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f (R) Cosmology in the First Order Formalism
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In the present work we consider those theories that are obtained from a Lagrangian
density LT (R) = f (R)

√−g+LM , that depends on the curvature scalar and a matter
Lagrangian that does not depend on the connection, and apply Palatini’s method to
obtain the field equations. We start with a brief discussion of the field equations of the
theory and apply them to a cosmological model described by the FRW metric. Then,
we introduce an auxiliary metric to put the resultant equations into the form of GR with
cosmological constant and coupling constant that are curvature depending. We show
that we reproduce known results for the quadratic case. We find relations among the
present values of the cosmological parameters q0, H0, (

◦
G /G)0 and (

◦◦
G /G)0. Next we

use a simple perturbation scheme to find the departure in angular diameter distance with
respect to General Relativity. Finally, we use the observational data to estimate the order
of magnitude of what is essentially the departure of f (R) from linearity. The bound
that we find for f ′′(0) is so huge that permit almost any f (R). This is in the nature of
things: the effect of higher order terms in f (R) are strongly suppressed by power of
Planck’s time 8πG0. In order to improve these bounds more research on mathematical
aspects of these theories and experimental consequences is necessary.
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1. INTRODUCTION

The study of gravitational actions composed of the Einstein scalar curvature term
plus quadratic or higher power terms of curvature and cosmological models based
on these actions have been around for some time [1]. These actions lead to higher
order theories which appear to enjoy better renormalizability properties than
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Observatorio Astronómico, Universidad Nacional de La Plata, La Plata, Argentina.

2 Tel: +54 351 334051; Fax: +54 351 334054; E-mail: hamity@fis.uncor.edu.ar

533

0001–7701/02/0400-0533/0 c© 2002 Plenum Publishing Corporation



534 Barraco, Hamity, and Vucetich

General Relativity (GR) [2], and in modern cosmology have become standard
since the Starobinsky model with curvature squared terms lead automatically to
the desired inflationary period. More recently [3], the stability and Hamiltonian
formulation of these theories have been studied.

In general, since curvature is defined in terms of second derivatives of the
metric tensor, an action with n powers of curvature yields field equations of order
4 if n > 1 and the metric is assumed to be the only dynamical field (second-order
formalism). In fact, all the good and bad properties of higher order theories are due
to the increase in the order of the field equations. For instance, in theR+R2 theory
the Green function of the linear field equations differs from the Newtonian Green
function by a Yukawa term. Then, coupling the linearized theory to a pressurized
fluid distribution shows that the coefficients of the Yukawa potentials depend on
the pressure and the size of the distribution. This shows that Birkhoff’s theorem is
not valid in these models. Therefore the theory defined by the above Lagrangian
have, as we have just mentioned, some quantum and cosmological interesting
property but have a great trouble with the Schwarzschild solution because it is
not the one that matches to a realistic interior solution. Then, we can not say
that the classical tests of general relativity are automatically satisfied, as the early
investigators emphasized.

On the other hand, the Palatini approach (first-order formalism), of treating
the metric tensor and the connections as independent fields, can be applied to the
Hilbert Lagrangian to obtain the same field equations of GR as obtained from
the second-order formalism. The Palatini approach has also been applied to more
general Lagrangian densities with quadratic terms [1] to discuss a Friedmann
cosmological model, or a general function f (R) of the scalar curvature to study
other geometrical theories of gravitation [4], its conserved quantities [5] and
its spherically symmetric solutions [6]. One apparent conceptual advantage of
these theories is that quantum fluctuations of the metric and the connection are
independent of each other, since there are no a priori reasons to assume metric
compatibility in the strong curvature epoch, when the quantum effects may be
significant. We mention that these theories have been recently extended to include
a scalar field in the Lagrangian and a connection allowing torsion [11].

