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Abstract: In this work, prereactive complexes, reaction products, and conformational preferences
derived from the photochemical reaction between CS2 and ClF were analyzed following the code-
position of the reactants trapped in argon matrices at cryogenic temperatures. After codeposition
of CS2 and ClF diluted in Ar, the formation of van der Waals complexes is observed. When the
mixture is subsequently irradiated by means of broad-band UV-visible light (225 ≤ λ ≤ 800 nm),
fluorothiocarbonylsulfenyl chloride (FC(S)SCl) and chlorothiocarbonylsulfenyl fluoride (ClC(S)SF)
are produced. These species exist as two stable planar anti- and syn-conformers (anti- and syn- of the
C=S double bond with respect to the S–Cl or S–F single bond, respectively). For both novel molecules,
anti-FC(S)SCl and anti-ClC(S)SF are the lowest-energy computed rotamers. As expected due to the
photochemical activity of these species, additional reaction products due to alternative or subsequent
photochannels are formed during this process.
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1. Introduction

The preparation and study of properties of new covalent compounds has been and
will be a central challenge for chemists of all time. Through this knowledge, chemists and
scientists from related branches can design their work with novelty and unconvention-
ality. In this context, the synthesis of small and new covalent compounds, as a linking
piece between disciplines such as inorganic and organic chemistry, biology, biochemistry,
medicine, physics, materials science, different spectroscopies, and photochemistry, is one of
the goals of the present work. An emerging edge to be approached with the systematized
information obtained is the one referring to the world of conformations and their equilibria.

The matrix-isolation technique in combination with photochemistry is particularly
suitable for the isolation of novel small molecules for which no other alternative synthetic
route was found, and also the understanding of the reaction pathways that may lead to
more efficient control of the reactions [1–3]. Our research group has been able to isolate and
study different families of novel molecules by matrix-isolation photochemistry coupled
with FTIR spectroscopy (see, for example, Refs. [4–7] and references cited therein). A
prerequisite for a photochemical reaction in matrix conditions to occur is that the reactants
are held in the same matrix site. Due to the isolation conditions, the reaction is favored
when a prereactive molecular complex is formed between the reactants. Furthermore, the
geometry of the prereactive complex often determines the course of the photochemical
reaction [7].

In this work, we explored the Ar-matrix photochemical reaction between carbon
disulfide and chlorine monofluoride. The codeposition of CS2 with ClF, both diluted in
Ar, gives rise to the formation of van der Waals complexes, which are stable species from
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a thermodynamic point of view. Several molecular complexes between ClF and different
Lewis bases were previously studied by a combination of matrix-isolation technique with
IR spectroscopy [6,8–16]. A T-shaped structure for 1:1 complexes of ClF with a series of
alkynes and alkenes was inferred from the Ar-matrix IR spectra, with the interhalogen
molecule interacting with the π electron density of the alkyne or alkene [8]. It was reported
that complexes with alkenes produced larger shifts than complexes formed with alkynes,
and the wavenumber shifts increased with increasing methyl substitution near the carbon-
carbon multiple bond. A redshift of the ClF stretching vibrational mode was also observed
for 1:1 molecular complexes of H2Se and H3As with the interhalogen molecule isolated in
solid Ar, interpreted as an electron density transfer from the Se or As atom to the lowest
unoccupied antibonding molecular orbital of ClF [9]. Since the base subunit is donating
nonbonding electron density, only slight perturbations were observed in the base modes
of the complex. Comparable results were obtained for complexes of ClF with sulfur and
nitrogen-containing macrocycles [11].

After irradiation, the formation of the novel FC(S)SCl and ClC(S)SF species were de-
tected by FTIR spectra of the matrices. The relative stabilities of the syn- and anti-rotamers
of each of these molecules are discussed, and compared with analogue molecules. Their
formation could be related to roaming mechanisms or frustrated dissociation occurring
during the photoisomerization process of these penta-atomic species. The identification of
the van der Waals complexes and the two conformers of both novel molecules, FC(S)SCl
and ClC(S)SF, were assisted by the predictions of DFT calculations.

