).

2 A N A LY T I C A L A S P E C T S

2.1 De®nitions

Let us consider a real function u, continuous, bounded and

T-periodic, de®ned on the interval �t0; tf�, where we assume that

jtf ÿ t0j=T q 1. Because u is bounded we can normalize it to the

unit interval. From now on we will call u the normalized function,

and A the two-dimensional space where it is contained (A �

�t0; tf� ´ �0; 1�). As u is T-periodic, we can write u��t ÿ t0�=T�, and

consider u de®ned in the unit interval: u�f�, where f � �t ÿ t0�=T

(mod 1), which allows us to consider the time as an angular variable.

The points �f; h � u�f�� are coordinates on a cylinder C, which is

equivalent to the unit square with opposite sides f � 0; 1 identi®ed.

When f changes by one unit, the curve repeats itself. This happens

m times, m � 0; 1; :::; NT where NT � ��tf ÿ t0�=T� and �. . .� is the

integer function.

Let �t; z� be a point of A. We can construct a multivalued map

from A to C in the following way:

Fp�t; z� � �Fp�t�; z�; �1�

where

Fp�t� �
t ÿ t0

p
mod 1: �2�

Here, p is a positive real number such that jtf ÿ t0j=p q 1. As we can

readily see from equations (1) and (2), the ®rst component of Fp,

F�1�
p , is some phase J, and the second one, F�2�

p , is the identity, h � z.

In the case of a curve in A, like the time series u, we have z � u�t�

and we look for Fp t; u�t�� �, the image of the curve in C. The ®rst

component of the map is given by equation (2), F�1�
p t; u�t�� � � J,

while the second component is

F�2�
p t; u�t�� � � hp � gp�J� � u �J � n�p

ÿ �
; �3�

where n � 0; 1; :::; Np � ��tf ÿ t0�=p� and Np < �NT �T=p��. The

number n increases by one unit each time the trial phase,

J � Fp�t�, increases by 1, while the number m increases by one

unit each time the true phase, f � FT �t�, increases by 1. This map

has a very simple interpretation. For instance, if p < T (similar

considerations apply when p > T), we see from equation (2) that the

true phase and the trial phase are related by J � �T=p�f. Then two

points separated by Df # 1 are separated in the J-axis by �T =p�Df.

Therefore, the map stretches the interval Df � 1 by a factor T =p > 1

without changing the ordinates. However, since the phase is taken

mod 1, the points in the �J; h� plane do not follow a single curve like

in the �f; h� plane.

If we consider the time series set U � f�t; z�: z � u�t�g, we can

say that Fp maps U into the set Gp � f�J; hp�; hp � gp�J�g; i.e.

Fp�U� � Gp. The latter is usually called the (normalized) light

curve for the trial period p.

2.2 Entropy

The function u has been assumed to be T-periodic, so one expects

all sets Gp for which p < T to be more ordered than the rest. This

degree of order can be measured by the Shannon entropy (for a

theoretical background see e.g. Shannon & Weaver 1949; Katz

1967; Wehrl 1978).

Let us take the function Z, de®ned in the unit interval, given by

Z�x� � ÿx ln x; 0 < x # 1; Z�0� � 0: �4�

Let a � fai; i � 1; :::; qg be a partition on C, that is, q disjoint two-

dimensional boxes covering the whole unit square. If we are

considering a discrete series then Gp � f�Ji; hpi
�, hpi

� gp�Ji�,

i � 1; :::; Ng. Therefore one can de®ne on C a probability density

rp�x� as

rp�x� �
1

N

XN

i�1

d�x ÿ xpi
�; �5�

where xpi
� �Ji; hpi

� is a point of Gp, and d is the delta function,

from which it follows that
�

C rp�x� d2x � 1, where d2x � dJ dh.

The probability for each box ai, mp�ai�, is then

mp�ai� �

�
ai

rp�x� d2x; �6�

and the entropy, for the partition a and trial period p, is de®ned as

Sp�a� �
Xq

i�1

Z�mp�ai�� � ÿ
Xq

i�1

mp�ai� ln mp�ai� $ 0: �7�

For a given partition, the entropy is a bounded quantity:

0 # Sp # ln q, where q is, as before, the number of elements of

the partition. The entropy is zero when mp�ai� � 1 for some i and

mp�aj� � 0, for all j Þ i (all data points fall in the same element of

the partition), and it is maximum when mp�ai� � m � constant, for

all i. From the normalization condition:
P

i mp�ai� � 1, and there-

fore m � 1=q. In this case all the data points are uniformly dis-

tributed over the unit square. In what follows Sp denotes the

normalized entropy (i.e., divided by ln q) for the partition a.