Although the f (R) theories in the first-order formalism yields a conformally
metric theory, which implies breakdown of the Einstein equivalence principle due
to breakdown of conformal symmetry, the active mass is equal to the inertial mass
[5] and the active mass of a source of the Schwarzschild solution is quite different
from the active mass of GR, for the same form of the energy-momentum tensor [6].

In our previous paper [7], we have shown that it is very difficult to test
these models in the (post)Newtonian approximation, since the departures from
Newtonian behavior are both very small and masked by other effects, since these
departures from the Newtonian behavior have to be measured when the body is
moving “through” a matter filled region.
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Cosmological phenomena, however, are a more promising as potential tests.
This is due to one of the “Dicke coincidences” [8, 9]:

ȧ2

a2 ∼ Gρ (1)

which means that the expansion of the Universe is of the same order of magnitude
as the Newtonian corrections of metric affine theories of gravitation (Cf. Ref. [7]):

VMA = VN − 2f ′′(0)(8πG)ρ (2)
We expect thus, today cosmological effects of order H 2

0 , where H0 is the Hubble
constant. (For a general discussion of the “Dicke coincidences” see Ref. [10].)

The higher powers of R in the Lagrangian may be insignificant now, but at
the time when curvature becomes significantly large, quadratic contributions, for
instance, will become important. An f (R) theory of gravitation, in the first-order
formalism, is an adequate model to include such contributions. In the present
work we consider those theories that are obtained from a Lagrangian density
LT (R) = f (R)

√−g + LM , that depends on the curvature scalar and a matter
Lagrangian that does not depend on the connection, and apply Palatini’s method
to obtain the field equations. We start with a review of the field equations in
section 2; in section 3 we apply the field equations to a cosmological model
described by the FRW metric and introduce an auxiliary metric, conformally
related to the physical metric, to put the resultant equations into the form of GR
with cosmological constant and coupling constant that are curvature depending.
We show that we reproduce the results of Shahid-Shales [1] for the quadratic
case. In section 4 we find relations between the present values of the cosmological
parameters q0, H0, (

◦
G/G)0 and (

◦◦
G/G)0 (

◦
G, means the time derivative of the time

dependent gravitational constant G). In section 5 we use a simple perturbation
scheme to find the departure in angular diameter distance with respect to General
Relativity. In section 6, we use the observational data briefly reviewed in subsection
6.1 to estimate the order of magnitude of what is essentially the departure of f (R)
from linearity. Finally, in section 7, we present our conclusions and a discussion
of the main results of the present paper.

2. REVIEW OF THE FIELD EQUATIONS

In this section we review the structure of the theory as presented elsewhere
in previous work [1, 4, 7].

Let M be a manifold with metric gab and a torsionless derivative operator
∇a , both considered as independent variables. Consider a Lagrangian density
L = f (R)

√−g + LM , where the matter Lagrangian LM does not depend on
the connection.
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Suppose we have a smooth one-parameter (λ) family of field configurations
starting from given fields gab, ∇a and ψ (the matter fields), with appropriate
boundary conditions, and denote by δgab, δ0cab, δψ the corresponding variations,
i.e., δgab = (dgabλ /dλ) |λ=0, etc. Then the field equations, if we vary with respect
to the metric, are

f ′(R)Rab − 1
2
f (R)gab = Tab. (3)

where f ′(R) = (df/dR), (δSM/δgab) ≡ −Tab√−g. The variation with respect
to the connection, recalling that this is fixed at the boundary, gives

∇c(
√−ggabf ′(R)) = 0. (4)

Now, we choose Lagrangian f (R)with f ′(R) derivable and not null for any value
of R. Then the last equation becomes

∇cgab = bcgab (5)

where,

bc = −[ln f ′(R)],c. (6)

Thus, we have a Weyl conformal geometry with a Weyl field given by (6).
The vanishing of the connection in a particular frame, for example in a

geodesic frame, however does not mean that the metric is flat there, because
from (5) ∂cgab = bcgab. Therefore the strong equivalence principle is in general
not satisfied.