2. Materials and Methods

CAUTION: Handling pure fluorine implies that pertinent precautions should be
observed. The reactor and the vacuum lines have to be adequately pretreated with flu-
orine prior to use. ClF was obtained by the reaction of stoichiometric amounts of F2
(Solvay, Germany) and Cl2 at 250 ◦C in a Monel vessel. The reaction mixture was sub-
sequently distilled to separate ClF from Cl2, ClF3 and F2. The interhalogen ClF was
transferred into a 1 L stainless-steel container at a vacuum line and diluted with Ar in a
ClF:Ar = 2:100 proportion. Separately, a sample of CS2 was mixed with argon in a 0.5 L
glass container in 1:100 ratio. Both containers were connected via needle valves and
stainless-steel capillaries to the spray-on nozzle of the matrix support. About 0.5–1.0 mmol
of the gas mixtures were codeposited within 10–20 min on the mirror support at 15 K (a
mirror plane of a rhodium-plated copper block). A 150 W high-pressure Xe lamp (Heraeus,
Hanau, Germany) in combination with a 225 nm cut-off filter were used for the matrix
irradiation. The light was directed through water-cooled quartz lenses onto the matrix
for 1 to a maximum of 90 min. The photolysis process was followed by IR spectroscopy.
Details of the matrix apparatus are given elsewhere [17]. Matrix IR spectra were recorded
on a Bruker IFS 66v/S spectrometer with a resolution of 0.5 cm−1 in absorption/reflection
mode. The IR spectra were processed by curve-fitting analysis using the OPUS Program
and the intensities were determined integrating the areas of the individual peaks.

Quantum chemical calculations were performed using either Gaussian 03 [18] or
Gaussian 09 [19] program. Density Functional Theory (B3LYP and B3LYP-D3) method was
tried in combination with the 6-311+G(d,p) basis sets. Relaxed two-dimensional scans for
the 1:1 CS2:ClF complexes were performed in order to find the energy minima. Geometry
optimizations were sought using standard gradient techniques by simultaneous relaxation
of all the geometrical parameters. The calculated vibrational properties correspond in all
cases to potential energy minima with no imaginary frequencies.

The binding energies of the molecular complexes were calculated using the correction
proposed by Nagy et al. [20]. The basis set superposition errors (BSSE) have been calculated
by applying the counterpoise procedure developed by Boys and Bernardi [21]. The elec-
tronic transitions for the previously optimized structure of the molecular complexes were
calculated using the TD-DFT formalisms, with a maximum of 100 states and S = 1 [22,23].
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3. Results and Discussion
3.1. Codeposition of CS2 + ClF in Ar Matrix

The reactants were codeposited simultaneously in the mirror plane cooled to about
15 K. The FTIR spectra of the matrix obtained before irradiation were analyzed and com-
pared with the experimental spectra of the monomers taken in similar conditions. The
signal corresponding to the CS2 antisymmetric vibration, νasCS2, of the carbon disulfide
molecule appears in the spectrum at 1527.9 cm−1 (Figure 1). In addition, there are also
absorptions at 1524.4 cm−1 assigned to the 34SCS isotopologue and at 1533.5 cm−1 orig-
inating by the dimer (CS2)2. This dimer was also formed in the reaction between CS2
and F2 achieved under similar conditions to the present work, where the corresponding
band appears at 1533.6 cm−1 [4]. Figure 1 also shows a band at 2169.5 cm−1, assigned to a
combination mode of CS2 (νasCS2 + νsCS2). The ClF interhalogen presents FTIR signals at
767.0 and 759.8 cm−1, due to ν35ClF and ν37ClF vibrations, and also mirror bands of lower
intensity at 769.9 and 762.7 cm−1, attributed to matrix effects, and at 755.5 and 748.7 cm−1

due to molecular aggregation (Figure 2) [6].
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Figure 1. FTIR spectra of the CS2/ClF/Ar matrix (CS2:ClF:Ar = 1:2:200) at about 15 K after deposition
(top, black trace) and, from top to bottom, after 1 (red trace), 3 (green trace) and 8 min (blue
trace) of irradiation with broad-band UV-visible light (225 ≤ λ ≤ 800 nm) in the 2182–2167 and
1537–1515 cm−1 regions.
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Figure 2. FTIR spectra of the CS2/ClF/Ar matrix (CS2:ClF:Ar = 1:2:200) at about 15 K after deposition
(top, black trace) and, from top to bottom, after 1 (red trace), 3 (green trace) and 8 min (blue trace) of
irradiation with broad-band UV-visible light (225 ≤ λ ≤ 800 nm) in the 782–705 cm−1 region.

