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Abstract
Selenium (Se) is an essential trace element with important functions in animals and whose deficiency is associated with
reproductive failures. The aim of this study was to investigate the effect of Se concentrations during in vitro maturation (IVM)
of Bos taurus oocyte within the reference ranges for Se status in cattle. For this purpose, Aberdeen Angus cumulus–oocyte
complexes (COCs) were matured in IVMmedium supplemented with 0, 10, 50, and 100 ng/mL Se (control, deficient, marginal,
and adequate, respectively). The results demonstrated that marginal and adequate Se concentrations added during IVM increased
viability and non-apoptotic cumulus cells (CC). Moreover, the addition of Se to culture media decreased malondialdehyde level
in COCwith all studied concentrations and increased total glutathione content in CC and oocytes with 10 ng/mL Se. On the other
hand, total antioxidant capacity of COC, nuclear maturation, and the developmental capacity of oocytes were not modified by Se
supplementation. However, 10 ng/mL Se increased hatching rate. In conclusion, supplementation with 10 ng/mL Se during
in vitro maturation of Bos primigenius taurus oocytes should be considered to improve embryo quality.
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Introduction

Selenium (Se) is an essential trace element with important func-
tions in animals, including reproductive activity in both sexes
[1–3]. In males, Se deficiency may affect testosterone and sper-
matozoa synthesis, leading to infertility [4]. Besides, Se influ-
ences the gross and histological morphology of testes, as well as
scrotal length and circumference [5–8]. In cows, Se deficiency
has been associated with reduced fertility, placental retentions,
and increased incidence of mastitis and metritis [9–11].

Komisrud et al. [12] demonstrated that Se supplementation im-
proved the first-service conception rate in Se-deficient dairy
cows. Moreover, Se increased fertility by reducing embryonic
death during the first month of gestation [2].

Selenium is absorbed mainly in the jejunum and
transported bound to α- and β-globulins, lipoproteins, and
albumin [13]. In cattle, Se status is defined in terms of refer-
ence plasma Se concentrations as deficient, marginal, and ad-
equate (< 50, 50–83, and > 83 ng/mL, respectively) [14–17].
Selenium plays an important role in cellular antioxidant de-
fenses because it is a structural component of selenoproteins,
many of which have antioxidant activity, such as the glutathi-
one peroxidase family (GPx) and thioredoxin reductases
(TrxRs) [18]. The GPx oxidizes the glutathione reduced form
(GSH) to oxidized glutathione (GSSG) in the GSH/GSSG
antioxidant system, regulating hydrogen peroxide and other
hydroperoxides [19]. Selenium also plays a key role in cell
cycle and apoptosis, inhibiting genetic damage [20]. In addi-
tion, several studies have revealed that Se regulates intracel-
lular signaling, including protein kinase C, nuclear factor-
kappa B, and the insulin pathway [21, 22].

Selenium has been used as a supplement in culture media,
usually combined with other compounds such as insulin-
transferrin [23–25] or calcium-calcium ionophore [26].
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According to Baker et al. [27], cell culture media are routinely
deficient in Se and should therefore be supplemented with
physiological concentrations of this trace element. Most re-
searchers have reported the addition of lower or
supraphysiological Se concentrations to IVM medium [25,
28]. In previous studies, we demonstrated that the addition
of adequate concentrations of trace elements such as copper,
manganese, or zinc to IVM media improved the developmen-
tal capacity of bovine oocytes [29–31]. Although several stud-
ies have shown the importance of Se in in vitro embryo pro-
duction [23–26], the effect of Se concentrations during IVM
within the reference ranges for Se status on bovine has not yet
been quantified. Therefore, the objective of this study was to
investigate the effects of Se supplementation (as sodium sele-
nite) during IVM of Bos taurus oocytes within the reference
ranges for Se status in cattle. Experiments were designed to
evaluate the effect of various Se concentrations added to the
IVM medium on viability and apoptosis of cumulus cells
(CC), and total antioxidant capacity (TAC), GSH-GSSG in-
tracellular concentrations, and malondialdehyde (MDA)
levels in cumulus–oocyte complexes (COCs). In addition,
Se concentrations in follicular fluid, nuclear maturation, and
developmental capacity of oocytes matured with various Se
concentrations were evaluated.