From (3) we obtain

f ′(R)R − 2f (R) = T , (7)

which define R(T ), and we suppose the function f (R) is such that R(T ) would
be derivable respect to the variable T . Therefore bc is determined by T and its
derivatives except in the case f (R) = ωR2, for which Rf ′ − 2f ≡ 0, and then
we must consistently have T ≡ 0. It is important to note that bc has solution only
if T is differentiable in M; this condition on T , for the existence of solution, is
not necessary in other theories, as GR or fourth order theories.

Therefore, the field equations (3) can be written as

Gab +3(T )gab = κ(T )Tab(g), (8)

with
1
2
3(T )=[

R(T )− f (R(T ))/f ′(R(T ))
]
, (9)

κ(T )=1/f ′(R(T )), (10)

and both of them continuous. In equation (8) we have made explicit the dependency
of Tab on the metric.
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The connection solution to (5) is

0abc = Ca bc − 1
2
(δabbc + δac bb − gbcb

a), (11)

where Ca bc are the Christoffel symbols (metric connection). Then we have to
solve only equation (8).

The Riemann tensor can be defined in the usual way, and then the Ricci tensor
and scalar curvature are

Rab = R0
ab + 3

2
Dabb − 1

2
Dbba + 1

2
gabD · b + 1

2
babb − 1

2
gabb

2 (12)

R = R0 + 3D · b − 3
2
b2, (13)

whereR0
ab,R

0, andDc are the Ricci tensor, scalar curvature and covariant deriva-
tive, defined from the metric connection, respectively.

From equation (12) we obtain the skew symmetric part of the Ricci tensor in
the form

R[ab] = ∂abb − ∂bba, (14)

then equation (6) gives R(ab) = Rab. Thus, the Ricci tensor is actually symmetric
in this theory.

Because the matter action must be invariant under diffeomorphisms and the
matter fields satisfy the matter field equations, then Tab is conserved [7]

DaTab = 0. (15)

Therefore, a test particle will follow the geodesics of the metric connection. Using
(6) and (7) we have

bc = − f ′′∇cT
f ′(Rf ′′ − f ′)

. (16)

Except for the case of GR, f ′′ ≡ 0, the Weyl field is nonzero wherever the trace
of the energy-momentum tensor varies with respect to the coordinates. If T is
constant, then R is also constant, bc = 0 and (3) takes the form

Gab +3gab = κTab, (17)

where 3 and κ are two functions of R. All those cases with constant trace of the
energy-momentum tensor are equivalent to GR for a given cosmological constant.
This is the so called [12] Universality of the Einstein equations for matter with
constant T .
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3. THE COSMOLOGICAL MODEL

Consider an auxiliary metric g̃, which is conformally related to the physical
metric:

g̃ab = �2(x)gab. (18)

Then, the field equation (5) changes as

∇cg̃ab = (bc + 2(ln�)c)g̃ab. (19)

Taking into account the definition of bc, equation (6), we can choose �(T ) =
C

√| f ′ |, where the constant C is such that �(0) = 1. Then the field equation
(19) for the transformed metric is,

∇cg̃ab = 0. (20)

Therefore, the connection of our theory is the metric connection for the g̃ab metric.
Thus,Gab = G̃0

ab and the other field equation, equation (8), can be written in the
form

G̃0
ab + 3(T )

�2(T )
g̃ab = κ(T )Tab(�

−2g̃), (21)

where we have taken into account the dependence of Tab on the metric. Notice
that in (21) the coupling between matter and the metric will not be minimal, in
general. We recall that the “physical metric” is gab; thus, once we have solved for
g̃ab we have to apply the inverse of the transformation (18) to obtain gab.