At this stage of the experiment, that is, when the matrix was not yet irradiated,
four new bands were observed at 2169.5, 1522.2, 718.5 and 712.2 cm−1 (see Figures 1 and 2).
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These bands are not present in the experimental spectrum of the isolated monomers
of CS2 and ClF and their subsequent behavior during the photochemical irradiation of
the matrix; that is, the tendency to decrease their intensities with the irradiation time
allows for them to be assigned to signals originated by the formation of van der Waals
complexes between CS2 and ClF. In order to dispose of photochemical kinetic data that
allow for relevant information to be provided to the present study, the matrix formed with
a 1:2:200 CS2:ClF:Ar concentration was irradiated in the UV-visible range (λ > 225 nm) for
1, 3, 8, 15, 45, and 90 min. As can be observed in Figures 1 and 2, these new absorptions
completely vanish after 8 min of irradiation. Figure 3 shows the variation of the FTIR
band intensities assigned to the monomers, CS2 and ClF, and that to the CS2:ClF van der
Waals complex as a function of the irradiation time. As can be observed in Figure 3, while
the intensities of the IR bands of the monomers show a slight decrease (their intensities
after 45 min of irradiation are approximately 80% of the initial values), the IR features
assigned to the complex follow a different kinetic behavior, disappearing after 8 min of
exposition to broad-band radiation. Figure 3 also reveals that the absorptions attributed to
the complex follow the same pattern as a function of irradiation time, a necessary condition
to be assigned to the same species.
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Figure 3. Plots of the intensities of the bands in the FTIR spectra of the CS2/ClF/Ar ma-
trix (CS2:ClF:Ar = 1:2:200) at about 15 K vs irradiation times with broad-band UV-visible light
(225 ≤ λ ≤ 800 nm). Left: bands assigned to CS2 and ClF; Right: bands assigned to the 1:1 CS2:ClF
van der Walls complex.

Computational calculations are especially valuable for reproducing experimental
results. The geometry of the stable systems formed by CS2 and ClF were determined
searching for the energy minima of the complexes varying the S···Cl and S···F distances
in 0.1 Å steps and the C=S···Cl and C=S···F intermolecular angles in 10◦ steps. Figure 4
shows the contour map of the potential energy surface for the CS2···ClF complex calculated
with the B3LYP/6-311G+(d,p) approximation. On the right part of Figure 4, the molecular
model corresponding to the optimized structure of the energy minimum calculated with
the same theoretical approximation is also represented in Figure 4. Equivalently, Figure 5
shows the molecular complex that links the CS2 molecule with the fluorine atom of the
ClF interhalogen. As in many branches of chemistry, fluorine again shows its particularity.
When the van der Waals complex is formed using it as a bridge, the geometry of the
complex is now linear.

The calculated geometrical parameters of the optimized structures of the two com-
plexes are presented as Supporting Information (Table S1). An intermolecular distance
S···Cl of 2.9411 Å, which corresponds to a van der Waals penetration distance of 0.62 Å, and
an intermolecular C=S···Cl angle of 97.9◦ are predicted for the CS2···ClF complex. On the
other hand, for the CS2···FCl structure, a value of 3.2531 Å is obtained for the S···F distance,
that gives a 0.05 Å van der Waals penetration distance. The predicted intermolecular C=S···F
angle for the optimized structure is 180.0◦, as shown in Figure 5. According to the B3LYP/6-
311G+(d,p) approximation, the CS2···FCl complex is 1.83 kcal/mol (7.66 kJ/mol) higher
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in energy than the CS2···ClF form. The former structure presents almost the same energy
that the isolated monomers (∆E = E(CS2···FCl)–E(CS2)–E(FCl) = −0.06 kcal/mol), while
the latter complex is predicted to be energetically favored with respect to the monomers
by 1.89 kcal/mol. The Supporting Information contains detailed data of the calculated
energies and the corresponding corrections (Table S2). In agreement with this stability
difference, a value of −9.79 and −0.71 kcal/mol were obtained for the most important
contribution to the orbital stabilization energies of the CS2···ClF and CS2···FCl complexes,
respectively. The charge transfer resulting in the complex formation occurring mainly from
the free-electron pair of the sulfur atom to the σ antibonding orbital of the ClF molecule
(lpS→σ*

