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Abstract In the present work, we introduce two new estimators of chaotic diffusion based
on the Shannon entropy. Using theoretical, heuristic and numerical arguments, we show that
the entropy, S, provides a measure of the diffusion extent of a given small initial ensemble
of orbits, while an indicator related with the time derivative of the entropy, S�, estimates
the diffusion rate. We show that in the limiting case of near ergodicity, after an appropriate
normalization, S� coincides with the standard homogeneous diffusion coefficient. The very
first application of this formulation to a 4D symplectic map and to the Arnold Hamiltonian
reveals very successful and encouraging results.

Keywords Chaotic diffusion · Multidimensional dynamical systems · Entropy · Rate of
diffusion

1 Introduction

The characterization of chaotic diffusion in phase space of near-integrable systems is a matter
of main significance in several fields, in particular, both in Celestial Mechanics and galactic
astronomy. Indeed, just for the sake of illustration, we refer the reader to Maffione et al.
(2015) where the relevance of chaos for halo stars in the Solar neighborhood is thoroughly
discussed, and to Martí et al. (2016) which includes a careful study of diffusion in the
Gliese-876 planetary system. More recently, in Cincotta et al. (2018) and references therein,
a general discussion on the macroscopic diffusion is provided, as well as further applications
to planetary dynamics. For instance, in Cincotta et al. (2018) the proper way to measure a
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physical instability in a planetary system in a Laplace resonance is addressed. Meanwhile,
in Martí et al. (2016) and by means of diverse chaos indicators, the motion within such a
resonance was shown to be completely chaotic, though diffusion experiments revealed an
almost fully stable inner part but a highly unstable outer region in the resonance.

For the sake of clarity let us state that, from now on, we will term chaotic diffusion (or just
diffusion) the time variation of the prime integrals or actions of an integrable Hamiltonian
due to a small non-integrable perturbation, as it is usual in dynamical astronomy.

In the above cited works, we remarked that, in the case of macroscopic diffusion, the
so-called normal diffusion approximation seems not to apply in almost any near-integrable
system. Such an approach assumes that a single diffusion coefficient Dw , w being any phase
space coordinate, could be defined as the constant rate at which the variance of w, σ 2

w, evolves
with time so that the linear trend, σ 2

w = Dwt , is asserted. When a 2 factor is included in the
definition of D, it becomes D = σ 2/2t , relationship known in physics as Fick’s law, after
the pioneer work of A. Fick (1855). However, when dealing with dynamical systems, the
diffusion coefficient is introduced in the frame of a generalization of Brownian motion, the
review by Chandrasekhar (1943) being one of the most relevant references in this field.

In fact, deviations from normal diffusion were observed in many different dynamical
systems. A significant contribution to the so-called transport processes was due to Zaslavsky
(see for instance Zaslavsky 1994; Zaslavsky and Abdullaev 1995; Zaslavsky et al. 1997;
Zaslavsky and Niyazow 1997; Zaslavsky and Edelman 2000; Zaslavsky 2002a, b among
others). Further relevant papers which pose a statistical approach are Klafter et al. (1990,
1993), Korabel and Klages (2004), Schwarzl et al. (2017), Venegeroles (2008), Miguel et al.
(2014), and simple applications of such theories to planetary dynamics can be found in
Zhou et al. (2002), Cordeiro and Mendes de Souza (2005) and Cordeiro (2006). Such a
phenomena, called anomalous diffusion (or, more precisely, anomalous transport), affords
also a characterization through the variance progression with time, which is no longer linear
but of a more general form. Indeed, in the case of abnormal diffusion, the variance runs like
σ 2

w = D̂wtβ , where the exponent β �= 1 strongly depends on the local dynamical structure
of the deemed region of phase space. Most of the theoretical efforts concerning anomalous
transport (including chaotic diffusion) considered low-dimensional systems or maps and it
seems not evident how to extrapolate this statistical approach to systems of higher dimension.
Indeed, the due approach to this problem is completely open to the time being.

Only in the context of normal diffusion does the derivation of a diffusion coefficient
seem to be widespread in dynamical astronomy (see Cincotta et al. 2018 for more details),
and the way of measuring both diffusion and its rate is far from clear in the general case.
Nonetheless, suitable diffusion experiments would well serve to neatly distinguish stable and
unstable regions within a chaotic domain as it was shown, for instance, in Maffione et al.
(2015), Martí et al. (2016), Cincotta et al. (2018) and Maffione et al. (2018).

In the last decade, studies on diffusion in multidimensional near-integrable systems were
conducted by many authors, some of them dealing with the slow diffusion regime in the
limit of weak chaos (see for example Lega et al. 2003, 2008; Froeschlé et al. 2005, 2006;
Efthymiopoulos and Harsoula 2013; Cincotta et al. 2014). On the other hand, diffusion
studies in largely chaotic scenarios were also considered. For instance, in Tsiganis et al.
(2005) and Tsiganis (2008) the diffusion theory is reviewed, including its application to the
chaotic dynamics of asteroids and Jupiter’s Trojans. Meanwhile, in Cachucho et al. (2010)
Chirikov’s formulation (Chirikov 1979; Cincotta 2002) is applied in order to derive a local
diffusion coefficient within a given asteroidal three-body resonance domain, while in Batygin
et al. (2015) and Martí et al. (2016) the dynamics and diffusion in the Laplace mean motion
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resonance in the GJ-876 planetary system is addressed. In all cases, the normal diffusion
approximation was invoked.

Herein, we recover an strategy already outlined in Cincotta and Giordano (2012), which
consists on estimating the chaotic diffusion extent by recourse to the Shannon entropy. Fur-
thermore, we provide numerical evidence that a measure of the actual mean diffusion rate
could be derived from the entropy’s time derivative.