Materials and Methods

Reagents and Media

All reagents for media preparation were purchased from
Sigma Chemical Co. (St. Louis, MO, USA). The maturation
medium was bicarbonate-buffered TCM-199 supplemented
with 10% (v/v) fetal calf serum (FCS), 0.2 mM sodium pyru-
vate, 1 mM glutamine, 10 μg/mL LH (NIHoLH- S1), 1 μg/
mL FSH (Folltropin, Bioniche Animal Health, USA), and 1
μg/mL 17b-estradiol. The fertilization medium consisted of
TALP supplemented with 2% (v/v) MEM-essential amino
acids, 1% (v/v) MEM-nonessential amino acids, 6 mg/mL
bovine BSA-FAF, 20 μM penicillamine, 10 μM hypotaurine,
and 10 μg/mL heparin sulfate [32]. The culture medium for
embryo development consisted of modified synthetic oviduct
fluid (SOFm), which was composed of SOF [33] supplement-
ed with 1 mM glutamine, 2% (v/v) MEM-essential amino
acids, 1% (v/v) MEM-nonessential amino acids, and 8 mg/
mL bovine serum albumin fatty acid free (BSA-FAF) [34].

In Vitro Maturation, Fertilization, and Culture

For IVM, in vitro fertilization (IVF) and in vitro culture (IVC)
of embryos, previously described protocols, were used [35].
Briefly, Aberdeen Angus ovaries were obtained from an abat-
toir and transported to the laboratory in sterile NaCl solution

(9 g/L) with antibiotics at 37 °C within 3 h after slaughter.
Ovaries were pooled, regardless of the estrous cycle stage of
the donor. COCs were aspirated from 3- to 8-mm follicles
using an 18-G needle connected to a sterile syringe. Only
cumulus–intact complexes with evenly granulated cytoplasm
were selected for IVM, using a low-power (× 20–30) stereo-
microscope. For this purpose, COCs were washed twice in
TCM-199 buffered with 15 mM Hepes and twice in IVM
medium. Groups of 10 COCs were transferred into 50 μL of
IVMmedium under mineral oil (Squibb, Princeton, NJ, USA)
pre-equilibrated in a CO2 incubator. The COCs were matured
in IVMmedium supplemented with 0, 10, 50, and 100 ng/mL
Se concentrations, which were established according to Se
status in cattle (control, deficient, marginal, and adequate, re-
spectively). Incubations were performed at 39 °C in an atmo-
sphere of 5% CO2 in air with saturated humidity for 24 h. For
IVF, oocytes were washed twice in Hepes-TALP supplement-
ed with 3 mg/mL BSA-FAF and placed into 50 μL drops of
IVF medium under mineral oil. In all experiments, frozen
semen from the same bull and batch was used. Two straws,
each containing 40 × 106 spermatozoa, were thawed in a 37 °C
water bath. Spermatozoa were washed in a discontinuous
Percoll gradient prepared by layering 2 mL of 45% Percoll
on top of 2 mL of 90% Percoll in a 15-mL centrifuge tube.
Semen samples were deposited on top of the Percoll gradient
and centrifuged for 20 min at 500×g. The pellet was removed
and resuspended in 300 μL of Hepes-TALP solution and cen-
trifuged at 300×g for 10 min. After removal of the superna-
tant, spermatozoa were resuspended in IVF medium, counted
in a hemocytometer chamber, and further diluted. The final
sperm concentration in IVF was 2 × 106 sperm/mL.
Incubations were conducted at 39 °C in 5% CO2 in air with
saturated humidity for 24 h. After IVF, presumptive zygotes
were stripped off CC by passing through a drawn pipette; they
were then washed twice in Hepes-TALP and cultured in
SOFm. Embryo culture was carried out in 40-μL drops of
medium under mineral oil (10 zygotes per drop) at 39 °C in
an atmosphere of 7%O2, 5%CO2, and 88%N2 with saturated
humidity. All embryos were cultured in the absence of glucose
during the first 24 h and further cultured for 9 days in the
presence of 1.5 mM glucose. The medium was changed every
48 h, and embryos were incubated for 10 days (day 0 = day of
fertilization). Cleavage rates were recorded 48 h after insem-
ination. At the end of incubations, embryos were evaluated for
the morphological stages of development with an inverted
microscope (Diaphot, Nikon, Tokyo, Japan).

