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Abstract. We present an extension of the E-function method adapted to handle the regularization of Dirac 
operator determinants when Weyl fermions are present. The method we propose makes use of an auxiliary 
operator which takes into account regularization ambiguities in anomalous gauge theories. As an applica- 
tion, we consider a two-dimensional model where these ambiguities allow for the definition of a consistent 
quantum theory. 

Quantization of gauge theories with Weyl fermions has recently received a lot of 
attention, particularly after the results of Jackiw and Rajaraman [ 1 ] on the consistency 
of the chiral Schwinger model and of Faddeev and Shatashvili [2] on the modification 
of the canonical quantization method by the addition of a Wess-Zumino term. 

Soon after these important developments, it was observed [3-5] within the path- 
integral framework, that integration over all field configurations makes the 

Wess-Zumino term arise naturally, establishing a link [6] between the results of [ 1 ] and 
[2]. 

An important feature of chiral theories concerns the regularization of divergent 
quantities. Since gauge currents possess anomalous divergences at the quantum level, 
there is no gauge-invariance principle to invoke when selecting a particular regulari- 
zation scheme. This introduces an ambiguity which, in fact, can be exploited to render 
the quantum theory consistent (at least in two spacetime dimensions, as first shown in 
[1]. See also [7-9]). 

Special regularization schemes had then been developed, by modification of the 
heat-kernel method, stochastic regularization, etc. [ 10]-[ 13 ], so as to take into account 
peculiarities of chiral theories. In this Letter, we present an extension of the ~-function 
method adapted to handle the regularization problems posed by Weyl fermions. As will 
be shown, it maintains the simplicity and advantages of the original ~-function method 
[ 14] (in particular, it works in the case ofnon-Hermitian and even nonnormal operators 
[15]) and, at the same time, it has the flexibility required in the present situation. The 
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method is intended to apply to the calculation of fermion determinants and Fujikawa's 
Jacobians [ 16] in any spacetime dimensions (d = 2, 4, etc.) but for simplicity we present, 
at the end, an application to the (d - 2) chiral Schwinger model. 

A first problem one faces with theories in which gauge fields A~, are coupled to Weyl 
fermions ~k, ~ (left-handed, for definiteness) is that the Dirac operator D_ [A], 

D _ [ A ]  = (i/~ + e4t) (1 - 75)/2 (i) 

maps negative chirality spinors to positive chirality spinors and, consequently, does not 
have a well-defined eigenvalue problem. This makes difficult the definition of the fermion 
determinant and, hence, limits the effective action. 

The usual way to overcome this problem is to redefine the fermionic action in terms 
of a new operator D[A],  

D[A] = D [A] + ifl(1 + ~5)/2 = if7 + ed (1  - ~'5)/2 (2) 

which defines an eigenvalue problem, since it acts on Dirac fermions rather than on Weyl 
fermions. Since the added (right-handed) fermionic degrees of freedom do not couple 
to the gauge field, one expects that only an overall normalization takes care of the change 
in the corresponding determinants. This definition also satisfies several consistency 
requirements [ 10]. 

At this point, it is important to note that D[A] is not a covariant operator: 

D[A g] r g - l D [ A ] g  (3) 

with A g the gauge transformation of A by a gauge-group element g: 

a g = g- lA~ ,g  + ig -1 a~,g. (4) 

Now, since D[A] is an unbounded operator, one needs a regularization prescription 
in order to get a finite answer for its determinant. In the present case, there is no more 
reason (as there is in a gauge theory with Dirac fermions) to use a gauge-invariant 
regularization method since, due to (3), one generally has 

detD[A] ~ detD[Ag].  (5) 

As we stated above, several methods have been proposed in order to take into account 
this peculiarity of theories with Weyl fermions [ 10-13]. We now present an extension 
of the ~-function method, adapted to the present situation. 

Given an invertible elliptic operator L with a cone of Agmon directions [ 17] defined 
on a compact manifold M without boundary, one has, within the 'classical' ~-function 
method [14-15] 

log detL = - d~(L, s) , (6) 
~S s = 0 

where ~(L, s) is the meromorphic continuation of Ei27 s with 2 i the eigenvalues of L. This 
continuation is given by 
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~(L, s) = Tr JM d/zK_~(L, x, x) (7) 

with K_s(L, x, x) the continuation of the evaluation of the kernel ofL -s on the diagonal 
x = y[17].  

The extension we propose makes use of an auxiliary operator L ,  (to be chosen on 
physical grounds) and it is given by the following definition 

det(LLa) 
detL.(L ) ~ , (8) 

det(L,)  

where 'det' in the r.h.s, is taken as in Equation (6). Of course, operators L ,  and LL~ 
have to satisfy the conditions required within the ~-function method. Note that, for 
instance, if L and La separately satisfy these conditions and have the same principal 
symbol, L L ,  also does. Definition (8) coincides with the usual one whenever 
det(LL~) = detLdetLa.  As we shall see in an example, this is not always the case. It 
is true however that de t (LL~)=  det(L,L),  since the cyclic property holds for the 
~-function as given by (7) [15]. 

If one is interested in the computation of the anomaly associated to gauge currents 
in the path-integral approach, one has to evaluate the Fujikawa Jacobian [ 16 ] associated 
to a gauge transformation of the fermionic variables. In the present formulation, the 
Jacobian is given by 

J =  deto~ (9) 

detD~ 

with D[A] given by (2) and D, a suitable auxiliary operator. It is then easy to show 
[16, 15] that the anomaly equation for the gauge current J~,, 

J a = / ~ , ~ t a  (1 - '5) / /z 2 - ~ (t a are the gauge-group generators) 

is 

log J 
Dr'J" = ba ~=o = d [ A ] .  (10) 

It is worthwhile to stress that J, as given by (9), can be always computed in a closed 
form [ 18]. 