In the present effort, all these issues are thoroughly discussed, first considering a well-
known 4D-conservative map, where chaotic diffusion experiments are computationally much
less expensive when dealing with systems of discrete time. However, we also propose the
present formulation to the study of a system of continuous time, in particular, to a multidi-
mensional near-integrable system, and present several numerical experiments regarding the
2 1

2 degrees of freedom Arnold Hamiltonian introduced in Arnold (1964). This system is the
paradigmatic model for the so-called Arnold diffusion (actually the Arnold mechanism that
leads to an instability).

2 A time discrete dynamical model

In order to show the use of the finite time entropy to quantify and measure the chaotic diffusion
in a multidimensional system, we take the 4D map:

y�
1 = y1 + ε1 f1(x1) + γ+ f3(x1 + x2) + γ− f3(x1 − x2),

y�
2 = y2 + ε2 f2(x2) + γ+ f3(x1 + x2) − γ− f3(x1 − x2),

x �
1 = x1 + ε1 y

�
1,

x �
2 = x2 + ε2 y

�
2, (1)

xi ∈ [0, 2π), yi ∈ [0, 2π/εi ), i = 1, 2, where

fi (x) = sin (x + ϕi )

1 − μi cos x
− Δi , Δi = μi sin ϕi�

1 − μ2
i + 1 − μ2

i

, μi ∈ [0, 1), i = 1, . . . , 3,

and the quantities Δi are fixed so that the fi have zero average. This map has been largely
discussed in Cincotta and Giordano (2016) and references therein. Rescaling the actions yi ,
the map (1) becomes

y�
1 = y1 + ε2

1 f1(x1) + ε1γ+ f3(x1 + x2) + ε1γ− f3(x1 − x2),

y�
2 = y2 + ε2

2 f2(x2) + ε2γ+ f3(x1 + x2) − ε2γ− f3(x1 − x2),

x �
1 = x1 + y�

1,

x �
2 = x2 + y�

2, (2)

where now (xi , yi ) ∈ [0, 2π)×[0, 2π). In what follows, we take for simplicity ε1 = ε2 = ε,
μ1 = μ2 = μ3 = μ, γ+ = γ− = γ and all the ϕi = 0, i = 1, . . . , 3, so Δi = 0.

The main difference of this 4D map from two coupled standard maps rests on the con-
comitant primary resonances’ set. Indeed, denoting with ŷ1 = y1/2π, ŷ2 = y2/2π and
	 ≡ ε2, εγ, up to O(	μ2), this system has the following primary resonances (see Cincotta
and Giordano 2016 for details):
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Fig. 1 On the left, the theoretical resonance web of the map (2) for 0 < |k1| + |k2| + |k3| ≤ 6 and
(y1/2π, y2/2π) ∈ [0, 0.5) × [0, 05). On the right, contour plot of the (logarithmic) time derivative of the
conditional entropy, J , (log J values in the figure) for the map (2) with the given parameters after 400 iterates
(log 2 ≈ 0.3). The initial values of the phases are fixed as x1 = x2 = 0 (see text).

O(	) : ŷ1, ŷ2 = 0, 1;
O(	μ) : ŷ1, ŷ2 = 0,

1

2
, 1;

O(	μ2) : ŷ1, ŷ2 = 0,
1

3
,

2

3
, 1;

O(	γ ) : ŷ1 ± ŷ2 = 0, 1;
O(	γμ) : ŷ1 ± ŷ2 = 0,

1

2
, 1;

O(	γμ2) : ŷ1 ± ŷ2 = 0,
1

3
,

2

3
, 1.

Therefore, the full set of resonances at any order in 	 and μ is given by

k1y1 + k2y2 + 2πk3 = 0, k1, k2, k3 ∈ Z
+. (3)

Thus, horizontal lines correspond to the resonances of the uncoupled (x2, y2) map, vertical
ones to those of the uncoupled (x1, y1) map, while the coupling resonances are given by the
lines y2 = −(k1y1 + 2πk3)/k2, k2 �= 0. Figure 1(left) illustrates the theoretical resonance
web for (y1/2π, y2/2π) ∈ [0, 0.5) × [0, 05) for 0 < |k1| + |k2| + |k3| ≤ 6.

The actual resonance web is shown in Fig. 1(right) where the final values for t = 400
of the (logarithmic) time derivative of the conditional entropy, J (see Cincotta and Simó
1999) have been computed for an equispaced grid of 1500 × 1500 pixels in the domain
(y1/2π, y2/2π) ∈ [0, 0.5) × [0, 05), (x1(0) = x2(0) = 0), since for the interval [0.5, 1) it
is enough to take 1 − yi/2π , with yi/2π ∈ [0, 0.5). Recall that the (symmetric) conditional
entropy of nearby orbits, I , is such that I ∼ δ2

0λ2t2 	 1 for stable motion, with λ the
maximum linear rate of linear divergence and δ0 	 1 the initial value of the deviation
vector; while I ∼ δ2

0 exp(2σ t) ∼ 1 for unstable chaotic motion, where σ is the maximum
Lyapunov exponent of the given trajectory. On the other hand, J = t İ/I behaves like the
MEGNO (Cincotta and Simó 2000; Cincotta et al. 2003; Cincotta and Giordano 2016),
J ≈ 2 for quasiperiodic motion and J ∼ σ t 
 1 for chaotic dynamics. We have chosen this
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particular dynamical indicator since it provides a clear picture of the global dynamics in very
short motion times due to the fact that it is of second order in the solution of the variational
equations. Although I is based on a continuous entropy associated to two nearby trajectories,
say γ and γ � and also to the orbit defined by γ × γ �, J thus defined is quite similar to the
MEGNO indicator. For further details, we refer to Cincotta and Simó (1999), while a brief
discussion of both indicators is provided in Cincotta and Giordano (2016).