Analysis of Oocyte Nuclear Maturation

After IVM, oocytes were placed in TCM-199 medium with
0.2% hyaluronidase at room temperature (RT) and then pipet-
ted to remove CC. Oocyte nuclear maturation was assessed by
mounting and staining the denuded oocytes with Hoechst
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33342, a fluorescent DNA-specific dye. Oocytes were then
examined under an Olympus BX40 epifluorescence micro-
scope (Olympus, Tokyo, Japan) equipped with an appropriate
filter combination and classified as germinal vesicle (GV),
metaphase I (MI), anaphase-telophase (A-T), or metaphase
II + polar body (MII + PB) stage of maturation [36, 37].
Oocytes with abnormal or no chromatin configuration were
classified as degenerates (D). Results were expressed as oo-
cyte percentages with different status of nuclear maturation.

Assessment of CC Viability

After maturation, viability was evaluated by incubating CC
for 10 min at 37 °C in phosphate-buffered saline (PBS) medi-
um with 2.5 g/L trypan blue stain. Then, cells were washed in
PBS medium and observed under an Olympus BX40 micro-
scope at × 200 magnification. Dead CC showed a character-
istic blue staining under white light.

Assessment of CC Apoptosis by Annexin V Staining
Assay

Annexin V is a calcium-dependent phospholipid-binding pro-
tein with high affinity for phosphatidylserine (PS) [38, 39].
Early apoptosis was evaluated by membrane redistribution of
PS with the Annexin-V-Fluos Staining Kit (Roche, cat no. 11-
858-777-001). The assay involves simultaneous staining with
both Annexin-V-Fluos (green) and the DNA stain propidium
iodide (PI, red).While normal cells exclude PI and Annexin V,
early-apoptotic cells are visible in green and can be differen-
tiated from late-apoptotic and necrotic cells by PI staining.
Necrotic cells take up PI and stain red, while late-apoptotic
apoptotic cells stain orange/green and early-apoptotic stain
green only. Briefly, cells (1 × 106) were washed twice with
PBS and centrifuged at 200×g for 5 min. The pellet was re-
suspended in 100 mL of Annexin-V-Fluos labelling solution
(Annexin V + fluorescein, Hepes and PI) and incubated in the
dark for 10–15 min at 15–25 °C. The cell suspension (50 μL)
was layered onto the slides, which were immediately covered
with cover slips. A total of 200 CC per treatment were ana-
lyzed under a fluorescence microscope. Scoring was made at
× 400 magnification using an Olympus BX40 epifluorescence
microscope equipped with a 515–560-nm excitation filter.

Total GSH Assay

After completion of IVM, all oocytes from each treatment (n =
20) in a batch were combined and stripped of surrounding CC
by repeated pipetting with a narrow-bore glass pipette in
Hepes-TCM 199. For each replicate, pools of oocytes from
each treatment were placed in microtubes containing 10 μL
PBS, frozen at − 20 °C and thawed at RT. This procedure was
repeated three times. Complete oocyte disruption was

