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Abstract Given Hilbert spaces H and K, a (bounded) closed range operator C : H → K
and a vector y ∈ K, consider the following indefinite least squares problem: find u ∈ H such
that hB(Cu − y),Cu − yi = minx∈HhB(Cx − y),Cx − yi, where B : K → K is a bounded
selfadjoint operator.

This work is devoted to give necessary and sufficient conditions for the existence of
solutions of this abstract problem. Although the indefinite least squares problem has been
thoroughly studied in finite dimensional spaces, the geometrical approach presented in this
manuscript is quite different from the analytical techniques used before. As an application
we provide some new sufficient conditions for the existence of solutions of an H∞ estima-
tion problem.
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1 Introduction

Given Hilbert spaces H and K, a closed range operator C ∈ L(H, K), a selfadjoint operator
B ∈ L(K) and a vector y ∈ K, we say that a vector u ∈ H is a B-least squares solution
(B-LSS) of the equation Cx = y if it satisfies

hB(Cu − y),Cu − yi = min
x∈H

hB(Cx − y),Cx − yi. (1)

Observe that, if B is a fundamental symmetry, i.e. B = B∗ = B−1, (1) is an optimization
problem in Krein spaces that may not admit any solution, even in the finite dimensional
case, see [15, 16].

In the last years there has been an increasing interest among engineers in solving practical
problems which involve the minimization of certain linear functionals in indefinite metric
spaces. In particular, the introduction of Krein spaces in H∞ estimation and control tech-
niques made possible to adapt traditional tools of control theory to H∞ control problems
(see [17] for a complete exposition on this subject). Moreover, some aspects of the indefi-
nite metric spaces theory have provided an explanation to important issues in adaptive filter
theory, see [14, 16].

A problem related to B-least squares problems is the linear state estimation in H∞

spaces. Given the output signal y = {yn}n∈N ∈ `2(Cq) it is intended to estimate the state
of the system x = {xn}n∈N ∈ `2(Cm) assuming that it satisfies the following dynamics:

xn+1 = Anxn + Dnun,

yn = Cnxn + vn,
(2)

where {An}n∈N ⊆ L(Cm,C
m), {Dn}n∈N ⊆ L(Cp,C

m) and {Cn}n∈N ⊆ L(Cm,C
q) are known

sequences of operators and the initial condition x0 ∈ C
m and the signals u = {un}n∈N ∈

`2(Cp) and v = {vn}n∈N ∈ `2(Cq) are unknown. A broad class of physical systems can be
described by (2), which are commonly called a state space representation of the system.

The linear state estimation problem consists in finding F ∈ L(`2(Cq), `2(Cm)) such that
x̂ := Fy, approximates (in some sense) the state of the system x = {xn}n∈N. There are several
different techniques to tackle the linear estimation problem, each one depending on the
criterion of approximation selected, for instance the suboptimal estimation in H∞ problem
focuses on, given γ > 0 find, if it is possible, x̂ ∈ `2(Cm) such that:

sup
x0∈Cm,u∈`2(Cp),v∈`2(Cq )

P
n kx̂n − xnk2

kx0k2 + P
n kunk2 + P

n kvnk2
< γ. (3)

The above equation can be interpreted as trying to estimate a bound γ for the ratio between
the estimation error and the unknown parameters in the system, which are represented by the
signals u,v and the initial condition x0. The smaller γ is, the better the estimation problem
can be solved. It is not difficult to see that there exists a solution of the suboptimal estimation
in H∞ problem if there exists a B-LSS for an appropriate equation Cx = y in some Hilbert
space (see Example 3.2).