To clearly interpret the observed resonance structure, let us recall that the product (x1, y1)×
(x2, y2) at x1 = x2 = 0 only reveals the hyperbolic 2D tori (that is, the homoclinic tangle)
of the primary resonances on the (y1, y2) plane (as it would occur in the case of two coupled
standard maps). We neatly distinguish the integer and the semi-integer resonances for the
uncoupled maps as well as many coupling resonances and several high-order ones. Initial
conditions that lead to strong chaotic motion take the highest values of log J while the smaller
values correspond to stable quasiperiodic or periodic motion. This figure will serve later to
locate the initial conditions within different chaotic domains.

In order to visualize the diffusion of any orbit onto the (y1, y2) plane shown in Fig. 1(right),
we proceed as follows (from now on, yi will denote yi/2π). We take a small ensemble of
n p trajectories around some initial condition y1(0), y2(0), x1(0) = x2(0) = 0, iterate the
ensemble during a total motion time t f and record the intersections of the n p orbits with the
section S defined as |x1| + |x2| < η 	 1.

Since the evolution of the variance of the ensemble is also needed, we compute the
variance over the section (see Cincotta et al. 2018 and references therein for alternative
ways of computing different variances). To this end, we take a fixed time interval Δt 	 t f ,
define tl = lΔt and consider motion times tl−1 < t ≤ tl , l ∈ Z

+. Assume that the n p

initial conditions have nl 
 1 intersections with S at different times τl ∈ (tl−1, tl ]; thus, the
variance over the section is computed as

Δy2
f (tl) = 1

nl

nl�
k=1

�
y(k)
f (τl) − y(k)

f (0)
�2

, (4)

when the initial condition lies on a single resonance, y(k)
f denotes the values of the corre-

sponding fast action (taken along the resonance line) for the ensemble. Meanwhile, for the
initial conditions on multiple resonances or in a domain of resonances’ overlap, we take
y2
f = y2

1 + y2
2 .

3 The Shannon entropy as a measure of chaotic diffusion

3.1 Theoretical outline and its experimental support

As we have already discussed, it is not a simple task to provide a measure of diffusion,
in particular, when the latter is macroscopic. We could not invoke normal diffusion when
dealing with systems of divided phase space and consequently, the derivation of a diffusion
coefficient from the evolution of the variance of the unperturbed integrals is no longer valid.

Thus, in the present section we go beyond in the search of an alternative tool to this end
bringing into play the finite time entropy, known as Shannon Entropy, and investigate its
effectiveness for such an application. A first attempt in this direction was already given in
Cincotta and Giordano (2012), while the theoretical background on the Shannon entropy can
be found in Shannon and Weaver (1949); however, different approaches to the entropy in
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dynamical systems are presented in for instance Katz (1967), Arnol’d and Avez (1989) and
Wehrl (1978).

We will use the entropy to measure the wandering of the normalized unperturbed actions
y = (y1, y2) upon a given unit square (with opposite sides identified), T , as time goes by.
The adopted T corresponds to the intersections of any trajectory of the 4D map with the
starting phase plane or section |x1| + |x2| < η 	 1.

Following Arnol’d and Avez (1989) and Lesne (2014), consider the real-valued function
Z defined in [0, 1] as:

Z(x) =

⎧
⎪⎨
⎪⎩

−x lnx, x ∈ (0, 1]

0 x = 0.

(5)

Clearly, Z(x) ≥ 0, it has a maximum at x = e−1 and Z �� < 0. Let

α = {ai ; i = 1, . . . , q} (6)

be a partition of T , for instance, a collection of q bidimensional cells that cover the whole
unit square. The elements of the partition are assumed to be both measurable and disjoint.

For any trajectory γ of the map, a probability density on T can be defined by

ρ(y, γ ) = 1

N

N�
i=1

δ(y − yi ), (7)

where {yi , i = 1, . . . , N } denotes the intersections of the trajectory γ with T , and δ is the
delta function. It is evident that 


T
ρ(y)d2y = 1, (8)

and the measure μ of any element of the partition ai turns out to be

μ(ai (γ )) =



ai
ρ(y)d2y. (9)

Then, for the partition α the entropy of γ is defined in the fashion

S(γ, α) =
q�

i=1

Z ( μ(ai (γ )) ) = −
q�

i=1

μ(ai (γ )) ln(μ(ai (γ ))). (10)

Let us notice that for a given partition and any trajectory, the entropy is bounded. Indeed,
for the partition (6) it is 0 ≤ S(γ, α) ≤ ln q . The minimum is reached when γ is restricted
to a single element of α, say the k-th element, which would correspond to the case of almost
full stability (for instance when all the iterates lie onto a single torus). In such a case, it is
μ(ak) = 1, μ(ai ) = 0,∀i �= k, yielding S = 0. On the other hand, the maximum value,
S = ln q , will be reached whenever the q elements of the partition have equal measure,
μ(ai ) = 1/q , that corresponds to the situation in which the unperturbed actions wander all
over the unit square in a uniform fashion, i.e., in case of ergodicity. Therefore, the entropy
seems to be a priori a rather natural measure of the diffusion extent.1