ClF) acquires a value of −0.0894 e for the CS2···ClF complex. On the other hand,
for the CS2···FCl structure, a much lower charge transfer of −0.0013 e was predicted, while
the main orbital interactions occur from the ClF unit to the CS2 molecule: σClF→RyS
(−0.71 kcal/mol) and lpF→σ*C=S (−0.29 kcal/mol). Figure 6 shows a schematic repre-
sentation of these two orbital interactions. The geometries of the complexes are consistent
with the main contributions to the orbital interactions in each case. In the CS2···ClF adduct,
carbon disulfide acts as a donor molecule and chlorine monofluoride as the acceptor unit,
favoring the angular geometry. The donor and acceptor roles are inverted in the CS2···FCl
complex, determining the collinear geometry.
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(lpS→σ*ClF) acquires a value of −0.0894 e for the CS2···ClF complex. On the other hand, for 

Figure 5. Contour map of the potential energy surface of the S=C=S···FCl molecular complex
calculated by the variation of the S···Cl intermolecular distance from 2.5 to 4.0 Å in 0.1 Å steps and
the C=S···F intermolecular angle from 70 to 210◦ in 10◦ steps with the B3LYP/6-311G+(d,p) (left) and
molecular model of the optimized minimum (right).

The vibrational spectra of the complexes were also calculated using the B3LYP/6-
311G+(d,p) approximation, and the predicted wavenumbers shifts with respect to the
monomers were compared with the experimental findings. A complete list of the calculated
frequencies is presented as Supporting Information in Table S3, while Table 1 compiles the
vibrational wavenumbers that were observed in the experimental FTIR spectra.
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F) shift is closely related to the main components of the orbital interactions of each of the 
structures, discussed previously. As mentioned in the Introduction, the interactions be-
tween ClF and several N, O, S, Se, and As- containing compounds, as well as with dif-
ferent alkyne or alkene molecules studied by IR matrix-isolation spectroscopy [6,8–13,16], 

Figure 6. Schematic representations of the main contributions to the orbital interactions in the
CS2···ClF (left) and CS2···FCl (right) complexes calculated with the B3LYP/6-311G+(d,p).

Table 1. Selected wavenumbers for the different complexes formed between CS2 and ClF computed
with the B3LYP/6-311+G(d,p) approximation (wavenumbers are in cm−1 and relative IR intensities
are given between parentheses) and comparison with the experimental value.

Ar Matrix
B3LYP/6-311+G(d,p)

Tentative AssignmentS=C=S···Cl−F S=C=S···F−Cl
ν (cm−1) ∆ν (cm−1) a ν (cm−1) b ∆ν (cm−1) a ν (cm−1) b ∆ν (cm−1) a

2169.5 −8.3 νas(SCS) + νs(SCS)
1522.2 −5.7 1547.1 (100) −6.2 1552.2 (100) −1.9 νas(SCS)

671.8 (<1) −2.1 673.3 (<1) −0.6 νs(SCS)
718.5 −48.6 646.5 (31.8) −93.3 740.3 (3.8) +0.7 ν(35Cl–F)
712.2 −47.7 640.8 (10.2) −92.2 733.2 (1.2) +0.5 ν(37Cl–F)

a ∆ν = νcomplex − νmonomer. b Relative intensities between parentheses.

The simulated IR spectrum of the CS2···ClF complex is the one that best reproduces
the experimental results. The calculated νas(S=C=S) is shifted by −6 cm−1, in complete
agreement with the experimental value (see Figure 1). The direction of the shift in the
Cl–F stretching vibrational mode is what allows the structure to be assigned with con-
fidence. Meanwhile, in the complex that interacts through the Cl atom of the diatomic
molecule, a shift towards lower wavenumbers of approximately 90 cm−1 is predicted, in
accordance with the redshift observed in the FTIR spectra depicted in Figure 2; for the
CS2···FCl adduct, the shift is less than 1 cm−1 and in the opposite direction. This difference
in the ν(Cl–F) shift is closely related to the main components of the orbital interactions of
each of the structures, discussed previously. As mentioned in the Introduction, the interac-
tions between ClF and several N, O, S, Se, and As- containing compounds, as well as with
different alkyne or alkene molecules studied by IR matrix-isolation spectroscopy [6,8–13,16],
were previously interpreted as an electron density transfer from the corresponding Lewis
base to the lowest unoccupied antibonding molecular orbital of ClF, in accordance with the
results presented here.