In CMN95 we found numerical evidence that the normalized

entropy is constant (,1) for almost all values of p, is minimum for

p < T and has local minima for some rational multiples of T . In

order to justify these numerical results, let us consider the map Fp

introduced in Section 2.1. As we showed, the map shifts points with

the same true phase by an amount T=p while the ordinate remains

®xed. Then, for p=T rational the light curve closes itself after some

n, while for p=T irrational the curve does not close, and for large

n �Np; NT q 1�, it covers the whole unit square. Therefore, when

p=T is irrational the map will be dense on C.

In every case, the values of J are distributed uniformly over the

unit interval, while the h values are distributed according to the

function u. Indeed for each n, the probability that h lies within the

interval �h; h � dh� is dP�h� � dh=g0
p�g

ÿ1
p �h��, where g0

p ; dgp=dJ

and gÿ1
p is the inverse of gp (de®ned in a domain where it exists). If u

is a smooth function, since it is continuous, bounded and periodic,

there are values of h for which g0
p � 0. In these points the

probability density diverges, but the integrated probability is

®nite. But, since dh � g0
p�J�dJ, in those phase intervals where

g0
p < 0, h< constant. Then, in the neighbourhood of a critical point,

the probability for h is larger than in the rest of the unit interval.

However one can prove that in the case of a dense light curve, that is

for p an irrational multiple of T , even though the data points do not

uniformly ®ll the unit square, one can always choose a partition (in

h) such that the entropy is arbitrarily close to its maximum value.

Thus, for any time series of period T , and for irrational p=T , the

entropy is Sp < 1.

On the other hand, for p=T rational, i.e. p=T � r=s, r and s

co-prime numbers, we showed above that Fp is not dense on C:

the light curve closes itself when n � s. Nevertheless, for s large

the map is similar to that for the irrational case. Indeed, for large s

the light curve ®lls almost the whole unit square, and can be
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considered dense for all practical purposes. For a given partition,

and for s small, there are empty and non-empty boxes. The

probability of occupation of the non-empty boxes is determined

by the shape of the function u (see Section 2.3). However, because

the distribution is not dense on C, Sp is always less than its

maximum value (Smax � 1), since the empty boxes do not con-

tribute to the sum (7). This qualitative result shows that the entropy

takes smaller values for certain rational multiples of p=T (in fact,

those for which s p Np). In the next section we show this in a

quantitative manner.

2.3 Minima of the entropy

In this section we shall estimate the amplitude of the minima. Let us

consider ®rst the case of p � T .

Let h � g�f� be a smooth light curve, that is for all f its

derivative is bounded: jg0
j < H, where H is some positive real

number. Let a be the partition

falk � Dfl ´ Dhk : fl � l=L; hk � k=Kg;

with l � 0; :::; L; k � 0; :::; K and L; K $ 2. Let us consider an

element of the partition, alk, that is crossed by the curve. For this

element it holds that flÿ1 # f < fl and hkÿ1 # g�f� < hk. Let L be

large enough so that in each Dfl the inverse of g exists, except in

those domains where g0
� 0. To calculate the entropy, we must ®rst

calculate the probability m�alk�, for that element. From equations (5)

and (6) it is not dif®cult to show that m�alk� � jDflkj, where

jDflkj � jflk ÿ fl�kÿ1�j is the distance between the phases at hk

and hkÿ1: flk � gÿ1
�hk� for g locally de®ned in a domain that

includes �flÿ1;fl�. There are two possibilities: (i) If the curve does

not cover all the phase interval in alk, i.e. if jDflkj < jDflj, we may

write jDflkj < jDhkj=jg
0
lj where g0

l Þ 0 is the mean derivative of g

within Dfl. This means that jg0
lj > L=K. (ii) If the curve occupies the

whole phase interval of the element alk, then jDflkj $ jDflj,

jg0
lj # L=K, and m�alk� < jDflj. Clearly, in any case, if g0

l � 0,

m�alk� � jDflj. Since by assumption jg0
j < H we can choose the

partition such that L=K , H, and then m�alk� < jDflj � 1=L, i.e.

constant for every element occupied by the curve. Then the entropy

reduces to S < ln L= ln�KL�, with the derivative constraint L=K , H.