1 Let us recall that Shannon entropy for a discrete-valued and discrete-time stochastic process has an analog
in ergodic theory of dynamical systems; the Shannon entropy defined in (10) naturally leads to the so-called
metric or Kolmogrov Sinai entropy for a given orbit of a map when considering the refinements of the partition
generated by the map when t → ∞, as for instance Arnol’d and Avez (1989) and Lesne (2014) show.
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By means of the very same arguments given in Cincotta et al. (1999) and Cincotta (1999),
if the ai are small enough and N is large, we could assume that for any trajectory, all the non-
empty elements of the partition have nearly the same measure. Thus, if q0 denotes the number
of cells visited by the orbit after a given motion time, then from (10) and the normalization
condition,

q�
s=1

μ(as) =
q0�
s=1

μ(as) = 1,

it turns out that μ(as) ≈ 1/q0 and

S ≈ S0 ≡ ln q0. (11)

Therefore, under this assumption, the entropy behaves in a logarithmic way and it only
depends on the fraction of the area of the unit square covered by the trajectory. Moreover,
if N is large enough, q0 would also provide an indication of the amount of instability on T .
Indeed, if q0/q ≪ 1 we would be in presence of almost stability, while the instability would
be quite large whenever q0/q � 1.

The time derivative of the entropy, Ṡ, can be approximated by

Ṡ ≈ Ṡ0 = 1

q0(t)

δq0

δt
, (12)

where q0(t) denotes the number of cells visited by the orbit at time t and δq0/δt the rate at
which q0 changes with time. At this point, we make the following heuristic approximation:

δq0 ∝ �δy2
j �, (13)

where δy2
j denotes either δy2

1 , δy2
2 or (δy2

1 +δy2
2 )/2 and �·� is the average on T over the interval

(t, t +δt). The above estimate rests on the assumption that the variation of the occupied cells
is entirely due to changes in the actions in any direction (see below).

Let us now consider two asymptotic scenarios. If γ is a stable orbit lying on a torus, then
�δy2

j � = 0, δq0 = 0 and no variation of the number of cells takes place. Both the entropy and
its time derivative vanish and therefore the quantity

S� ≡ q0(t)Ṡ, (14)

also vanishes. On the other hand, in the case of a nearly ergodic system, for any trajectory
it is δq0 ∝ �δy2

j � > 0. In this particular situation, it is known that �δy2
j � ≈ Dδt , where D is

the homogeneous, constant diffusion coefficient of the system and thus, S� ∝ D, so

S� ≈ 1

k
D, (15)

where k is a normalization constant that depends on the extreme values attained by the
actions.2 Indeed, k is chosen such that kq0(t) is the area of the action space covered by the
diffusion of a given orbit.

The heuristic approximation (13) rests on the assumption that �δy2
j � is the difference in the

ensemble variance on the section S at two nearby times, �δy2
j � = �Δy2

j (t + δt)�− �Δy2
j (t)�.

Then if this change in the variance satisfies �δy2
j � � 1/q , then �δy2

j � ∼ δq0. On the other

hand, if �δy2
j � � 1/q , for q large enough, it is almost stability, �δy2

j � 	 1 and thus δq0 = 0.

2 Note that to compute �δy2
j � the actions are not restricted to the unit square.
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Fig. 2 Diffusion over the unit square (section |x1|+ |x2| ≤ 0.02) for an ensemble of size 10−6 of 2000 initial
conditions around (x1, x2, y1, y2) = (0, 0, 0.25, 0.25) for the map (2) with large values of the parameters
(top panel). Entropy S and its approximation S0 for the density distribution generated by this trajectory, both
normalized by ln q (left bottom panel); S� and (�δy1

2� + �δy2
2�)/2t (right bottom panel)

In order to test these assumptions in the case of a nearly ergodic scenario, in Fig. 2(top)
we display the diffusion on the unit square, actually onto the section S : |x1| + |x2| ≤ 0.02,
for the map (2) with values of the parameters large enough such that the system presents
global and fast diffusion all over T . This plot corresponds to t = 106 iterates of the map for
an ensemble of size 10−6 of 2000 initial conditions around (x1(0), x2(0), y1(0), y2(0)) =
(0, 0, 0.25, 0.25). The bottom panel (left) shows the evolution of the entropy S accordingly
to (10) and its approximation S0 given by (11), both normalized by ln q , with q = 800 × 800
cells of equal size. Clearly, in this particular case, both entropies completely agree. In the
bottom panel at the right, we present both the temporal evolution of S� given by (15) and the
time average of the variance over the section of y1 and y2. To compute the action variances
δy, we have used (4) with Δt = 5 × 103 and being nl � 700, while for S� we have taken
the per step numerical change of S every Δt . To determine the constant k, we have just
evaluated the maximum and minimum values attained by the actions during the iteration of
the ensemble and thus

k = (y2M − y2m)(y1M − y1m), (16)

where y jM, y jm denote such maximum and minimum values, respectively. We observe that
the diffusion behaves as a normal process, the rate of the variance’s average approaches very
quickly to a constant value leading to a diffusion coefficient, D ≈ 2 × 10−5. This is the very
same constant value of S� over the whole time interval, showing then that (15) holds.
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Fig. 3 Similar plot to that in Fig. 2 but for the parameters used for Fig. 1(right)

The key point of this formulation is the assumption (13), where the approximation (12)
is used. It is clear that the exact form of Ṡ also involves the time derivatives of μ(ai ). Even
though we have numerically computed the full derivative of S taking into account all its
terms, we found that the smoothest and best approximation to Ṡ is provided by the numerical
derivative of S evaluated every δt , as shown in Fig. 2. Thus, in what follows, we assume
(13) to be true in any case and numerical evidence of its validity will be delivered in the next
subsection.

3.2 Further Numerical experiments

In this section, we consider additional numerical experiments but involving values of the map
parameters such that the resulting dynamical system presents a divided phase space, with
components of comparable measure.

In Fig. 3(top), we present the results of the intersections of the same initial ensemble as
in Fig. 2(top) (ensemble 1) but for the values of ε, γ and μ adopted for Fig 1(right). We have
changed the partition to q = 500 × 500 while the rest of the parameters (t,Δt,S) are the
same as above.