achieved by repeated aspiration using a narrow-bore pipette.
Cumulus cells from at least 20 COCs were placed in
Eppendorf tubes and washed twice by resuspension in PBS
and centrifugation at 14,000×g for 10 s. The pellets were
resuspended in 500 μL PBS and counted in a hemocytometer
chamber. After centrifugation at 14,000×g for 10 s, pellets
were resuspended in 40 μL PBS, frozen at − 20 °C, and
thawed at RT. Complete cell disruption was performed by
addition of 400 μL of distilled water and repeated aspiration
with a 26-G needle. Distilled water was added to increase the
volume of samples to 1.2 mL, and they were then mixed with
1.2 mL of 0.2 M phosphate buffer containing 10 mM EDTA.
The increase in absorbance was measured at 412 nm every
30 s up to 5 min using a double-beam spectrophotometer, after
rapid addition of 100 μL of 10 mM 5,5′-dithiobis 2-
nitrobenzoic acid (DTNB), 1 unit of glutathione reductase
(in 50 μL), and 50 μL of 4.3 mM NADPH. Blanks consisted
of 10 μL PBS or 10 μL aliquots of wash medium. Total GSH
(GSSG-GSH) content in CC and oocytes was calculated from
a standard GSH curve [40].

Thiobarbituric-Acid-Reactive Substance Method

Lipid peroxidation levels were measured using the
thiobarbituric-acid-reactive substance (TBARS) method. The
TBARS concentration in COC was measured spectrophoto-
metrically and expressed as the MDA level (nmol MDA/20
COCs) using tetramethoxypropane (TMP) as a standard. After
completion of IVM, all COCs from each treatment (n = 20) in
a batch were grouped and placed inmicrotubes containing 100
μL PBS, frozen at − 20 °C, and thawed at RT. This procedure
was repeated three times and then the supernatant was mixed
with 100 μL of 8.1% SDS solution and 750 μL of 20% acetic
acid solution. After adding 750 μL of 0.8% TBA solution and
2-mL distilled water, the mixture was heated in a boiling water
bath for 1 h at 90 °C. It was then cooled at RT and centrifuged
at 4220×g for 15 min. Finally, the absorbance of the superna-
tant was measured at 532 nm using a spectrophotometer. The
value was subsequently determined based on comparison with
a TMP standard curve.

Total Antioxidant Status

The determination of TAC was carried out with colorimetric
method using the Randox total antioxidant status kit (cat no.
NX2332, Randox Laboratories Ltd, Crumlin, UK), with slight
modifications. Briefly, after completion of IVM, all COCs
from each treatment (n = 20) in a batch were grouped and
placed in microtubes containing 100 μL PBS, frozen at − 20
°C, and thawed at RT. This procedure was repeated three times
and then 20 μL of supernatant was added to 1 mL of the
chromogen 2,2’-Azino-di- (3-ethylbenzthiazoline sulfonate)
(ABTS). Twenty microliters of 6-hydroxyl-2, 5, 7, 8-
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tetramethylchroman-2-carboxylic acid (Trolox) at a concen-
tration of 2.27 mmol/L was used as standard, whereas 20 μL
of deionized water was used as blank. Chromogen (1 mL) was
added to standard and blank samples. The absorbance was
measured with a spectrophotometer at 600 nm 3 min after
substrate addition. Results were expressed as mmol/L.
Measurements in duplicate were used to calculate intra-assay
variability.

Se Concentrations in Follicular Fluid and IVM Medium

Aberdeen Angus ovaries were wrapped with plastic film and
taken to the laboratory in an icebox within 2 h after slaughter.
Follicle diameter was measured with a vernier caliper and then
only large follicles (the largest follicles were 11–12 mm, but
most of them were ~ 10 mm) were aspirated. Follicular fluid
was collected from each follicle by aspiration with an insulin
syringe. Samples were kept on ice until centrifugation.
Samples of IVM medium with 10% FCS were also collected
(n = 5). Selenium concentration was measured by atomic ab-
sorption spectrophotometer (GBC 902) with graphite furnace
through an internal quality control [31].