This work is devoted to give necessary and sufficient conditions for the existence of
B-LSS of the equation Cx = y. Although the indefinite least squares problem has been
thoroughly studied in finite dimensional spaces [3, 15, 24], the geometrical approach pre-
sented in this manuscript is quite different from the analytical techniques used before.
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Given a closed range operator C ∈ L(H, K) and a vector y ∈ K, the classical least squares
problem consists in finding the minimal norm u ∈ H such that

kCu − yk = min
x∈H

kCx − yk. (4)

Observe that minx∈H kCx − yk is the distance between the vector y and the (closed) range
of C (hereafter denoted R(C)) so (4) says that ky − Cuk2 = k(I − P )yk2, where P is the
orthogonal projection onto R(C). Moreover, (4) holds if and only if Cu = Py. Therefore,
the (unique) solution of the least squares problem is given by u = C†y, where C† is the
Moore-Penrose inverse of C.

More generally, if A ∈ L(K) is a (semidefinite) positive operator, a weighted least squares
solution of the equation Cx = y is a vector u ∈ H such that

kCu − ykA = min
x∈H

kCx − ykA, (5)

where kkA is the seminorm on K defined by kxkA = kA1/2xk = hAx,xi1/2. This problem
was studied in [6, 12] and some applications to statistical problems can be found in [4, 5,
21, 23]. Notice that (5) is equivalent to

hA(Cu − y),Cu − yi = min
x∈H

hA(Cx − y),Cx − yi,

so it can be seen as a particular case of (1).
Our approach to the B-least squares problem is, essentially, the same presented above

for the classical least squares problem. Using the geometrical properties of the B-selfadjoint
projections (selfadjoint projections with respect to the sesquilinear form we are considering)
we can find the B-LSS of Cx = y provided that a B-selfadjoint projection onto R(C) exists.
However, the existence of these projections is not a trivial fact and it has been studied in
several papers, see [7–9, 13].

It is also worthwhile remarking that this manuscript does not intend to provide algorithms
to estimate the solutions of the B-least squares problem but to relate the existence of such
solutions to some abstract geometrical conditions such as angles between subspaces, oblique
projections and generalized inverses.

The paper is organized as follows. Section 2 contains some preliminary results, mainly
on B-selfadjoint projections. In Sect. 3 we recall that a necessary condition for the existence
of B-LSS is that R(C) is a B-nonnegative subspace (i.e. hx, xiB ≥ 0 for every x ∈ R(C)).
Under this hypothesis, given y ∈ K, the B-LSS of the equation Cx = y coincide with the
solutions of the normal equation associated to the problem:

C∗B(Cx − y) = 0.

Furthermore, if K = R(C) + R(BC)⊥ and y ∈ K \ R(C), we show that u ∈ H is a B-LSS
of Cx = y if and only if Cu = Qy for some B-selfadjoint projection Q with R(Q) = R(C).
We also prove that, for a fixed vector y ∈ K, the set of solutions of the normal equation is an
affine manifold, parallel to the nullspace of BC.

Finally, a minimization problem among the B-LSS of the equation Cx = y is presented.
If A ∈ L(H) is a selfadjoint operator, we look for those w ∈ H which are B-LSS of Cx = y

and satisfy

hw,wiA ≤ hu,uiA, for every B-LSS u ∈ H of Cx = y.
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A vector w ∈ H satisfying the above conditions is called an AB-least squares solution (AB-
LSS) of the equation Cx = y. It is shown that w ∈ H is an AB-LSS of Cx = y if and
only if w = (I − Q)C†Py, where P and Q are appropriate B-selfadjoint and A-selfadjoint
projections, respectively. In this case, the operator D = (I −Q)C†P ∈ L(K, H) can be seen
as a “weighted inverse” of C because it is a solution of

CXC = C, XCX = X, A(XC) = (XC)∗A, B(CX) = (CX)∗B.

The solutions of the above equations have been studied by X. Sheng and G. Chen [25] in fi-
nite dimensional spaces. They can also be seen as an extension of the weighted inverses con-
sidered, for positive weights, by Eldén [11] (in finite dimensional spaces) and by G. Corach
et al. [6] (in infinite dimensional Hilbert spaces). See also the book by A. Ben-Israel and
T.N.E. Greville [1] and the paper by X. Mary [20].