From the comparison between the experimental and calculated IR spectra described
above, it can be concluded that the additional bands in the FTIR spectrum taken imme-
diately after deposition with respect to the FTIR spectra of the monomers, and whose
intensities decrease until they disappear after 8 min of irradiation, belong to the CS2···ClF
structure. This is also in agreement with the lower energy predicted for this species. Previ-
ous studies on other Lb···ClF complexes (Lb is one of several Lewis bases), either by FTIR
matrix-isolation spectroscopy, OCS···ClF [16] and OCSe···ClF [6], or by microwave spec-
troscopy, H2S···ClF [14] and H2O ···ClF [14], also conclude that the structures interacting
through the chlorine atom of the ClF molecules are the lower-energy forms. Regarding
the CS2···FCl adduct, its presence cannot be completely discarded, since the expected
small wavenumber changes would be overlapped to monomer bands. Furthermore, a
close inspection of Figure 1 reveals a shoulder of the [νas(SCS) + νs(SCS)] combination
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band blueshift by ~2 cm−1 that might be tentatively attributed to this complex, taking into
account the calculated vibrational data presented in Table 1.

TD-DFT calculations with the B3LYP/6-311+G(d,p) approximation were performed
for the optimized CS2···ClF structure, to simulate the electronic transitions of this species
in the energy range of the irradiation source used for the photochemical experiments,
in order to predict the possibility of photolysis of this species under the experimental
conditions. The calculated wavelengths for the one-electron transitions are listed in Table 2,
together with the theoretical oscillator strength (f) and a tentative approximate assignment.
Only transitions with λ > 200 nm and f ≥ 0.002 are included in the Table. A schematic
representation of the molecular orbitals involved in the electronic transitions presented in
Table 2 is presented in Figure 7.

Table 2. Electronic transitions calculated with the TD-DFT (B3LYP/6-311+G(d,p)) approximation for
the CS2···ClF complex a.

λ (nm) Oscillator
Strength Transition Tentative Approximate

Assignment b

374.6 0.0002 HOMO→ LUMO πz (C=S1)→ πz* (S=C=S)
340.1 0.0010 (HOMO–2)→ LUMO lpz Cl→ πz* (S=C=S)
333.9 0.0003 (HOMO–3)→ LUMO πz (C=S2)→ πz* (S=C=S)
311.7 0.1381 (HOMO–1)→ LUMO πi.p. (C=S1)→ πz* (S=C=S)
271.7 0.0002 HOMO→ (LUM0+2) πz (C=S1)→ σ* (Cl–F)
263.7 0.2342 (HOMO–1)→ (LUM0+2) πi.p. (C=S1)→ σ* (Cl–F)
220.7 0.0138 (HOMO–3)→ (LUM0+1) πz (C=S2)→ πi.p.* (S=C=S)
215.2 0.0236 (HOMO–2)→ (LUM0+2) lpz Cl→ σ*(Cl–F)

a Only transition with oscillator strength ≥ 0.002 are included. b S1 and S2 correspond to the interacting and
noninteracting sulfur atom, respectively. The z axis is perpendicular to the molecular plane.

3.2. Photochemistry of CS2 + ClF in Ar Matrix

The examination of the FTIR spectra taken after irradiation of the matrix allows for
the observation that whereas intensities corresponding to the set of bands assigned to
the CS2:ClF molecular complex decrease, another group of bands arises, evidencing the
formation of species that were not originally present in the codeposited Ar matrix of CS2
and ClF at cryogenic temperatures. Some of the IR absorptions appearing after irradiation
that could not be associated with any known compound were assigned to novel pentatomic
molecules with XC(S)SY general formula, with X, Y = F, Cl, based on (i) the comparison with
previous results on similar systems and (ii) the comparison with the IR spectra predicted by
DFT methods for these species. Selected spectral regions of the FTIR spectra of the matrix
at different irradiation time are presented in Figure 8. A complementary way to evaluate
this information is displayed in Figure 9, which shows the variation of band intensities as a
function of irradiation time for the signals assigned to the proposed photoproducts.