Experimental Design

Effect of Se on Viability

In experiment 1, the effect of Se on CC viability following the
addition of 0, 10, 50, or 100 ng/mL Se to IVM medium was
evaluated. The COCs were matured for 24 h (as described
above), and viability was evaluated as already mentioned.
For this purpose, 512 COCs were matured in five replicates
and at least 200 CC per treatment were analyzed in each
replicate.

Effect of Se on Apoptosis

In experiment 2, the effect of Se supplementation to IVM
medium with 0, 10, 50, or 100 ng/mL Se on CC apoptosis
was determined by Annexin V Staining Assay. The IVM was
performed as described above. For this purpose, 400 COCs
were matured in four replicates.

Effect of Se on Total GSH Concentration

In experiment 3, the effect of adding 0, 10, 50, or 100 ng/mL
Se to maturation medium on intracellular GSH-GSSG con-
centrations in both oocytes and CC was evaluated. The
COCs were matured for 24 h (as described above), and total
GSH concentrations were evaluated as previously mentioned.
For this purpose, 320 COCs were matured in four replicates.

Effect of Se on Lipid Peroxidation

In experiment 4, the effect of Se onMDA levels following the
addition of 0, 10, 50, or 100 ng/mL Se to IVM medium was
evaluated by TBARS. The COCs were matured for 24 h (as
described above) and total MDA level was evaluated as pre-
viously mentioned. For this purpose, 320 COC were matured
in four replicates.

Effect of Se on TAC

In experiment 5, the effect of adding 0, 10, 50, or 100 ng/mL
Se to maturation medium on TAC in COCwas evaluated. The
COCs were matured for 24 h (as described above) and TAC
was evaluated as previously mentioned. For this purpose, 320
COCs were matured in four replicates.

Effect of Se on Oocyte Nuclear Maturation

In experiment 6, the effect of Se supplementation to IVM
medium with 0, 10, 50, or 100 ng/mL Se on oocyte nuclear
maturation was determined. The IVM was performed as de-
scribed above. For this purpose, 357 COCs were matured in
five replicates.

Effect of Se on Subsequent Embryo Development

In experiment 7, the developmental capacity of oocytes ma-
tured in IVMmedium supplemented with 0, 10, 50, or 100 ng/
mL Se was investigated. IVM, IVF, and IVC were performed
as described above. For this purpose, 1336 COCs were ma-
tured in eight replicates.

Statistical Analysis

A completely randomized block design was used. The statis-
tical model included the random effects of block (replicate; n
= 4–8) and the fixed effect of treatment (0 vs 10 vs 50 vs 100
ng/mL Se). The analysis of TAC was performed with linear
models using the MIXED procedure of SAS (SAS Institute,
Cary, NC, USA). Oocyte nuclear maturation; CC viability;
CC apoptosis; and cleavage, blastocyst, and hatching rates
were analyzed by logistic regression using the GENMOD
procedure (SAS Institute), whereas TBARS and total GSH
were analyzed using the GLIMIX procedure (SAS Institute)
with gamma distribution. TAC, TBARS, and total GSH are
expressed as mean ± standard error of the mean (SEM).
Oocyte nuclear maturation; CC viability; CC apoptosis; and
the rates of cleavage, blastocyst, and hatching are expressed as
percentage. Statistical significance was set at p < 0.05, while a
trend for statistical significance was set between p > 0.05 and
≤ 0.10.
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Results

Selenium determination in follicular fluid and IVM
medium

Selenium concentration was 128.8 ± 7.9 ng/mL Se in FF and
was not detected in IVM medium.

Effect of Se on Viability

In experiment 1, CC viability was increased when Se was
added to IVM medium (p < 0.05), but the difference was
highest with the addition of 100 ng/mL Se (60.1, 64.1, 66.5,
and 69.0 % for 0, 10, 50, and 100 ng/mL Se, respectively; p <
0.05).