Section 4 is devoted to study the solutions of the normal equation without the restriction
of R(C) being B-definite. In this case, there no longer exist B-LSS of the equation Cx = y.
However, the solutions of the normal equation C∗B(Cx − y) = 0 can be related, under
certain decomposability condition on R(C), to the solutions of a min-max problem.

2 Preliminaries

Along this work H and K denote complex (separable) Hilbert spaces, L(H, K) is the algebra
of bounded linear operators from H into K, L(H) = L(H, H) and CR(H, K) is the set of
(bounded linear) closed range operators from H into K. If T ∈ L(H, K) then T ∗ ∈ L(K, H)

denotes the adjoint operator of T , R(T ) stands for the range of T and N(T ) for its nullspace.
Consider the following subsets of L(H): let L(H)+ be the cone of (semidefinite) positive

operators, L(H)s the (real) vector space of selfadjoint operators and denote by Q the set of
(oblique) projections, i.e. Q = {Q ∈ L(H) : Q2 = Q}.

If S and T are two closed subspaces of H, denote by S u T the direct sum of S and
T , S ⊕ T the (direct) orthogonal sum of them and S ª T := S ∩ (S ∩ T )⊥. If H = S u T ,
the oblique projection onto S along T , PS||T , is the projection with R(PS||T ) = S and
N(PS||T ) = T . In particular, PS := PS||S⊥ is the orthogonal projection onto S . If C ∈
CR(H, K), C† denotes the Moore-Penrose inverse of C.

Given B ∈ L(H)s consider the sesquilinear form in H × H defined by hx, yiB := hBx,yi,
for x, y ∈ H. If S is a closed subspace of H, the B-orthogonal companion to S is given by

S ⊥B := {x ∈ H : hx, siB = 0 for every s ∈ S}.
It holds that S ⊥B = B−1(S ⊥) = B(S)⊥. Given two closed subspaces S and T of H, we say
that S is B-orthogonal to T if T ⊆ S ⊥B and denote it by S⊥B T .

A vector x ∈ H is B-positive if hx, xiB > 0. A subspace S of H is B-positive if
every x ∈ S , x 6= 0, is a B-positive vector. B-nonnegative, B-neutral, B-negative and B-
nonpositive vectors (and subspaces) are defined analogously.

Also, the B-isotropic part of S is defined by N := {x ∈ S : hx, siB = 0 ∀s ∈ S}. Observe
that N = S ∩ S ⊥B and there exist closed subspaces S of H such that N 6= {0}.

Definition 2.1 Given B ∈ L(H)s , a closed subspace S of H is said to be B-decomposable if
it can be represented as the B-orthogonal direct sum of a B-neutral subspace S0, a B-positive
subspace S+ and a B-negative subspace S−, i.e.

S = S0 u S+ u S−.
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It is important to notice that not every subspace S of H is B-decomposable, see [18,
Example 1.33]. Observe that, if S is B-decomposable then S0 = N , see [18] for a complete
exposition on this subject.

An operator T ∈ L(H) is B-selfadjoint if hT x,yiB = hx,T yiB for every x, y ∈ H. It is
easy to see that T satisfies this condition if and only if BT = T ∗B .

Definition 2.2 Let B ∈ L(H)s and S be a closed subspace of H. The pair (B, S) is compat-
ible if there exists a B-selfadjoint projection with range S , i.e. if the set

P(B, S) := {Q ∈ Q : R(Q) = S, BQ = Q∗B}
is not empty.

Notice that a projection Q is B-selfadjoint if and only if N(Q) ⊆ R(Q)⊥B , see
[7, Lemma 3.2]. Then, (B, S) is compatible if and only if

H = S + B(S)⊥.

In [10], given two closed subspaces S and T of H, the minimal angle between S and T
is defined as the angle in [0,π/2] whose cosine is

c0(S, T ) = sup {|hx, yi| : x ∈ S,kxk ≤ 1, y ∈ T ,kyk ≤ 1} .