Let us consider now a FRW spacetime manifold with a metric g̃ in the form:

ds̃2 = −dt2 + a2(t)

(
dr2

1 − kr2 + r2 sin2 θdφ2 + r2dθ2
)

(22)

where k = 0,±1. Then, the physical metric g is:

ds2 = − dt2

�2(t)
+ a2(t)

�2(t)

(
dr2

1 − kr2 + r2 sin2 θdφ2 + r2dθ2
)

(23)

By choosing a new time coordinate through dt ′ = �−1dt and an expansion
parameter A(t) = a(t)�−1, we obtain

ds2 = −dt ′2 + A2(t)

(
dr2

1 − kr2 + r2 sin2 θdφ2 + r2dθ2
)

(24)

Thus, we obtain also a FRW metric as the physical metric, as expected. We have to
find the field equations, for the expansion parameter A(t), in terms of the cosmic
time t ′, in order to relate their solutions to the cosmological observables (like
the Hubble constant, the deceleration parameter the age of the Universe, etc.). We
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need the derivatives dA/dt ′, d2A/dt ′2. To this end we use that d/dt ′ = �(t)d/dt ;
to simplify the notation we introduce ȧ ≡ da/dt ,

◦
A≡ dA/dt ′ and similarly for

higher derivatives. We obtain

◦
A= ȧ�− a�̇

�
(25)

◦◦
A=�ä − ȧ�̇− a�̈+ a�̇2/� (26)

In the physical spacetime the energy momentum tensor corresponds to a perfect
fluid model:

Tab(g) = ρuaub + p(gab + uaub) (27)

To obtain Tab(�−2g̃) we notice that the energy momentum tensor will be of
the form of a perfect fluid if uaub transform in the same way as the metric; i.e.
ũaũb = �2uaub. Thus, ua = �−1ũa and

Tab(�
−2g̃) = ρ̃ ũaũb + p̃ (g̃ab + ũaũb) (28)

where ρ̃ = ρ/�2 and p̃ = p/�2. The field equations (21)are:

3k
a2 + 3

ȧ2

a2 =κ(T ) ρ
�2 + 3

�2 (29)

−2
ä

a
− ȧ2

a2 − k

a2 =(κ(T )p −3)
1
�2 (30)

Using (29)we may rewrite (30) as

3
ä

a
= − 1

2�2 (κ(T )(3p + ρ)− 23) (31)

From the definition of 3 and (7) we obtain 3 = (T + f )/f ′; then (29)
becomes: (

ȧ

a

)2
= κ(T )

ρ

3 �2 + 3

3 �2 − k

a2 (32)

We are ready now to write the field equations for the physical metric in a convenient
way. First, we introduce a new function through U(R) = f ′(R). Its inverse
function is R(U), and f̃ (U) = f (R(U)). Then, using (25) and the expression
that relates � to f ′, equation (32) becomes


◦
A

A
+

◦
U

2U




2

=κ(T )ρ
3

+ 3

3
− k

A2

= ρ + 3p
6U

+ f̃ (U)

6U
− k

A2 (33)
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It is straightforward to check that for f (R) = R we obtain one of the field
equations of GR. The other equation could be the transformed of (31) or, directly,
from the Bianchi identities (15), we obtain

3
◦
A (ρ + p)+ A

◦
ρ= 0 (34)

which expresses conservation of energy. In particular if p = (γ − 1)ρ where γ is
a constant (1 ≤ γ ≤ 2)), we find

ρ = ρ0

(
A0

A(t ′)

)3 γ
H⇒ 4

3
πρ A3 γ = M (35)

where M is a constant.