The region between 1250 and 950 cm−1 in the FTIR spectra of the irradiated matrix is
particularly rich in information concerning the formation of the new molecules reported in
this work. The absorptions at 1228.9/1226.0 and 1213.5/1208.2 cm−1, which grow and then
decay on continued irradiation (Figures 8 and 9), were assigned to the ν(C=S) stretching
vibration of syn-FC(S)SCl and anti-FC(S)SCl, respectively. The positions of these signals are
in very good agreement with the computed wavenumbers at 1220.9 and 1214.0 cm−1 using
the B3LYP/6-311G+(d,p) level of approximation, as presented in Table 3. According to this
computational calculation, the anti-form of FC(S)SCl is the one with the lowest energy. The
syn-rotamer is calculated to be 0.76 kcal/mol higher in energy than the anti-form. The IR
absorption coefficients values for the ν(C=S) vibrational mode are 383 and 288 km/mol for
the syn- and anti-conformer, respectively. Even taking into account the higher absorption
coefficient of the syn-rotamer, the experimental abundance of the syn-form is greater than
that of the anti-form. Unlike what was observed in other similar photochemical reactions, a
process called randomization was not observed in this case [7].
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ters of these species. 

The presence of anti- and syn-ClC(S)SF rotamers was also reconfirmed experimen-
tally due the additional absorptions appearing when the Ar matrix of codeposited CS2 
and ClF at cryogenic temperatures was irradiated. For the syn-rotamer the computed 
band at 743.1 cm−1 (νas Cl–C–S) was not observed in the experimental spectra, in accord-
ance with its predicted absorption coefficient of only 9.2 km/mol. The absorption at 
782.2/779.2 cm−1 could in principle be attributed to the ~778 cm−1 IR band of the triatomic 
species ClSF, isolated by the photolysis of FC(O)SCl in Ar matrix [24]. Although the 
formation of this molecule cannot be completely discarded, the absence of the other band 
expected in the recorded region of the spectra, at 543/537 cm−1, allows us to conclude that 
the major contribution to the signals around 780 cm−1 is originated by syn-ClC(S)SF. 

Figure 9. Plots of the intensities of the bands assigned to anti-ClC(S)SF (top left), syn-ClC(S)SF
(top right), anti-FC(S)SCl (bottom left) and syn-FC(S)SCl (bottom right) in the FTIR spectra of the
CS2/ClF/Ar matrix (CS2:ClF:Ar = 1:2:200) at about 15 K vs. irradiation times with broad-band
UV-visible light (225 ≤ λ ≤ 800 nm).
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Table 3. Wavenumbers (in cm−1) assigned to syn-FC(S)SCl, anti-FC(S)SCl, syn-ClC(S)SF and anti-
ClC(S)SF after irradiation of CS2/ClF/Ar matrix (CS2:ClF:Ar = 1:2:200) and computed values with
the B3LYP/6-311+G(d,p) approximation (relative IR intensities are given between parentheses).

syn-FC(S)SCl anti-FC(S)SCl syn-ClC(S)SF anti-ClC(S)SF Tentative
AssignmentAr Matrix Calculated Ar Matrix Calculated Ar Matrix Calculated Ar Matrix Calculated

1228.9
1226.0

}
(100) 1220.9 (100) 1213.5

1208.2

}
(100) 1214.0 (100) 1160.9 (100) 1159.5 (100) 1061.8 (100) 1084.3 (100) ν (C=S)

976.3 (40) 965.5 (66) 997.5 (50) 1040.6 (78) - 743.1 (4) 802.7 (78) 893.6 (56) ν (C–X) a

718.5 589.6 (3) - 628.9 (2) - 514.4 (8) - 481.4 (12) ν (C–S) b

712.2 526.4 (7) - 464.2 (63) 782.2
779.2

}
(70) 728.3 (93) 668.8 (50) 671.4 (63) ν (S–Y)

a νas (Cl–C–S) for syn- and anti-ClC(S)SF. b
s (Cl–C–S) for syn- and anti-ClC(S)SF.