By [9, Theorem 2.15], the compatibility of the pair (B, S) is equivalent to the following
angle condition:

c0(S ⊥,B(S)) < 1.

Given a compatible pair (B, S), the B-isotropic part N of S coincides with S ∩ N(B)

and the Hilbert space H can be decomposed as H = S u (B(S)⊥ ª N ), so the following
oblique projection is well defined:

PB,S := PS||B(S)⊥ªN . (6)

Observe that PB,S ∈ P(B, S) because R(PB,S ) = S and N(PB,S ) ⊆ B(S)⊥. In what fol-
lows, we state several results about the set P(B, S) which will be needed later.

Theorem 2.3 Let B ∈ L(H)s and S be a closed subspace of H such that (B, S) is compat-
ible. Then P(B, S) is an affine manifold that can be parametrized as

P(B, S) = PB,S + L(S ⊥, N ),

where L(S ⊥, N ) is viewed as a subspace of L(H). Moreover, PB,S has minimal norm in
P(B, S).

Proof See [7, Theorem 3.5]. ¤

Proposition 2.4 Let B ∈ L(H)s and S be a closed subspace of H such that (B, S) is com-
patible. If Q ∈ P(B, S) then

Q = PB,SªN + PN ||SªN +N(Q). (7)
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Proof It is a particular case of [9, Proposition 3.5]. ¤

Proposition 2.5 Let B ∈ L(H)s and S be a closed subspace of H such that (B, S) is com-
patible. If x ∈ H then (I − PB,S )x is the unique minimal norm element in the set

{(I − Q)x : Q ∈ P(B, S)}. (8)

Proof It is analogous to the proof of [8, Theorem 3.2]. ¤

Proposition 2.6 Let B ∈ L(H)s and S be a closed subspace of H. Then, (B, S) is compat-
ible if and only if there exists a (unique) orthogonal decomposition S ª N(B) = S+ ⊕ S−,
where S+ is a (closed) B-positive subspace, S− is a (closed) B-negative subspace, (B, S±)

is compatible and S+⊥B S−.

Proof See [19, Theorem 5.1 and Proposition 5.2]. ¤

3 Least Squares Problems

In this section, given C ∈ CR(H, K), y ∈ K and an operator B ∈ L(K)s , we are interested
in characterizing, if there is any, the B-LSS of Cx = y, i.e. those vectors u ∈ H such that

hB(Cu − y),Cu − yi = min
x∈H

hB(Cx − y),Cx − yi. (9)

This kind of problems has been previously studied both in finite and infinite dimensional
spaces. The following are some problems that can be translated into B-least squares prob-
lems.

Example 3.1 [24] Given two invertible Hermitian matrices 5 ∈ C
m×m and W ∈ C

n×n, a
column vector y ∈ C

n, and an arbitrary matrix T ∈ C
n×m, A.H. Sayed et al. studied the

following minimization problem: characterize those vectors z0 ∈ C
m such that

z∗
05

−1z0 + (y − T z0)
∗W−1(y − T z0) = min

z∈Cm

£
z∗5−1z + (y − T z)∗W−1(y − T z)

¤
.

Observe that the above problem can be restated as: characterize those vectors z0 ∈ C
m such

that

hB(Cz0 − w),Cz0 − wi = min
z∈Cm

hB(Cz − w),Cz − wi,

where w = ¡ 0
y

¢ ∈ C
p , B = ¡

5−1 0
0 W−1

¢ ∈ C
p×p , C = ¡

I

T

¢ ∈ C
p×m and p = m + n.

Example 3.2 (Suboptimal linear estimation in H∞, [22]) In what follows we show that there
exists a solution of the suboptimal estimation in H∞ problem (see the Introduction for the
statement of this problem) if there exists a B-LSS for an appropriate equation Cx = y in
some Hilbert space.