We observe that diffusion, though macroscopic, is restricted to a relatively small domain
of the unit square. This is revealed by the values of the concomitant entropies that are smaller
than those for the case in which the system covers almost all the unit square; however, here
the size of the cells of the partition is larger. Note that though the normalized entropies, S
and S0 somewhat depart, both evolve at a similar rate. We can provide a rough estimate of
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Fig. 4 (Left panel) Diffusion observed up to 106 for two ensembles of size 10−6 of 2000 initial conditions,
one (in red) starting at (y1(0), y2(0)) = (0.25, 0.25), the same as Fig. 3(left panel) but plotted with half of
the crossings with S, and a second one (in green) initially located at (y1(0), y2(0)) = (0.20, 0.20). The black
squares indicate the location of the initial ensembles. (Right panel) Variance evolution �δy2
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the extent of the diffusion recalling that, for the normalized entropy it is q0 ≈ qS and being
the size of the cells 1/q , the area covered by the ensemble is q0/q ≈ qS−1 and therefore the
linear extension of the diffusion would be Δyi ∼ q(S−1)/2, for q = 500 × 500 and after 106

iterates, S ≈ 0.65, leading to Δyi ∼ 0.11. The right panel reveals that, even in the case of
a bounded diffusion, Eq. (13) holds. The constant k in (15) is obtained again by recourse to
(16). We observe that the mean rate at which the variances evolve with time is still slowly
decreasing at t = 106, revealing that the diffusion is not normal over this time interval.

In view of the above results and those of our vast numerical experimentation, we here
propound S and S� as an indication of the extent of the diffusion and the rate at which it
changes, respectively, the latter providing a measure of the macroscopic diffusion rate. In
this direction, we focus on the next experiment.

Fixing again ε = 0.25, γ = 0.1 and μ = 0.5, we take a similar ensemble as the one above,
but now centered at (x1(0), x2(0), y1(0), y2(0)) = (0, 0, 0.20, 0.20) (ensemble 2). A simple
inspection of Fig. 3 (left panel) reveals that the ensemble 2 lies on the region covered by
the diffusion starting at y1(0), y2(0)) = (0.25, 0.25) (ensemble 1) so that we should expect
similar dynamical properties for both ensembles, that is comparable variance evolution and
diffusion rates.

Figure 4(left) shows that the diffusion of both ensembles, though with a different surface
density distribution, their corresponding areas largely overlap; however, their variances evolve
in a quite different way, as Fig. 4(right) shows. Again, it is evident that the observed diffusion
is not normal and thus any attempt to estimate a diffusion coefficient, for instance by a linear
fit on the variance evolution, would lead to very dissimilar values for such a macroscopic
instability.

Now, Fig. 5(left) shows the evolution of the normalized entropies for both ensembles. As
expected, the final value of S for ensemble 1 is larger but comparable to that of ensemble 2,
since the intersections of the latter with the section seem to be more confined than those of
ensemble 1. Also they evolve in a different way and note that at t ≈ 1.5 × 105 both entropies
take the very same value. For t > 1.5 × 105 the entropy for ensemble 2 slightly varies, while
for ensemble 1 it is still increasing, revealing that diffusion continues visiting new cells of
phase space. The evolution of S� for both ensembles also reveals that the measure of the rate
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Fig. 5 Evolution of S and S� for the ensembles 1 and 2, each identified with the same color pattern as in Fig. 4

of this macroscopical diffusion should be comparable, and in fact, their final values are rather
similar. In both cases, the diffusion rate would be close to 10−9 after t = 106.

Several numerical experiments have been carried out with different values of the map
parameters, in particular for very small, moderate and large values of ε, γ and μ. Also the
total motion time ranged from t = 104 to t = 107, with different selections of Δt , for
ensembles located all over the unit square and considering different partition sizes. The
results concerning S(t), S�(t), q0(t)/q and variances’ evolution are quite well represented
by the results shown in Figs. 4 and 5.

Finally, as a global experiment and adopting again ε = 0.25, γ = 0.1, μ = 0.5 we take
a grid of 500 × 500 initial values of (y1, y2) ∈ [0, 0.5) × [0, 0.5) with x1(0) = x2(0) = 0.
We consider ensembles of size 10−7 of 10 initial conditions around each y1(0), y2(0) and
compute the corresponding final values of S, S� and q0/q on the sectionS : |x1|+|x2| ≤ 0.02,
with q = 500 × 500 and after a total motion time t = 5 × 105, taking Δt = 2.5 × 103.
In order to reduce oscillations in the final value of S� as Fig. 5(right) shows, we average the
values of S� over the interval (5Δt, t).

Figure 6 displays the results for S and S� (in logarithmic scale). Both figures should be
compared with Fig. 1(right), but keeping in mind that while the chaos dynamical indicator J
has been obtained for t = 400, the entropy computation involves t = 5 × 105 so that around
resonances and their crossings the chaotic domains become larger, as both S and S� contour
plots reveal. Recall that due to computational limitations Fig. 6 has 11% of the resolution of
Fig. 1(right). Although the global picture given by the three figures is similar, note that while J
measures the local exponential rate of divergence around each initial condition y1(0), y2(0),
S and S� provide a measure of the extent and the rate of diffusion of a small ensemble starting
at y1(0), y2(0), respectively. As we observe from these figures, for the map (2) and the given
values of ε, γ andμ, the mean diffusion rate ranges from log S� � − 13 to log S� > − 10. Note
that the lower values of S� correspond to stable, regular motion where the expected value is
S� ≈ 0 while the larger ones appear in chaotic domains of the phase space. The most unstable
region corresponds to the intersection of the two half integer resonances y1 = y2 = 0.5,
while around the integer resonances’ crossing the diffusion rate is clearly smaller and certain
dynamical structure is revealed by both S and S�. The lower values of the (normalized)
entropy are very close to 0 as expected; on the other hand the highest values are nearly half
of its maximum value, so every ensemble of orbits with S ∼ 0.5 visits ∼ √