Two absorptions at 1160.9 and 1061.8 cm−1 (Figures 8 and 9) can be attributed to the
presence of the bond isomer ClC(S)SF in its two planar syn-ClC(S)SF and anti-ClC(S)SF
conformations, respectively. The experimental values compare fairly well with those
computed at 1159.5 and 1084.3 cm−1 using the B3LYP/6-311G+(d,p) level of approximation
(Table 3). The values of the absorption coefficients corresponding to the C=S stretching
vibrations of the two rotamers are very similar. According to the performed calculations,
the syn-conformer presents an absorption coefficient of 316 km/mol, while a value of
253 km/mol is predicted for the anti-form. The formation kinetics for the two conformers
is also similar; the maximum intensity of these absorptions is reached at around 8 min
of UV-visible irradiation for both rotamers. As in the case of its FC(S)SCl constitutional
isomer, anti-ClC(S)SF was found to be the lowest-energy conformer, being the syn-ClC(S)SF
rotamer 2.16 kcal/mol higher in energy than the anti-form. The compared photoevolution
of the anti- and syn-ClC(S)SF forms is in this case indicative of a randomization process
with approximately equal experimental concentration of each form after irradiation (see
Figure S1 in the Supporting Information).

Figure 10 shows the molecular models of the two novel photochemically obtained
species, each with its two rotamers, optimized with the B3LYP/6-311+(d,p) approximation.
Table S4 of the Supporting Information compiles the theoretical geometric parameters of
these species.
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The presence of anti- and syn-ClC(S)SF rotamers was also reconfirmed experimentally
due the additional absorptions appearing when the Ar matrix of codeposited CS2 and
ClF at cryogenic temperatures was irradiated. For the syn-rotamer the computed band at
743.1 cm−1 (νas Cl–C–S) was not observed in the experimental spectra, in accordance with
its predicted absorption coefficient of only 9.2 km/mol. The absorption at 782.2/779.2 cm−1

could in principle be attributed to the ~778 cm−1 IR band of the triatomic species ClSF,
isolated by the photolysis of FC(O)SCl in Ar matrix [24]. Although the formation of this
molecule cannot be completely discarded, the absence of the other band expected in the
recorded region of the spectra, at 543/537 cm−1, allows us to conclude that the major
contribution to the signals around 780 cm−1 is originated by syn-ClC(S)SF.

In addition to the bands assigned to the XC(S)SY (X, Y = F, Cl) molecules, other features
were observed to appear in the IR spectra taken after irradiation. Figure 11 shows the
intensity vs. irradiation time plots of the most intense of these IR absorptions. A complete
list of the wavenumbers appearing during the irradiation of the CS2:ClF mixture in Ar
matrix, as well as their tentative assignment, is presented in the Supporting Information
(Table S5). A weak band at 1481.9 cm−1 is developed in the spectra after irradiation.
Figure 9 shows the time photoevolution of this absorption, assigned to the νas(S=C=S)
vibrational mode of the Cl•···SCS complex, by the comparison with the reported value at
1481.5 cm−1 [5]. Two signals can be observed at 1353.6 and 1346.0 cm−1 in the FTIR spectra,
attributed to the ν(S=C) vibrational mode of the SCF2 species [25].
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A set of bands at 1185.3/1182.2/1179.3 cm−1 that follows a similar behavior against
the irradiation time and presents the expected intensity ratio with respect to the ν(S=C)
mode was attributed to the νas(F−C−F) of SCF2, reinforcing the proposed assignment.
For its formation, the migration of a F radical from the original matrix cage containing
CS2 and ClF, an already-documented process [26,27], is mandatory. The formation of
S=CClF can be ruled out since the most intense FTIR bands of this compound, reported
at 1257.4, 1014.9, and 612.4 cm−1 [28], are not present in the corresponding vibrational
spectra. The absorptions observable at 1287.5, 1284.0, and 1281.3 cm−1 can be attributed to
complexed CS species, by comparison with its 1276 cm−1 reported value for the isolated
molecule [29]. A signal with a characteristic 35Cl/37Cl pattern, at 598.8/595.7 cm−1, is
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tentatively assigned to the SCl• radical, presumably perturbed by the other species present
in the same matrix cage (reported values are 574.4 and 566.9 cm−1) [30].

The features observed to develop at 961.5 and 953.2 cm−1 (see Figure S2 in the Support-
ing Information) could not be assigned to any product arising from the CS2:ClF mixture.
Instead, they are originated by the ClClO molecule, formed through the photolysis of
Cl2O [31]. As described in the literature, Cl2O is a by-product in the preparation of ClF [32].
In fact, the IR absorptions of Cl2O are present in the initial spectrum of the CS2:ClF Ar
matrix with very low intensities, at 677.1/674.8 and 638.9/636.2/633.5 cm−1 [33], and
decreased as the bands of ClClO increased.