Given i ≥ j ≥ 0, consider 8i,j ∈ L(Cm,C
m) and 0i,j ∈ L(Cp,C

m) defined by

8i,j =

⎧
⎪⎪⎨

⎪⎪⎩

Ai−1 . . .Aj if i − 1 > j

Aj if i − 1 = j

I if i = j

and 0i,j = 8i,i−j+1Di−j ,
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respectively. Notice that, for every n ≥ 1, xn can be calculated as:

xn = 8n,0x0 +
nX

k=1

0n,n−k+1uk−1.

Moreover, if 8 ∈ L(Cm, `2(Cm)) and 0 ∈ L(`2(Cp), `2(Cm)) are defined by 8z =
{8n,0z}n∈N, z ∈ C

m, and 0w = {Pn

k=1 0n,n−k+1wk−1}n∈N, w = {wn}n∈N ∈ `2(Cp), respec-
tively, then

x = 8x0 + 0u.

Also, y = v + H1x0 + H2u where H1 ∈ L(Cm, `2(Cq)) and H2 ∈ L(`2(Cp), `2(Cq)) are
given by H1z = {Cn8n,0z}n∈N, z ∈ C

m, and H2w = {Pn

k=1 Cn0n,n−k+1wk−1}n∈N, {wn}n∈N ∈
`2(Cp).

Let H = Cm ⊕ `2(Cp)⊕ `2(Cq) and B ∈ L(H)s the operator with block matrix represen-
tation given by

B =

⎛

⎜
⎜
⎜
⎝

I + H ∗
1 H1 − 1

γ
8∗8 H ∗

1 H2 − 1
γ
8∗0 −H ∗

1 + 1
γ
8∗F

H ∗
2 H1 − 1

γ
0∗8 I + H ∗

2 H2 − 1
γ
0∗0 −H ∗

2 + 1
γ
0∗F

−H1 + 1
γ
F ∗8 −H2 + 1

γ
F ∗0 I − 1

γ
F ∗F

⎞

⎟
⎟
⎟
⎠

.

Then, considering the sesquilinear form induced by B , it is easy to see that

J ((x0, u, y)) = h(x0, u, y), (x0, u, y)iB
= kx0k2

Cm + kuk2
`2(Cp)

+ ky − H1x0 − H2uk2
`2(Cq )

− 1

γ
kFy − 8x0 − 0uk2

`2(Cm)
.

Thus, in (3) we look for those x̂ = Fy such that J ((x0, u, y)) > 0. Therefore, we are inter-
ested in studying if J (z) = hz, ziB , z ∈ H attains a minimum and if it is positive. Observe
that, given the output of the system y = {yn}n∈N, the minimum of J (z) has to be found
among the vectors z ∈ H such that PS⊥z = (0,0, y), where S ⊥ = {0} ⊕ {0} ⊕ `2(Cq), i.e. a
solution is a vector z0 ∈ H such that PS⊥z0 = (0,0, y) and hz0, z0iB = min{hz, ziB : PS⊥z =
(0,0, y)} or, rewriting the problem, some w0 ∈ H such that

hỹ − PS w0, ỹ − PS w0iB = min
w∈H

hỹ − PS w, ỹ − PS wiB,

where ỹ = (0,0, y) ∈ H.

The next result establishes necessary and sufficient conditions for the existence of B-LSS
of the equation Cx = y. Similar results have been presented in [6, Remark 4.3] for (semi-
definite) positive weights and in [2, Theorem 8.4] for indefinite metric spaces.

Lemma 3.1 Let C ∈ CR(H, K), B ∈ L(K)s and y ∈ K. Then, u ∈ H is a B-LSS of the
equation Cx = y if and only if R(C) is B-nonnegative and y − Cu ∈ R(BC)⊥. Hence, if
u,v ∈ H are two B-LSS of Cx = y then C(u − v) ∈ N = R(C) ∩ R(BC)⊥.