q = 500 cells of
size 4 × 10−6 in 5 × 105 units of time, leading to a linear extension of the larger instability
of the order of 0.05. A very similar (not included) figure is obtained for the contour plot of
q0/q , revealing that this simple ratio also provides a measure of the extent of diffusion.
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Fig. 6 Contour plot for S (left) and S� (right, in logarithmic scale) for a grid of 500 × 500 initial conditions
and taking ensembles of 10−7 containing 10 values of y1(0), y2(0) around the equispaced grid values after
t = 5 × 105 (see text for more details)

The question is why S and S� yield a better estimation of the diffusion extent and its
mean rate than those derived for instance from the variance (4). The answer seems to be
quite simple. The variance evolution of the ensemble is highly sensitive to stickiness and
this phenomena seriously affects its time rate, as for instance Fig. 4 clearly shows. As a
consequence, any estimation of a diffusion coefficient computed over a finite time interval
by means of a normal diffusion assumption would in general fail.3 On the other hand, the
entropy, which takes into account all the dynamical information of the ensemble trajectory,
evolves in a smooth way and it is much less affected by stability domains that slow down the
chaotic diffusion during some time interval. Essentially, the entropy measures the full area
of the intersections of the orbits with the section S. Of course, the intrinsic time dependence
of the diffusion due to the dynamical phase space structure and its anisotropic character are
also observed by means of the entropy. The same arguments apply to S� and thus we are
confident of S and S� to provide a good measure of the chaotic diffusion within a given finite
time interval.

4 A continuous time dynamical system: the Arnold model

The classical Arnold Hamiltonian (Arnold 1964) (also discussed in Chirikov (1979), Giorgilli
(1990), Simó (2001), Lega et al. (2008), Efthymiopoulos (2012) among many others) has
been recently revisited in Cincotta et al. (2018) and herein we follow its approach. The
Hamiltonian has the form

H(I1, I2, θ1, θ2, t; ε, μ) = 1

2

�
I 2
1 + I 2

2

� + ε(cos θ1 − 1)(1 + μB(θ2, t))

B(θ2, t) = sin θ2 + cos t, (17)

with I1, I2 ∈ R, θ1, θ2, t ∈ S
1, where μ should be exponentially small with respect to ε,

for any analytical approach.

3 The estimation of the exponent β and the corresponding diffusion coefficient by a power law fit seems not
to work when dealing with such finite times, the value of β being highly sensitive to both the total motion time
and Δt (see however next section).
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For ε = 0 the system has two global integrals of motion, namely I1 and I2, which determine
the invariant tori supporting the quasiperiodic motion with frequencies ω1 = I1, ω2 = I2.
In case ε �= 0, μ = 0 the system still has two integrals,

H ε
1 (I1, θ1) = 1

2
I 2
1 + ε(cos θ1 − 1), I2, (18)

and the unperturbed Hamiltonian takes the form

H ε
0 (I1, I2, θ1) = H ε

1 (I1, θ1) + 1

2
I 2
2 . (19)

The Hamiltonian H ε
1 is the pendulum model for the resonance ω1 = 0; H ε

1 ≡ h1 = −2ε

corresponds to the exact resonance or stable equilibrium point at (I1, θ1) = (0, π) while
h1 = 0 to the separatrix and thus (I1, θ1) = (0, 0) is the unstable point. The frequencies are
then

ω1 = ωp(h1, ε), ω2 = I2,

where ωp(h1, ε) denotes the pendulum frequency. Close to the separatrix, for both oscillations
and rotations, ωp(|h1| 	 1, ε) ≡ ωsx (h1, ε) → 0 when |h1| → 0. The half-width of the
resonance ω1 = 0 in action space is (ΔI1)r = 2

√
ε, so within this resonance the variation

of I1 is bounded by |ΔI1| ≤ 2
√

ε while I2 remains constant. Therefore in action space,
ω1 → ωsx (h1, ε) → 0 when I1 → 2

√
ε (h1 → 0).

For ε �= 0, μ �= 0 the full system (17) can be recast as

H(I1, I2, θ1, θ2, t; ε, μ) = H ε
0 (I1, I2, θ1) + μV ε(θ1, θ2, t),

μV ε(θ1, θ2, t) = εμ(sin θ2 + cos t)(cos θ1 − 1), (20)

where H ε
0 is given by (19) and θ2(t) = ω2t + θ0

2 . The perturbation μV ε, for εμ 	 1, mainly
affects the motion close to the separatrix of the resonance ω1 = 0 leading to the formation of
the chaotic layer; the dynamics becomes unstable, chaotic in a small domain |I1±2

√
ε| ≤ ws ,

where ws denotes the width of this layer. However, due to the dependence of V ε on θ2, also
I2 changes, and therefore motion along the stochastic layer could proceed. Due to the chaotic
character of the dynamics inside this narrow layer, the variation of I2 should also be chaotic,
giving rise to variations in I2. Thus, as I2 could change unboundedly, a large instability might
exist. This is the way in which Arnold diffusion is discussed in Chirikov (1979).