4. Conclusions

The codeposition of CS2 and ClF, both diluted in Ar, at about 15 K conducts to the
formation of the CS2···ClF complex, as revealed by the comparison of the IR spectrum taken
immediately after deposition with the one calculated with DFT methods. Although this
complex is predicted to be energetically favorable with respect to the CS2···FCl adduct, the
presence of the latter cannot be completely discarded, since if the signals corresponding to
this species were present, they would probably be overlapped with those of the monomers
due to the expected small wavenumbers shifts. The photolysis of the CS2···ClF species with
broad-band UV-visible light (225 ≤ λ ≤ 800 nm) is completed after 8 min of irradiation, in
agreement with the predicted electronic transitions of this complex by TD-DFT calculations.
The first step in the photolysis of the complex isolated in solid Ar is the formation of
the constitutional isomers, FC(S)SCl and ClC(S)SF, each of them in their two anti- and
syn-rotamers. Although no conclusive evidence exists so far, roaming mechanisms [34]
involving either F or Cl atoms could not be ruled out to explain the formation of these
two molecules. The novel pentatomic molecules isolated in this work are also photoactive,
and evolve inside the Ar-matrix cage, forming CS, the SCl radical, the CS2···Cl complex,
and the thiofluorophosgene molecule, F2CS, in a mechanism that involve the migration of
fluorine atoms in the matrix. The proposed photoproducts are summarized in Scheme 1.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/photochem2030049/s1, Figure S1: Plot of the relative intensities
of the ν(C=S) absorptions of syn- and anti-ClC(S)SF as a function of the broad-band UV-visible
irradiation time; Figure S2: FTIR spectra of the CS2/ClF/Ar matrix (CS2:ClF:Ar = 1:2:200) at about
15 K after deposition (bottom, black trace) and (from bottom to top) 1 (red trace), 3 (green trace),
8 min (blue trace), 15 min (orange trace), 45 min (grey trace) and 90 min (purple trace) of irradiation
with broad-band UV-visible light (225 ≤ λ ≤ 800 nm) in the 970–940 and 655–635 cm−1 regions;
Figure S3: Plot of the relative intensities of the ν(C=S) absorptions of syn- and anti-ClC(S)SF as a
function of the broad-band UV-visible irradiation time; Figure S4: FTIR spectra of the CS2/ClF/Ar
matrix (CS2:ClF:Ar = 1:2:200) at about 15 K after deposition (bottom, black trace) and (from bottom
to top) 1 (red trace), 3 (green trace), 8 min (blue trace), 15 min (orange trace), 45 min (grey trace)
and 90 min (purple trace) of irradiation with broad-band UV-visible light (225 ≤ λ ≤ 800 nm) in
the 970–940 and 655–635 cm−1 regions; Table S1: Geometric parameters for the different complexes
formed between CS2 and ClF (distances in Å, angles in degrees) calculated using the B3LYP/6-
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311+G(d,p) approximation; Table S2: ∆E(SCF), ∆ECP, BSSE and GEOM corrections (in kcal.mol−1),
transferred charge (q), orbital stabilization energy (∆E(2) in kcal.mol−1) for the different complexes
formed between CS2 and ClF computed using the B3LYP/6-311+G(d,p) approximation; Table S3:
Wavenumbers for the different complexes formed between CS2 and ClF computed with the B3LYP/6-
311+G(d,p) approximation (wavenumbers are in cm−1 and relative IR intensities are given between
parentheses) and comparison with the experimental values; Table S4: Geometrical parameters of anti-
ClC(S)SF, syn-ClC(S)SF, anti-FC(S)SCl, and syn-FC(S)SCl calculated with the B3LYP/6-311+G(d,p)
approximation (distances in Å and angles in degrees); Table S5: FTIR wavenumber and proposed
assignment of the photoproducts formed by UV-visible irradiation of CS2 and ClF co-deposited in
an Ar matrix (CS2:ClF:Ar 1:2:200) at cryogenic temperatures. Refs. [5,25,29,30,35] have been cited in
supplementary materials.
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