Proof Let u ∈ H be a B-LSS of Cx = y. If x ∈ H and α ∈ R, then

hCu − y,Cu − yiB ≤ hCu + αCx − y,Cu + αCx − yiB
= hCu − y,Cu − yiB + 2α RehCu − y,CxiB + α2hCx,CxiB.
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Therefore, 2α RehCu − y,CxiB + α2hCx,CxiB ≥ 0 for every α ∈ R, and a standard ar-
gument shows that RehCu − y,CxiB = 0. In the same way, considering β = iα, α ∈ R, it
follows that ImhCu − y,CxiB = 0. Then, hCu − y,CxiB = 0 and hCx,CxiB ≥ 0 for every
x ∈ H.

Conversely, suppose that R(C) is B-nonnegative and there exists u ∈ H such that
y − Cu ∈ R(BC)⊥. Then, for every x ∈ H,

hy − Cx,y − CxiB = hy − Cu,y − CuiB + hC(u − x),C(u − x)iB
≥ hy − Cu,y − CuiB.

Therefore, u is a B-LSS of Cx = y.
Observe that, if u and v are B-LSS of Cx = y then y − Cu,y − Cv ∈ R(BC)⊥. Thus,

C(u − v) = (y − Cv) − (y − Cu) ∈ R(C) ∩ R(BC)⊥ = N . ¤

Let C ∈ CR(H, K), B ∈ L(K)s and y ∈ K. Given u ∈ H, notice that y − Cu ∈
R(BC)⊥ = N(C∗B) if and only if u is a solution of the normal equation

C∗B(Cx − y) = 0.

The following propositions characterize the solutions of the above equation.

Proposition 3.2 Let C ∈ CR(H, K) and B ∈ L(K)s . Given y ∈ K, consider the normal
equation

C∗B(Cx − y) = 0. (10)

1. If u ∈ H is a solution of (10), then the set of solutions of (10) coincides with
u + N(C∗BC).

2. Equation (10) admits a solution for every y ∈ K if and only if the pair (B,R(C)) is
compatible, or equivalently, c0(R(C)⊥,N(C∗B)⊥) < 1.

3. If (B,R(C)) is compatible and y ∈ K \R(C), then u ∈ H is a solution of (10) if and only
if there exists Q ∈ P(B,R(C)) such that Cu = Qy. In this case, the set of solutions of
(10) is u + N(BC).

Proof

1. It is trivial.
2. Notice that there is a solution of C∗B(Cx − y) = 0 for every y ∈ K if and only if K =

R(C) + R(BC)⊥, and the last condition is equivalent to c0(R(C)⊥,N(C∗B)⊥) < 1 (see
the Preliminaries).

3. For y ∈ K and u ∈ H suppose that there exists Q ∈ P(B,R(C)) such that Cu = Qy.
Then, y − Cu = (I − Q)y ∈ N(Q) ⊆ R(BC)⊥ (see Preliminaries), i.e. u is a solution of
C∗B(Cx − y) = 0.

Conversely, for y ∈ K \R(C), let u be a solution of C∗B(Cx −y) = 0. Then, y = Cu+z

with z ∈ R(BC)⊥, z /∈ R(C). Since z ∈ R(BC)⊥\R(C) and K = R(C)+R(BC)⊥, it is easy
to see that there exists a closed subspace S of R(BC)⊥ such that z ∈ S and H = R(C) u S .
Therefore, Q = PR(C)||S ∈ P(B,R(C)) and

Qy = Q(Cu + z) = Cu.
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Finally, notice that N(C∗BC) = N(BC) because (B,R(C)) is compatible. Therefore, the
set of solutions of C∗B(Cx − y) = 0 coincides with u + N(BC). ¤

Given C ∈ CR(H, K) and B ∈ L(K)s , suppose that (B,R(C)) is compatible. It fol-
lows from item 3. in the above proposition that, given y ∈ K, if Cu = Qy for some
Q ∈ P(B,R(C)), then u is a solution of the normal equation. But the converse is no longer
true when y ∈ R(C). In this case, Qy = y for every Q ∈ P(B,R(C)) and the set of solutions
of Cx = y is C†y + N(C) but the set of solutions of the normal equation C∗B(Cx − y) = 0
can be parametrized as C†y + N(BC).