Effect of Se on Apoptosis

In experiment 2, results revealed a decrease of late-apoptotic
cells when COCs were matured in the presence of Se (p <
0.05). The percentage of necrotic cells after IVM was lower
in CC matured with 100 ng/mL Se than in CC matured with-
out Se (p < 0.05). In addition, the percentage of non-apoptotic
cells was higher when 50 and 100 ng/mL Se were added to
IVM medium (p < 0.05; Table 1).

Effect of Se on Total GSH Concentration

In experiment 3, intracellular GSH-GSSG concentrations did
not differ significantly in oocytes and CC in the presence of 0,
50, or 100 ng/mL Se during IVM. However, GSH-GSSG
concentration was increased by 10 ng/mL Se (p < 0.05;
Table 2).

Effect of Se on Lipid Peroxidation

In experiment 4, COC incubated with Se showed a significant
decrease in MDA level with respect to the control (p < 0.05).

The lowest MDA concentration was observed with 10 and 50
ng/mL Se (p < 0.05; Fig. 1).

Effect of Se on TAC

In experiment 5, the mean TAC of COC matured with Se was
similar to that of the control (p > 0.05). However, COCs ma-
tured in 100 ng/mL Se showed lower TAC than those matured
in 10 and 50 ng/mL Se (p < 0.05; Fig. 2).

Effect of Se on Oocyte Nuclear Maturation

In experiment 6, nuclear maturation was not significantly dif-
ferent in oocytes matured with 0, 10, 50, and 100 ng/mL Se
concentrations (Table 3; p > 0.05).

Effect of Se on Subsequent Embryo Development

In experiment 7, no differences were detected in cleavage and
blastocyst rates when Se was added to IVM medium (p >
0.05). However, 10 ng/mL Se in IVM medium improved the
hatching rate (p < 0.05; Table 4).

Discussion

The objective of this study was to investigate the effects of Se
supplementation during IVM of Bos taurus oocytes within the
reference ranges for Se status in cattle. Our results demonstrat-
ed that Se concentration in FF was 128.8 ± 7.9 ng/mL. The
addition of Se during IVM at marginal and adequate concen-
trations increased viability and non-apoptotic CC. Moreover,
the addition of Se to culture media decreased MDA level in
COC with all studied concentrations and increased GSH-
GSSG content in CC and oocytes with 10 ng/mL Se. On the
other hand, TAC of COC, nuclear maturation, and the devel-
opmental capacity of oocytes were not modified by Se

Table 1 Apoptosis in cumulus
cells matured in vitro with various
Se concentrations

Se supplementation Non-apoptotic Early-apoptotic Late-apoptotic Necrotic

(ng/mL) (n) (%) (%) (%) (%)

0 (control) 600 68.6 a 1.8 a 19.5 a 10.0 a

10 600 67.5 a 2.3 a 14.6 b 15.5 b

50 597 74.3 b 1.3 a 15.5 b 8.7 a

100 599 76.7 b 2.5 a 15.0 b 5.6 c

Bovine COCs were incubated in IVM medium with 0, 10, 50, and 100 ng/mL Se during 24 h. Apoptosis was
evaluated by Annexin-V-FITC - propidium iodide (PI). CCs (cumulus cells) were classified as non-apoptotic
(Annexin V–negative/PI-negative); early-apoptotic (Annexin V–positive/PI-negative); late-apoptotic (Annexin
V–positive/PI-positive), and necrotic (Annexin V–negative/PI-positive). Data are expressed as percentage. For
this purpose, 400 COCs were matured in four replicates
a–c Values with different superscript within each column differed (p < 0.05)
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supplementation to IVM medium, but an increase in hatching
rate was observed with 10 ng/mL Se.