We now present a proposition which allows for the evaluation of determinants as 
in (9). Consider an operator L(t), depending on a parameter t e [0, 1] such that 

dL(t) 

dt 
- fL(t) + L(t)g, (11) 

with f and g some functions and L(t) satisfying the same hypothesis as in (6). We then 
have the proposition. 
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PROPOSITION 

detL~(L(1)) _ 

detLo(L(O)) 
Llf exp dt d#x tr[f(x)Ko(L(t)L~; x, x) + g(x)Ko(L.L(t); x, x)] 

Proof Consider the identity 

detLo(L(1)) _ 

detLo(L(O)) 

(12) 

with 

~o 1 exp w' (t) dt (13) 

w ' ( O  . . . .  d d tr[L(t)L~]_ ~ s=o 
dt ds 

=--(:Is str[L(t)La]-~ dtt ~=o' (14) 

which can be proved using theorems on differentiation of the ~-function [ 15, 19] which 
justify the naive identity 'tr logL' = 'log detL'. 

From (11) we have 

d 
tr[L(t)La]-~-' "L(t)L~ = tr[ [L(t)L~]-~f + [L~L(t)]-Sg] , (15) 

dt 

where we have used 

(AB)~A = A(BA) �9 (16) 

valid for any two operators A, B, such that its complex powers are well-defined. 
Then 

d d 
w'(t) = ~ [s tr[L(t)La]-sf] + ~ [tr[LaL(t)]-Sg] (17) 

and again using (16), one gets the result (12). 
It is worthwhile to note that condition (11) (sometimes known as the integrability 

condition) is fulfilled, for instance, by operators L(t) interpolating between chiral trans- 
formed Dirac operators or, as in the present case, by gauge-transformed Dirac operators 
[15, 20], as will become clear in the example we will discuss below. 

From the knowledge of J, given by (9), (12) one easily gets the anomaly for the gauge 
current J~, from (10). Note also that J can be written in the form [18] 

;o 1 l o g . / :  - trd[Ag(t)]adt. (18) 

The extension of the ~-function method we have presented is intended to apply in any 
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dimensions (2, 4, etc.). To see how it works, we consider for simplicity a two-dimensional 
example, the chiral Schwinger model, with Lagrangian (in Euclidean space) 

~ =  ~D_ [A] ff _ zF~,v.1 2 (19) 

This model has been solved by Jackiw and Rajaraman [1] who showed that, although 
anomalous, it can be quantized in a consistent unitary form. 

Let us evaluate the fermion determinant using the method described above. 
As interpolating operator L(t) we choose 

L(t) = i~ + et//l(1 - 3)5)/2 (20) 

so that L(0) = i~ and L(1) = D[A]. If one writes 

eA, = -e~vOv(p + d~l, (21) 

then it is easy to see that L(t) satisfies a relation like (11) with 

f =  -(~p - in)(1 + 3)5)/2, 

g = - ( ~  - / 0  (1 - 3)5)/2. (22) 

One can now employ formula (12) to evaluate detD [A ]. At this point, one has to select 
an auxiliary operator D a satisfying the conditions required by the ~-function method. In 
the present case, an auxiliary operator D a which ensures a Lorentz invariant answer is 

a 
Oa = i~ + e g o  - 3)5)/2 + e ~ 4f(1 + 75)/2, (23) 

with a an 'a-priori' undetermined parameter. 
In order to compute the kernels in the r.h.s, of Equation (12), we follow the Seeley 

technique [17] (see [15] for details). This requires the construction of Seeley's 
coefficients b_, (i = 1 . . . . .  4) and then the use of the expression 

- i  f d~fdub_a(X,~, iu  ) (24) 
K~ - 2 ~ - )  2 Ir = 1 

After some algebra, one gets for Ko(L(t)Da, x, x) 

Ko(L(t)D ~, x, x) 

- i  
- [ -iet e.~OuAv(1 + 3)5)/2 - etOuA. + efTg (1 + 3)5)/4 + eafTg (1 + 75)/4] 

8n 

(25) 

and a similar expression for Ko(D~L(t), x, x). Then, using (12), we get for the fermion 
determinant 

l~176  f [ ~O~r~ ] 
detDoi~ - ~ d2xAu ab~,~ + (b~ + ie~,~) ~ ~,,~ - ieB~) A v (26) 
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which coincides with the result presented by Jackiw and Rajaraman [ 1 ] in their solution 
of the chiral Schwinger model. Note that no value of a gives a gauge-invariant answer 
for the determinant - this is why the theory is anomalous. Also note that the 
a-dependence of the result implies that in this case det DaD # detDa detD (see Equation 
(8)). 

Following [ 1], we conclude that the choice a > 1 guarantees a consistent unitary 
quantum theory which contains a massive degree of freedom, with mass 

e2 a 2 
:;l 2 = 

4rr(a-  1) 

and a massless excitation. 
We conclude by noting that, as stressed above, the presence of the arbitrary parameter 

a was crucial in getting a consistent quantum theory. The arbitrariness is covered in the 
~-function method we presented by the auxiliary operator D a. In more realistic (for 
example, four-dimensional) models, a careful election ofD a may also lead to consistent 
gauge theories with Weyl fermions and, hence, it should be interesting to investigate 
different choices of Da's. We hope to report on this point in a future publication. 
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