4. THE COSMOLOGICAL PARAMETERS

We wish to compute the equations that relate the cosmological model to the
observational cosmological parameters q0, H0, (

◦
G/G)0 and (

◦◦
G/G)0. To this end,

let t ′0 be the present value of the cosmic time ; then, H0 = (
◦
A /A)t ′=t ′0 is the

Hubble’s constant. Since κ(T ) = f ′−1 ≡ 8 πG(t ′), with G(t ′) defined as the
time dependent gravitational constant, we have

◦
U

U
= −

◦
G

G
(36)

Since R(t ′0) ≈ 0 in the present Universe, for t ′ ≈ t ′0, we have

8 πG(t ′) = 8 πGN(1 −XR(t ′)) (37)

where we have made a Taylor series expansion, up to the linear term, using as
independent variable the curvature scalar R. We have introduced the Newtonian
gravitational constant GN = 1/(8 πf ′(0)) and X = f ′′(0)/f ′(0). In particular

G0 ≡ G(t ′0) = GN(1 −XR(t ′0)) (38)

Let us introduce the critical density ρCR = 3 H 2
0 /8 πG0, and the cosmological

parameters �0 = ρ0/ρCR , �3 = 30/3H 2
0 , and �k = k/H 2

0A
2
0. Note that our

definition of�k has the opposite sign of the usual one. Then, from (33) we obtain

1
2H0




◦
G

G




0

= 1 ∓
√
�0 +�3 −�k (39)

We may use this equation to compute �k in terms of the other observational
parameters.
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From the definition of 3, equation (9), we obtain

30 = 2
f (0)
f ′(0)

(XR(t ′0)− 1)+O(R2(t ′0)) (40)

therefore,

f (0) = − 30

8 π G0
(41)

Let us compute now (
◦
G/G)0. To this end, notice first that from (6), (16) and

(36), we obtain

(
◦
G/G)0 = − f "(t ′0)

◦
T (t

′
0)

f ′(t ′0)[R(t
′
0) f "(t ′0)− f ′(t ′0)]

(42)

From (7), we have

T (t ′0) = −2f (0)− f ′(0)R(t ′0)+O(R2(t ′0)) (43)

Let us make the further assumption that f (0)/f ′(0), a quantity that may
be related to a nonzero cosmological constant in GR, is as most of order R(t ′0);
then T (t ′0) = O(R(t ′0)). Hence, since we may consider that at present time the

matter is in the Newtonian regime, ρ(t ′0) = O(R(t ′0)); i.e.,
◦
T (t

′
0) = − ◦

ρ (t ′0) =
− 3H0ρ(t

′
0) = O(R(t ′0)). Where, to write the last relation, we have used (35).

Finally, we obtain

(
◦
G /G)0 = 8πGNX

◦
T (t

′
0)+O(R2(t ′0)) (44)

From (35), the definitions of H0 and �0, and using GN = G0 +O(R), we
obtain,

(
◦
G /G)0 = − 9XH 3

0�0 +O(R2(t ′0)) (45)

We may use this equation to express X in terms of measurable quantities.
Thus,

X = −



◦
G

G




0

1
9H 3

0 �0
(46)

From (43), we obtain

R(t ′0) = 1
f ′(0)

(
ρ0 + 430

8πG

)
(47)

Therefore, using this last equation in (38), we have
1

f ′(0)
= 1 ± √

1 − 12XH0 (4�3 +�0)
6XH0
8πG0

(4�3 +�0)
(48)
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or, since we must recover GR in the limit X → 0:
1

f ′(0)
= 8πG0 [1 − 6ξ(4�3 +�0)] +O(ξ2) (49)

where we have introduced the dimensionless parameter:

ξ = XH0 (50)

Once we know f ′(0) and X we may compute f ′′(0).
Let us compute now the deceleration parameter q0, as defined by

q0 = −



◦◦
A

◦
A

2 A




0

(51)

From equations (25), (26) and (36), we obtain


◦◦
A

A




0

= �2
(
ä

a

)
0
+ H0

2




◦
G

G




0

− (
◦◦
� �)0 (52)

Then, using the field equation (31) into (52), and taking into account that at
present time the matter may be considered in Newtonian regime, we get


◦◦
A

A




0

= 8πG0

6
(230 − ρ0)+ H0

2




◦
G

G




0

− (
◦◦
� �)0 (53)

Finally, since (
◦◦
� �)0 = −(1/2)( ◦

G /G)◦0 , we obtain

q0 = 1
2
(�0 − 2�3)− 1

2H0




◦
G

G




0

+ 1
2H 2

0







◦
G

G




2

−
◦◦
G

G




0

(54)

This last equation represents, in the present formalism, a constraint among the
observational parameters.