In general, K $ 2 so L $ 2H, and in order to satisfy the derivative

constraint (L=K , H), one may be forced to choose a relatively large

value of L. But for real time series, noisy and with a ®nite number of

data points, large values of L (and/or K) produce a large amount of

statistical noise; then relatively low values of L and K are desirable.

[Indeed, counting ¯uctuations are the dominant effective noise. For

example, when the light curve is dense, the ¯uctuations are of the

order of 1=
���
l

p
, where l � N=�KL� (see Section 3, equation 9). So, to

avoid large ¯uctuations in the maximum value of the entropy, which

may hide the periodicity, we require that l q 1]. Therefore, in

practical applications the usual situation is that L and K satisfy the

derivative constraint only for some of the elements of the partition,

and the previous result, m�alk� � 1=L, represents an upper bound for

the actual value of the probability. In order to give a quantitative

estimate of the amplitude of the minimum for real (smooth) time

series and L; K both not too large, we may assume that all the non-

empty elements of the partition have nearly the same probability,

but m�alk� # 1=L. This is based on the previous result, and on the fact

that in any real time series the observed values of h have errors that

lead to a broad distribution of data within each box occupied by the

light curve. Hence, we may approximate the probabilities by

m�ai� < 1=q0; i � 1; :::; q0, where q0 (L & q0 < q) is the number of

non-empty elements of the partition, and the entropy is simply

S < ln q0= ln q (similar results can be obtained in the case of a

narrow pulse, i.e. non-smooth light curve). The exact value of the

entropy at the minimum strongly depends on the shape of the light

curve. However, in general q0 $ L, and so Smin $ ln L= ln�LK�. For

example, in the case of a square wave Smin < ln�L � 2K ÿ 4�=

ln�LK�, while for a narrow pulse Smin < ln�L � K ÿ 1�= ln�LK�.

From the previous analysis it also follows that when the data are

evenly spaced in time and when p takes the value of the sampling

period, the corresponding light curve is ordered. In this case the

entropy has a minimum with an expected amplitude ln�2K�= ln�LK�.

Now let us consider the case where p is a rational multiple of T ,

i.e. p=T � r=s. As we have already mentioned, the curve repeats

itself when n � s. If we consider that the former assumption of

equal probabilities is still valid in this case, then the minimum

number of non-empty boxes, q0, occurs for s � 1, i.e. for p an

integer multiple of the true period. The same is true for r: q0 is

minimum for r � 1. In general, if r; s > 1, q0 increases by a factor

,r; s compared to the case where r; s � 1. Then, for large r; s:

q0 < q and S < 1. Hence we conclude that the absolute minimum of

Sp occurs for p � T.

3 S TAT I S T I C A L A N A LY S I S

For the evaluation of the detection signi®cance one needs the

probability distribution of the entropy for a non-periodic signal.

From the results of the previous section, this is equivalent to

calculating the probability distribution of the entropies of a periodic

signal at irrational multiples of the period (as long as the noise in the

data is uncorrelated).

Let ni be the number of data points falling within the element

ai; i � 1; :::; q, then S may be written as

S �
N ln N � S

N ln q
; S �

Xq

i�1

si �8�

where, as usual, N is the total number of data points and

si � ÿni ln ni. If N is large, then ni will follow a Poisson distribution

(ni ; n):

Pl�n� �
ln

n!
eÿl; �9�

where l � N=q is the mean number of data points per element of the

partition. For l q 1, the distribution will be strongly peaked at

n < l, and we can restrict our analysis to n � l�1 � y�, with y p 1

(in what follows we assume n to be a real variable). Then, up to ®rst

order in y, s �;si� reduces to

s < ÿl ln l ÿ l�1 � ln l�y: �10�

In order to get information about the distribution of s, we ®rst

compute the distribution for y. For simplicity, we write equation (9)

as

Pl�n� � ewl�n� �11�

where wl�n� � ÿl � n ln l ÿ ln n!. Using Stirling's formula

[ln n! < ln
������
2p

p
� 1

2
� n

ÿ �
ln n ÿ n], replacing n � l�1 � y� and

keeping terms up to 1=l and up to second order in y, we obtain

wl�n� < ÿ ln
���������
2pl

p
ÿ

l

2
y2: �12�

Recalling that Pl�n� dn � Åf l�y� dy � fl�s� ds, where s�y� is given

by equation (10), we obtain the distribution of s, which is given by

fl�s� <
1���������

2pl
p

ln�el�
exp ÿ�s � l ln l�2=2l ln2

�el�
� �

: �13�
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Then, using the fact that hSi � qhsi, Var�S� � qVar�s�, from

equations (8) and (13) we conclude that the entropy values follow a

Gaussian distribution with the following parameters:

hSi < 1; j2 <
1

N

ln N � 1

ln q
ÿ 1

� �2

; �14�

and for large N, the dispersion of the entropy goes as , ln N=
����
N

p
.