In (20) ω1 = 0 is just one of the six first-order resonances involved. A simple trigonometric
manipulation reveals that the resonances at order ε and εμ are

ω1 = 0, ω2 = 0, ω1 ± ω2 = 0 ω1 ± 1 = 0. (21)

The resonances intersect at seven different points in frequency space, namely (ω1, ω2) =
(0, 0), (0,± 1), (± 1,± 1),4 hence the diffusion would spread over all this resonance set.
However for εμ 	 ε 	 1 the diffusion rate should be negligible along all resonances except
for ω1 = 0, since the latter has the main amplitude ∼ ε, while all the other resonances have
amplitudes ∼ εμ 	 ε.5

Considering the fully perturbed motion, besides the ones given in (21), the full set of
resonances (in action-energy space) is given by a linear combination of the form

m1ωp(h1, ε) + m2 I2 + m3 = 0, m1,m2,m3 ∈ Z. (22)

4 Note that their intersections in action space is different.
5 It is well known that the theoretical diffusion rate depends exponentially on −1/

√
Vmn where Vmn stands

for the amplitude of the above considered resonances.
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In Cincotta et al. (2018) portraits similar to those displayed in Fig. 1 are included showing
the resonance web defined by (22) and a MEGNO dynamical map for this model.

4.1 Numerical experiments

Let us investigate the diffusion in this model by fixing the value of ε = 0.25 and taking two
different values of μ = 0.01, 0.025. We will focus on chaotic diffusion along the stochastic
layer of the main or guiding resonance, ω1 = 0, and for different initial values of ω2 = I2.
According to Chirikov’s theoretical results Chirikov (1979) by means of the normal diffusion
approximation, when με 	 ε 	 1 the local diffusion rate for |ω2| < 1 should be larger than
for |ω2| > 1. As pointed out in Cincotta et al. (2018), this difference in the diffusion rates
rests on the assumption that for |ω2| < 1, the strongest perturbation to the motion on the
separatrix of the guiding resonance is due to the closest resonance in frequency space, the
layer resonances ω2 = ±ω1 that give rise to the chaotic layer around the separatrix of the
guiding resonance (motion across the layer), and thus the diffusion along this layer is driven
by the smaller perturbing terms, the driving resonances ω1 = ± 1. For |ω2| > 1, the layer
resonances turn to ω1 = ± 1, while the driving resonances become ω2 = ±ω1. Clearly, near
|ω2| = 1 all these arguments are no longer applicable as well as when ε � 1, so for the
adopted values of ε, μ and for |ω2| ≈ 1 numerical experiments are required.

For ε = 0.25, the unperturbed separatrix (or the center of the chaotic layer) of the guiding
resonance lies at I1 = 1 and typical time scales for the motion inside the chaotic layer are
Ta � 20 (see Cincotta et al. 2018). We focus on the diffusion within a range of |ω2| where
the guiding, layer, driving and other high-order resonances exhibit crossings and overlapping
as the MEGNO contour plots reveal in Figs. 7 and 8, e.g., |ω2| ≤ 2.

We took action values on the chaotic layer, (I1, I2) = (1, ω2), and θ1 = π, θ2 = t = 0
as the initial values for the angle variables, in coincidence with those adopted for comput-
ing the MEGNO map. We considered six ensembles of 100 initial values of the actions
around (1, ω2) of size ∼ 10−7 for each value of μ. The center of each ensemble lies at
ω2 = − 1.69,− 1.13,− 0.173, 0.053, 0.55, 1.55, respectively. The equations of motion
were integrated with a time step of size 0.01 for a total motion time 4 × 106.

The results for μ = 0.025 are reported in Fig. 7, where the wandering of the actions for
the initial ensemble (depicted in white) is pursued and superimposed on the MEGNO contour
plot (for |I1| ≤ 1.5, |I2| ≤ 2), each color identifying a different set of 100 trajectories. In
order to observe the diffusion in the 2D plane (I1, I2), we considered the section defined by
|θ1(t) − π | + |θ2(t)| < 0.01.

From these experiments, we observe that despite the location of the initial ensemble,
the diffusion spreads over the range |I2| ≤ 2 almost uniformly and in all cases the same
resonances are visited after the considered motion time. Then, for these values of ε and μ,
the instability is large and it is expected the same mean diffusion rate all over |I2| � 2.

The results for μ = 0.01 are presented in Fig. 8, where we observe that the ensembles
located at the lowest and highest values of ω2 reveal a bounded diffusion over the range
0.4 � |I2| < 2, while for the rest of the ensembles the diffusion spreads over a barely
smaller domain than that for the case of μ = 0.025, |I2| < 2. Therefore, for these four
ensembles, we also expect a similar characterization of the diffusion, as well as for the
ensembles located at ω2 = − 1.69, 1.55.

Figure 9 presents the variance evolution of the ensembles over the section |θ1(t) − π | +
|θ2(t)| < 0.01 computed by means of (4) for Δt = 2 × 104 (nl � 1000). We observe that
for μ = 0.025 the diffusion does not behave in a normal fashion; moreover, fitting a power
law provides quite different exponents ranging from 0.10 to 1.02 when considering the full
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Fig. 7 Six initial ensembles (indicated as white circles) are followed onto the MEGNO contour plot for
	 = 0.25, μ = 0.025, white and light gray denote stable motion while black indicates strong chaotic dynamics.
The concomitant trajectories for the six ensembles that intersect the section |θ1(t) − π | + |θ2(t)| < 0.01 are
depicted with different colors. Figure taken from Cincotta et al. (2018)

time span. However, when the last 80% lapse is regarded, lower exponents are obtained in
some cases. Similar results arise for μ = 0.01, although the variance’s evolution seems to
be closer to that corresponding to a normal process: a power law fit provides exponents in
the range 0.63 − 0.8 for the ensembles that present a more extended diffusion and close to 1
for the other ones. Therefore, the characterization of the diffusion by means of the variance
evolution over the considered time-scale seems not to represent what it is observed in Figs. 7,
8, since in almost all cases the dynamical properties of the system for each value of μ should
be very similar.