Recently, Xiong et al. [28] reported that Se content in FF of
Bos grunniens (a wild bovine species) was 69 ± 3 ng/mL,
whereas in the present study, the Se concentration was twice
as high. Selenium concentration found in FF of Bos taurus
was similar to the concentration considered as adequate in
plasma. In the present study, IVMmedium without Se or with
a deficient Se concentration had a detrimental effect on CC
viability after maturation. Indeed, although apoptosis in CC
was significantly decreased when Se was added to IVM me-
dium, only an adequate Se concentration was able to reduce
the percentage of necrotic cells. This finding is in disagree-
ment withMauro et al. [41], who observed that the presence of
5, 50, or 500 ng/mL Se in the culture medium did not modify
viability or apoptosis of HT29 cells with respect to the control.
However, our results are consistent with that observed by Zou
et al. [42] in bovine mammary epithelial cells (BMEC). These
researchers demonstrated that sodium selenite increased via-
bility and reduced apoptosis and necrosis of BMEC exposed
to heat stress [42]. The antioxidant role of Se may be an

important mechanism in maintaining cell viability and
preventing apoptosis. It has been demonstrated that sodium
selenite protects porcine embryo cells against oxidants and
apoptosis [43].

The importance of Se in cellular antioxidant defense has
been widely studied. It has been shown that Se may exert its
beneficial effects through selenoproteins such as GPx and
TrxR [18]. Glutathione peroxidase enzymes eliminate hydro-
gen peroxide and lipid peroxides generated by free radicals
and other oxygen-derived species [44]. Malondialdehyde is
considered the major breakdown product split off from lipid
peroxides. An inverse correlation between plasma Se and
plasma MDA contents has been reported in pregnant women
[45]. In rats with hepatic damage induced by silver nanopar-
ticles, sodium selenite elevated the level of GSH and the ac-
tivity of GPx, catalase, and superoxide dismutase in liver [46].
Recently, Ceko et al. [47] demonstrated that Se and GPx1 are
present in bovine granulosa cells of large follicles and play a
critical role as antioxidants during late follicular development.
In addition, culture of mouse preantral follicles in the presence
of sodium selenite increased GPx activity and TAC,

Table 2 Total intracellular
glutathione concentration in
bovine oocytes and cumulus cells
matured with various Se
concentrations

Se supplementation (ng/mL)

0 10 50 100

Oocyte GSH-GSSG (pmol/oocytes) 5.98 ± 0.05 a 8.41 ± 0.04 b 5.99 ± 0.05 a 6.35 ± 0.04 a

Cumulus cells GSH-GSSG (nmol/106 cells) 0.76 ± 0.07 a 0.94 ± 0.07 b 0.73 ± 0.09 a 0.66 ± 0.09 a

Bovine COCs were incubated in IVMmedium with 0, 10, 50, and 100 ng/mL Se during 24 h. Data are expressed
as mean ± SEM. For this purpose, 320 COCs were matured in four replicates
a,bValues with different superscript within each row differed (p < 0.05)

0

100

200

300

400

500

600

0 ng/mL 10 ng/mL 50 ng/mL 100 ng/mL

COC
02/

AD
M

Mn

Se supplementaŸon

a

b b
c

Fig. 1 Lipid peroxidation in cumulus–oocyte complexes matured in vitro
with various Se concentrations. Bovine COCs were incubated in IVM
medium with 0, 10, 50, and 100 ng/mL Se during 24 h. Lipid peroxida-
tion levels were measured using the thiobarbituric-acid-reactive

substances (TBARS) method and expressed as nmol MDA/20 COC.
Values are expressed as mean ± SEM. For this purpose, 320 COCs were
matured in four replicates. MDA, malondialdehyde. (a–c) Bars with dif-
ferent letters differed statistically (p < 0.05)
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improving follicular development in vitro [48]. In the present
study, addition of Se to IVM medium did not modify COC
TAC, but MDA level was decreased with all the concentra-
tions tested, and GSH-GSSG content was increased with 10
ng/mL Se supplementation.

Although we did not examine GPx activity in this study,
this could be increased by addition of Se to IVM medium.