However, it is possible to check this hypothesis using the actual

data, as long as, in the absence of a periodic signal, the noise present

in the data is white [for example, this does not apply in the case of

the red noise observed in several X-ray sources (Hasinger & van der

Klis 1989)]. In practice, a non-periodic time series can be con-

structed using the same data by, for instance, randomizing the

observed quantities. Once randomized, this new time series can be

analysed in the same way as the original one, hSi and j can be

determined empirically, and a x2 test can be performed to test the

validity of the Gaussian distribution. We show this in the next

section.

4 E X A M P L E S

4.1 Statistical signi®cance

The classical methods of searching for periodicity (phase-diagram

and power-spectrum methods) are not well sustained from the

statistical point of view, and Schwarzenberg-Czerny (1989, 1996,

hereafter SC96) showed that the detection signi®cance is reduced in

those cases. Instead, he proposed a different tool using periodic

orthogonal polynomials to ®t the data and the analysis of the

variance statistic to evaluate the ®t. The latter technique is a

generalization of the Lomb±Scargle periodogram (Lomb 1976;

Scargle 1982). SC96 showed that his method, when applied to a

non-sinusoidal signal, is more sensitive than the Lomb±Scargle

power spectrum (see SC96, ®g. 1). Therefore, a good test of the

entropy method is to compare its sensitivity for a non-sinusoidal

signal against the sensitivity of the method proposed by SC96. For

that purpose we studied the same synthetic signal (see SC96 for

more details): 1000 times observations drawn from the standard

normal distribution and a signal consisting of a narrow pulse of

height S=N and 60 cycle dÿ1 plus unit-variance Gaussian white

noise, for different values of S=N ranging from 16 to 1/8. We

analysed each time series using a partition of 5 ´ 2 elements of

the unit square. As we already explained in the previous section, to

calculate the signi®cance of a peak in the resulting periodogram we

®rst randomized and then reanalysed each time series. We binned

the entropies obtained from each randomized time series into a

histogram and ®tted it to a Gaussian distribution. In all cases the

reduced x2 of these ®ts was &1, indicating that the distribution of

the entropies of the randomized time series does not deviate

signi®cantly from a Gaussian. Now we use the results of these ®ts

to calculate the signi®cance of the known period in j units,

corrected for the estimated number of independent frequencies

(Horne & Baliunas 1986), which we show in Fig. 1 as a function of

S=N. We include in the same ®gure the con®dence level at the input

frequency obtained from the Lomb±Scargle and the analysis-of-

variance periodograms (SC96). This ®gure shows that for S=N $ 1

the entropy is more sensitive, and that the signi®cance of detection

increases more rapidly with S=N compared to the other two

methods, while for S=N < 1 all three methods are equally unable

to detect the underlying periodic signal.

4.2 Resolving power

In this section we compare the resolving power of this method to

that of the Fourier periodogram. For this purpose we simulated a set

of time series consisting of the sum of two periodic functions:

uj�t� �
X3

n�1

An sin
�2npt

Tj

� fnj

�
; j � 1; 2; �15�

plus Gaussian white noise. In all our simulations the two functions

had the same amplitudes, with the second and third harmonics

contributing 30 and 10 per cent of the fundamental, respectively.

The six phases were chosen at random: 0.773, 4.335 and 4.404 rad

for the ®rst function, and 1.47, 5.73 and 0.214 rad for the second.

We ®xed the period of the ®rst signal to 3.4 s, while the other one

was set to different values on different trials such that the frequency

difference among both functions changed from 0.000 01 to 0.02 Hz.

We use the above function to simulate an observation of 150 s,

10 000 bins of 0.015 s, which can be compared to a typical satellite

observation of a variable X-ray source. We produced three sets of

simulations with signal-to-noise ratios of 4, 8 and 16. We analysed

these simulated data using the entropy method for a 3 ´ 3 partition,

and the classical Fourier periodogram. We searched the same period

range and number of periods in both cases.