5. PERTURBATION THEORY TREATMENT

Both an estimation of the age of the Universe T0 and the recent measurement
of the first acoustic peak in the Cosmic Microwave background will provide the
most strict bounds on the dimensionless parameter ξ (Eq. (50)) and on f ′′(0).
This is because the curvature effects are much enhanced in those early times,
corresponding to A0/A = z+ 1 ∼ 103.

The angular diameter subtended by an object of diameter D at redshift
z = A0/A− 1 is given by:
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1θ = D

A(z) sinh χ
(55)

where χ(t) is the “angular distance”, defined through the equations:

χ =
∫ t ′0

t ′r

dt ′

A
=

∫ A0

A

dA
◦
A A

=
∫ W

1

dw

H(w)
(56)

where w = A0/A.
This equation, which describes the path of a photon in an open universe, is

conformal invariant and valid both in the physical and auxiliary frames. In the
latter one, we have the expression:

H(w) = HGR + δH (57)

where

δH = −1
2

◦
U

U
+ 1

2
H−1
GR

(
δκ

κ
�0w

3 + δ3

3
�3

)
(58)

δκ

κ
= −6ξ(4�3 +�0w

3) (59)

δ3

3
= 6ξ(4�3 +�0w

3) (60)
◦
U

U
= −9ξH0�0w

3 (61)

and
HGR =

√
�0w3 −�Kw2 +�3 (62)

In the above equations all the parameters are the General Relativity ones.
The change in angular distance will be:

δχ = −
∫ w

1

δH

H 2
GR

dw (63)

We shall limit ourselves to the flat case, since observation shows that�K ∼ 0.
Besides, since �3 +�0 = 1, most of the integration range in equation (63) will
be dominated by the terms containing w3. With this approximations, we find for
w � 1:

δχ ∼ −6
5
ξ
√
�0w5

(
1 +O(w− 3

2 )
)

(64)

We shall be interested in the change induced in the peak position. In the
particular case of a flat Universe, this position is given by [13]:

l1 = π
√
�0wrχr (65)



544 Barraco, Hamity, and Vucetich

where wr, χr refer to the surface of last scattering. The change in the first peak,
induced by the terms O(R2) is, thus:

δl1

l1
= δχr

χr
∼ −3

5
ξ�0w

5
2
r (66)

The evolution of the scale factor A can be treated using perturbation theory
around GR in a similar form.

6. COMPARISON WITH OBSERVATION

In the following, we shall find estimates (or rather, upper bounds) on the
parameters ξ , X and f ′′(0), from the available observational data.

6.1. Observational Data

There are quite a few observational data related to the Cosmological Constant
and the time variation ofG: the main observational consequences of metric affine
theories of gravitation.

H0 and the deceleration parameter q0: A large number of observational data
obtained with different techniques is converging to a value of [14, 15, 16]:

H0 = 65 ± 5 km/s/Mpc ' (6.5 ± 5)× 10−11 yr−1 (67)

The deceleration parameter q0 has been estimated as [17]:

q0 ∼ −0.6 (68)

with a large (∼20%) error.

The cosmological constant: The surprising discovery of an “acceleration” of the
Universe [18, 17]; i.e. that ä

a
> 0 strongly suggests the existence of a substantial

cosmological constant. Similar results can be found from the comparison of struc-
ture formation results [21, 22, 23] with the predictions of the Cosmic Background
spectrum [19, 20]. The analysis of all these data suggest [24, 25]:

�0 ∼ 0.25; �3 ∼ 0.75 (69)

with large (∼20%) uncertainties. These values have been estimated using GR as
the underlying theory of gravitation; however, since the departures from GR seem
to be small, we shall use them in the following to estimate f (0) and f ′′(0).