In the female reproductive system, although the target or-
gan for Se action is currently unclear, it is well known that
reduction in fertility is possibly related to Se deficiencies [49].
A significant decrease in follicular fluid Se levels was found in
women with unexplained infertility [50]. According to Basini
and Tamanini [49], Se not only prevents oxidative damage but
might also influence the expression of the FSH receptor in
granulosa cells. In addition, these researchers showed that Se

modulates granulosa cell proliferation and estradiol synthesis
[49]. In 2012, Makki et al. [26] demonstrated that addition of
Se, calcium, and calcium ionophore to IVM medium in-
creased the percentage of meiosis II human oocytes. In the
present study, neither nuclear maturation nor the developmen-
tal capacity of oocytes was modified by Se supplementation.
However, hatching rate was increased with 10 ng/mL Se in
IVM medium. This is in agreement with Shamsuddin et al.
[51] who reported that insulin, transferrin, and Se supplemen-
tation during bovine IVM and IVF did not modify cleavage
and blastocyst rates, but increased blastocyst quality
exhibiting better viability and post-thaw survivability. In pig,
Uhm et al. [43] showed that addition of sodium selenite to
IVC media increased the development rate and quality of
parthenotes. In the present study, the Se concentration that
improved embryo quality (hatching rate) was the same that
increased GSH levels after IVM. In this sense, a strong rela-
tionship between GSH level in oocytes and embryo develop-
ment has been reported in the literature. Intracellular GSH
content in oocytes at the end of IVM reflects the degree of
cytoplasmic maturation [40, 52, 53]. Therefore, an increase in
GSH concentrations during IVM of cattle oocytes improves
embryo development and quality [40, 53–55]. It is not clear
why the Se concentration considered as deficient (10 ng/mL)
was the only one that improved total GSH content in the
present study. A plausible explanation is that, in vivo, Se is
mainly contained in selenoproteins, whereas in vitro, Se was
supplemented as a sodium selenite inorganic salt. Selenite
undergoes a thiol-dependent reduction to form selenide before
being incorporated into specific selenoproteins, oxidizing
GSH to GSSG [56, 57]. This reaction can result in GSH de-
pletion due to the export of cellular GSSG via a transporter
[58]. Shalini and Bansal [59] showed that the addition of so-
dium selenite to testicular cells in vitro at the concentrations

Fig. 2 Total antioxidant capacity in cumulus–oocyte complexes matured
in vitro with various Se concentrations. Bovine COCs were incubated in
IVM medium with 0, 10, 50, and 100 ng/mL Se during 24 h. Total
antioxidant capacity is expressed as mmol/L. Data are expressed as mean

± SEM. For this purpose, 320 COCs were matured in four replicates.
TAC, total antioxidant capacity. (a–c) Bars with different letters differed
statistically (p < 0.05)

Table 3 Meiotic maturation of bovine oocytes matured in vitro with
various Se concentrations

Se supplementation (ng/mL)

0 (control) 10 50 100

Oocyte (n) 77 72 91 117

GV 1.3 2.8 0.0 0.0

MI 7.8 6.9 11.0 6.0

A-T 0.0 0.0 0.0 0.9

MII+PB 88.3 87.5 85.7 88.9

D 2.6 2.8 3.3 4.3

Differences among treatments within each category were not significant
(p > 0.05). Bovine COCs were incubated in IVMmedium with 0, 10, 50,
and 100 ng/mL Se during 24 h. Data are expressed as percentage. For this
purpose, 357 COCswere matured in five replicates.GV, germinal vesicle;
MI, metaphase I;A-T, anaphase-telophase;M II+PB, metaphase II and the
first polar body; D, degenerate
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that here are considered as adequate (about 118 ng/mL) sig-
nificantly decreased GSH content.

In conclusion, COC incubation with Se increased CC via-
bility and reduced lipoperoxidation level in COC. However,
only the Se concentration considered as deficient improved
GSH-GSSG content in oocytes and CC, as well as hatching
rate. Thus, supplementation with 10 ng/mL Se during in vitro
maturation of Bos primigenius taurus oocytes should be con-
sidered to improve embryo quality.
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