The next result characterizes the set of solutions of the normal equation by means of a
family of inner inverses of C.

Proposition 3.3 Let C ∈ CR(H, K) and B ∈ L(K)s such that the pair (B,R(C)) is com-
patible. Given y ∈ K \ R(C), u ∈ H is a solution of C∗B(Cx − y) = 0 if and only if there
exists a solution D ∈ L(K, H) of

CXC = C, BCX = (CX)∗B,

such that Dy = u.

Proof Given y ∈ K \ R(C), suppose that u = Dy, with D ∈ L(K, H) satisfying CDC = C

and BCD = (CD)∗B . It is easy to see that Q = CD is a B-selfadjoint projection. Fur-
thermore, R(Q) ⊆ R(C) = R(CDC) ⊆ R(Q) i.e. Q ∈ P(B,R(C)). Then Cu = Qy with
Q ∈ P(B,R(C)) and, by Proposition 3.2, u is a solution of the normal equation.

Conversely, if u ∈ H is a solution of C∗B(Cx − y) = 0, there exists Q ∈ P(B,R(C))

such that Cu = Qy. Then, u = C†Qy + z where z ∈ N(C). Consider an operator T ∈
L(K, H) with R(T ) ⊆ N(C) such that Ty = z, and define D = C†Q + T . Since CD =
C(C†Q + T ) = Q it is easy to see that D is a solution of

CXC = C, BCX = (CX)∗B,

and Dy = C†Qy + Ty = u. ¤

As it was stated in Lemma 3.1, a necessary condition for the existence of B-LSS of the
equation Cx = y is that R(C) is B-nonnegative. Under this hypothesis, and applying the
previous results in this section, the following description of the B-least squares problem is
obtained.

Theorem 3.4 Given B ∈ L(K)s , let C ∈ CR(H, K) such that R(C) is B-nonnegative. Then,
the following conditions hold:

1. Given y ∈ K, u ∈ H is a B-LSS of the equation Cx = y if and only if u is a solution of
the normal equation C∗B(Cx − y) = 0.

2. There exists a B-LSS of the equation Cx = y for every y ∈ K if and only if the pair
(B,R(C)) is compatible. In this case, if y ∈ K \ R(C), u ∈ H is a B-LSS of Cx = y if
and only if there exists Q ∈ P(B,R(C)) such that Cu = Qy.

3. If (B,R(C)) is compatible, the set of B-LSS of the equation Cx = y coincides with the
affine manifold u + N(BC), where u is any fixed B-LSS of Cx = y.
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In [15], given B ∈ L(H)s , a (closed) B-nonnegative subspace S of H and y ∈ H, B.
Hassibi et al. studied the problem of finding vectors u ∈ S such that

hu − y,u − yiB = min
x∈H

hPS x − y,PS x − yiB, (11)

where PS is the orthogonal projection onto S . They were particularly interested in cases
where there is a unique solution of the problem. By Lemma 3.1, u ∈ S satisfies (11) if and
only if y − u ∈ R(BPS )⊥. It is easy to see that this condition holds if and only if

PS BPS u = PS By. (12)

When H is finite dimensional, if there exists a unique solution u ∈ S of (12) for some y0 ∈ H,
then the operator PS BPS |S is injective. Therefore, PS BPS |S is invertible, and there exists
a unique solution of (12) for every y ∈ H.

If H is an infinite dimensional Hilbert space this may be not true, since PS BPS |S may
be injective but not invertible. In fact, if H is an infinite dimensional Hilbert space, there is
a solution of (12) for every y ∈ H if and only if the equation

(PS BPS )X = PS B

admits a solution in L(H), or equivalently, the pair (B, S) is compatible; see [7, Proposi-
tion 3.3].

3.1 Minimizing in the Set of B-LSS

In the following paragraphs we study a minimization problem in the set of B-LSS of
Cx = y. Given y ∈ K, C ∈ CR(H, K), A ∈ L(H)s and B ∈ L(K)s suppose that (B,R(C))

is compatible and R(C) is B-nonnegative. Also, recall that if (B,R(C)) is compatible then
N(C∗BC) = N(BC).