Time variation of G: Many attempts to measure time variation of G have been
made in latter times. From a combination of astronomical and geophysical data,

an upper bound
◦
G
G

≤ 7.5 × 10−12 yr−1 was found in Refs [26, 27, 28]. More
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modern bounds have been found based on heliosysmology [29], globular cluster
evolution [30] or neutron star masses [31] yield similar bounds. The most accurate
bounds come from white-dwarf evolution. The change in G induces a change in
gravitational energy that is released (or absorbed) as light. Comparison of the

observed and calculated luminosity distributions yields
◦
G
G

≤ 10−13 yr−1 which
is the smallest upper bound available [32].

To our knowledge, there is a single estimation of the second time derivative of
G [33], based on paleontological data. From the results in this reference we
find:

◦◦
G

G
≤ 10−18 yr−2 (70)

The above upper bound is not very strict. A lower one can be obtained from the
results of globular cluster evolution [30] or white dwarf evolution [32]. These
papers approximate the functional form of G(t) = G0(t/t0)

ν , from which we
obtain: 


◦
G

G




0

= ν

t0
(71)




◦◦
G

G




0

= ν(ν − 1)
t20

(72)

and from [32] | ν |< 10−3 we obtain:∣∣∣∣∣∣



◦
G

G




0

∣∣∣∣∣∣<10−13 yr−1 (73)

∣∣∣∣∣∣



◦◦
G

G




0

∣∣∣∣∣∣<10−23 yr−2 (74)

We shall adopt these latter value in the following.
Position of the first acoustic peak: The recent measurements of the position
of the first acoustic peak in the Cosmic Microwave Background radiation by the
Boomerang [34] and Maxima [35] has provided high accuracy result for the spectra
of fluctuations in the CMB. The position of the first peak can be inferred from this
set of data [36]:

l1 = 206 ± 6 (75)
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This result is almost independent of the model of matter included in the theory,
since it depends mainly on the geometry of the Universe.

6.2. Bounds on ξ and f ′′(0)

Let us now apply the above-mentioned values to the present theory. Thus,
from equation (45) written in the form:

◦
G/G = −9ξH0�0 we obtain:

| ξ |< 10−3 (76)

and from this:

| f ′′(0) |=
∣∣∣∣∣

ξ

8πG0H
2
0

∣∣∣∣∣ < 10119 (77)

This enormous bound is not surprising: the denominator in (77) is Planck’s
time divided by the age of the Universe.

On the other hand, the consistency condition (54) is satisfied within the very
large errors in q0.

Finally, if we accept that the corrections to GR have remained small during
all the matter-dominated epoch, we can use equation (66) to put bounds on ξ and
f ′′(0), if we assume that the error in (75) is due only to ξ . Using wr ∼ 1000, we
get:

| ξ |<10−8 (78)
| f ′′(0) |<10113 (79)

Equations (78) and (79) are the main results of this papers. They set the most
accurate bounds on higher order gravity, based on cosmological parameters.

From Eqs. (49) and (78) we find that f ′−1 differ from the General Relativity
value less than the current observational error for the Newton constant.

7. CONCLUSIONS

In this work we have obtain the first bound, as far as we know, of the departure
from General Relativity of the lower order coefficients for the general function
f (R), in the case of the theories which are obtained using the first order formalism.
We have also obtained the cosmological equations for these theories in a very
general way. The use of a conformal transformation is a trick which allows us to
map these kind of theories to General Relativity as we have shown above.

The bound in Eq. (79) is so huge that permit almost any f (R). This is in the
nature of things: the effect of higher order terms in f (R) are strongly suppressed
by power of Planck’s time 8πG0 as we have just remarked above. In order to
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improve these bounds more research on mathematical aspect of these theories and
experimental consequences is necessary.
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