A region in action space encompassing all the crossings with the section has to be
determined in order to define a partition for the computation of S and S�. Here we take
L1 = {I1 : |I1| ≤ 1.4}, L2 = {I2 : |I2| ≤ 2.5} for μ = 0.025, while L1 = {I1 : |I1| ≤
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Fig. 8 Six initial ensembles (indicated as white circles) are followed onto the MEGNO contour plot and the
concomitant trajectories depicted with different colors for μ = 0.01
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1.12}, L2 = {I2 : |I2| ≤ 2} for μ = 0.01 being l1 and l2 the diameter of L1 and L2,
respectively. Figure 10 shows the evolution of the entropy for all the ensembles when adopt-
ing a partition q = 400 × 400. Both figures reveal a very similar trend for the entropies
for μ = 0.025, while for μ = 0.01 the ensembles for which the diffusion is restricted to
0.4 � |I2| < 2, S reaches smaller values, as expected. For instance, for μ = 0.025, after
t = 4 × 106, S ≈ 0.8 and thus for the given partition it leads to a linear extension of the
instability in I2 of ∼ q(S−1)/2l2 ≈ 1.5, which is smaller but comparable to the observed one
for all the ensembles.

Figure 11 corresponds to the ensemble located at ω2 = − 1.13 (for μ = 0.025) and
displays a comparison between the evolution of S� (normalizing k to the extent of the area
covered by the diffusion of this ensemble) with �δ I 2

2 �/t . Notice that while the latter is still
decreasing at t = 4 × 106, S� already reaches a nearly asymptotic value at t = 2 × 106,
though both quantities exhibit a comparable evolution and similar final values.

Finally, Fig. 12 shows the evolution of S� for all the ensembles and both values of μ. It turns
out that for μ = 0.025 all the ensembles present a very similar diffusion rate measured by S�,
of the order of 10−7. On the other hand, for μ = 0.01 the diffusion rates for the ensembles
for which the diffusion spreads over nearly the same region are similar, ∼ 5 × 10−8, while
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Fig. 12 S� for the six ensembles with the same color identification for μ = 0.025 (left) and μ = 0.01 (right)
for a partition q = 400×400 over the domains |I1| ≤ 1.4, |I2| ≤ 2.5 for μ = 0.025 and |I1| ≤ 1.12, |I2| ≤ 2
for μ = 0.01

those leading to a more restricted diffusion, also have comparable values, of the order of
∼ 10−8.

5 Conclusions

Herein we face the difficulty to compute a meaningful measure of the chaotic diffusion
and its time rate, independent of the scaling of the variance with time. Theoretical, heuris-
tic and numerical arguments support that S and S� are suitable estimators of diffusion in
both limits, local and global diffusion. The strongest assumption for our proposal is indeed
that the variation of the number of occupied cells is entirely due to changes in the actions
during the diffusion process, while a second but weaker one regards the approximation
of the actual entropy by the logarithm of the number of non-empty cells. A third though
more natural assumption is the nearly equal measure of the cells occupied by the intersec-
tions of the ensemble trajectory with a given section. Anyway a more rigorous foundation
of this formulation should be provided. We remark that the conjecture �δy2(t)� ∝ δq0(t)
is independent of the transport process that takes place in phase space and thus the time
evolution of S and S� would reveal the character of the chaotic diffusion, i.e., normal or
abnormal.

With the help of a 4D symplectic map and by recourse to the conditional entropy as
indicator of chaos, we yield numerical evidence that S� gives reliable values of the mean
diffusion rate within the domain covered by the roam of the action values, while S measures
the extension of this domain, i.e., the range of variation of the actions over the considered
time span.

For the sake of illustration, we have presented a few numerical examples involving chaotic
diffusion of a single ensemble and the corresponding evolution of S, S0, S� and the variances.
However, plenty of computations have been carried out considering quite restricted diffusion,
overlapping of several ensembles, dependence of the entropy on the adopted partition, differ-
ent parameters of the map, etc. The outcomes presented in Sect. 3 tailor a quite representative
sample of all our numerical experiments. Further, the global results displayed in Fig. 6 are
pretty eloquent: both S and S� are very effective dynamical indicators (as follows from a
simple comparison with Fig. 1); however, they also provide further information about the
local and global dynamics than, for instance, the classical chaos indicators.
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The application of this approach to chaotic diffusion in a well-known Hamiltonian system
of more than two degrees of freedom reveals that our initial conclusions, that are based on
profuse numerical experimentation on a 4D map, seem to be general and thus we claim for
S and S� to characterize chaotic diffusion in phase space.

The computational effort to obtain the entropy and its derivative is nearly the same needed
to evaluate the variances over the section, but of course it is quite large in comparison with the
one required by any dynamical indicator of chaos. Indeed, in general, a dynamical indicator
is computed for a given grid of individual initial conditions for relatively short motion times,
while the entropy, as well as the variances, require a grid of initial ensembles and larger
times. Anyway, when dealing with maps, this is not a serious limitation; however, it could
be restrictive in the case of systems of continuous time and several degrees of freedom.

It turns out then that a combination of different techniques would furnish a very efficient
way to investigate global and local dynamics in multidimensional systems. The structure of
the phase space would be revealed by any chaos indicator, which would provide information
on the location of invariant manifolds, resonances, stable and chaotic regions, etc., allowing
to obtain a clear picture of the global dynamics of the model. However, since any classical
indicator could not distinguish between stable or unstable chaos, S and S� should be computed
in those chaotic domains of physical interest in order to get a measure of the instability and
its time rate.
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