Loumos & Deeming (1978) and Kovacs (1981) showed that

Fourier techniques are able to separate two frequencies only if

Dn > 1=t (n � 1=T and t � tf ÿ t0), which for our simulations

means Dn * 0:006 Hz. From Section 2 it is not dif®cult to show

that for the entropy method Dn * 1=�tL�, which in this example

means Dn * 0:002 Hz.

In Fig. 2 we plot the Dn measured from both periodograms as a

function of the Dn used for the simulations with the Monte Carlo

error bars, and for a signal-to-noise ratio of 16. The arrow indicates

the value of 1=t. For comparison, we also included in this ®gure a

line with slope = 1.

Under similar conditions, the Fourier periodogram is able to

resolve both frequencies only when their separation is greater than
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Figure 1. Signi®cance of the detection of the input period of a simulated

signal (see text) as a function of the signal-to-noise ratio S=N. Values are

given in units of j and are corrected for the estimated number of independent

frequencies. Filled circles, open circles and squares represent the results

obtained using our method, the analysis-of-variance statistic (Schwarzen-

berg-Czerny 1996) and the Lomb±Scargle periodogram, respectively. We

include the error bars from Monte Carlo simulations. The signi®cances of

detection using our method for S=N = 4, 8 and 16 (not shown in this ®gure)

were 82:3 6 1:1 176:8 6 1:1 and 225:7 6 1:8, respectively, larger than those

obtained using the other two methods.
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,0:004 Hz, in accordance with the results of Loumos & Deeming

(1978) and Kovacs (1981), while the entropy method is still able to

resolve both frequencies when the separation is smaller.

We got similar results for the experiments with a signal-to-noise

ratio of 4 and 8. In those two cases the entropy method still

performed better than the Fourier periodogram, although the mini-

mum separation that we were able to resolve increased as the signal-

to-noise ratio decreased.

We have to add, however, that the frequencies measured with this

method, as well as their difference, were not exactly the same as

those in the original signal, and in some cases the difference was as

big as 30 per cent of the expected values. As Loumos & Deeming

(1978) showed, this is also true when Fourier analysis is used.

However, even if the measured frequencies are not equal to the real

ones, our simulations show that the method presented here can

indicate their existence while Fourier analysis cannot.

5 C O N C L U S I O N S

We have presented the framework in which our method of searching

for periodicities is contained. We proved its validity from the

analytical point of view and we have con®rmed the numerical

results found in CMN95. Moreover, we gave an easy rule to

compute the amplitude of the different minima in the periodogram

and some hints about the way in which the partition has to be chosen

to optimize the method. However, it should be clear from the

discussion in Section 2 that the concept of ordered light curve

depends strongly on the partition. It is therefore very important to

keep in mind that a good performance of this technique depends on

an appropriate selection of the partition.

For a time series of a given signal-to-noise ratio, this method is

more sensitive to the presence of a period than the more often used

Fourier power spectrum. Unlike the discrete Fourier transform, it

does not assume any shape for the underlying periodic function,

therefore making it more suitable for the study of non-sinusoidal

signals.

Furthermore, the entropy method has a very good frequency

resolution, and is able to separate two, almost identical, frequencies

even in cases where the Fourier periodogram cannot.

It has one disadvantage, already mentioned in CMN95 and in

Section 2.3, when dealing with evenly sampled data: the method is

very sensitive to the pseudo-aliasing introduced by the sampling

interval. In the classical astronomical case, the 1-d pseudo-alias

introduced by the way the data are generally taken might in some

cases be the dominant peak in the periodogram. Nevertheless, there

are ways to reduce the amplitude of the entropy at these frequencies

by an appropriate selection of the partition of the unit square.

Furthermore, as it is possible to compute its amplitude, this alias can

be easily identi®ed.
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Figure 2. Measured frequency difference of a signal consisting of two

periodic functions (see text) as a function of the difference used for the

simulations with the Monte Carlo error bars. Circles and squares represent

the results obtained using the method described here and the classical

Fourier periodogram, respectively. The arrow indicates the maximum

resolution expected for the Fourier periodogram given the length of the

time series. The line is the Dnoutput � Dninput relation. Both methods give the

same results for Dninput $ 0:006 Hz, while the Fourier periodogram cannot

resolve the two frequencies when Dninput & 0:004 Hz.
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