Definition 3.5 An element w ∈ H is an AB-least squares solution (hereafter AB-LSS) of
Cx = y if w is a B-LSS of Cx = y and

hw,wiA ≤ hu,uiA, for every B-LSS u of Cx = y.

Before characterizing the set of AB-LSS of Cx = y, assuming that (B,R(C)) is compat-
ible, we define a particular B-LSS of Cx = y based on PB,R(C), the minimal norm element
of P(B,R(C)).

Definition 3.6 Let C ∈ CR(H, K), B ∈ L(K)s and y ∈ K. Suppose that the pair (B,R(C))

is compatible. Then,

uy := C†PB,R(C)y (13)

is the minimal B-LSS of the equation Cx = y.

Observe that Cuy = PB,R(C)y, so that uy is a B-LSS of Cx = y (see Theorem 3.4). The
following result characterizes it.
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Proposition 3.7 Given y ∈ K, uy ∈ H is the unique B-LSS of Cx = y in N(C)⊥ which
satisfies

ky − Cuyk = min{ky − Cuk : u is a B-LSS of Cx = y}. (14)

Proof If y ∈ R(C) it is easy to see that uy satisfies (14). Let y ∈ K \ R(C). If u0 is a B-LSS
of Cx = y then there exists Q ∈ P(B,R(C)) such that Cu0 = Qy and, by Proposition 2.5,

ky − Cu0k = k(I − Q)yk ≥ k(I − PB,R(C))yk = ky − Cuyk.
Then, u0 satisfies ky − Cu0k = min{ky − Cuk : u is a B-LSS of Cx = y} if and only if
Qy = PB,R(C)y, i.e., Cu0 = Cuy , or equivalently, u0 ∈ uy + N(C). ¤

Corollary 3.8 Let C ∈ CR(H, K), B ∈ L(K)s and y ∈ K. Suppose that (B,R(C)) is com-
patible and R(C) is B-nonnegative. Then, the following conditions are equivalent:

1. N = {0};
2. R(C) is B-positive;
3. uy is the unique B-LSS in N(C)⊥ of Cx = y.

Proof Since C∗BC ∈ L(H)+, Cx ∈ N if and only if hCx,CxiB = 0. Therefore, item 1 is
equivalent to item 2. On the other hand, item 1 is equivalent to item 3 by Theorem 3.4. ¤

The following proposition provides a parametrization of the set of AB-LSS of Cx = y

under suitable conditions.

Proposition 3.9 If A ∈ L(H)s then, there exists an AB-LSS of the equation Cx = y

for every y ∈ K if and only if (A,N(BC)) is compatible and N(BC) is A-nonnegative.
Moreover, if y ∈ K \ R(BC)⊥, w is an AB-LSS of Cx = y if and only if there exists
Q ∈ P(A,N(BC)) and P ∈ P(B,R(C)) such that

w = (I − Q)C†Py.

Proof Suppose that, for every y ∈ K, there exists an AB-LSS wy ∈ H of the equation
Cx = y, i.e.

hwy,wyiA = min
u∈uy+N(BC)

hu,uiA, (15)

where uy = C†PB,R(C)y is the minimal B-LSS of the equation Cx = y. Let zy ∈ N(BC)

such that wy = uy + zy = uy + Ezy , where E = PN(BC) is the orthogonal projection onto
N(BC). Then,

huy + Ezy,uy + EzyiA = hwy,wyiA = min
z∈N(BC)

huy + z,uy + ziA
= min

x∈H
huy + Ex,uy + ExiA.

Therefore, zy is an A-LSS of the equation Ex = −uy . Hence, by Lemma 3.1, R(E) =
N(BC) is A-nonnegative.

The compatibility of (B,R(C)) implies that {uy : y ∈ K} = N(C)⊥, therefore the equa-
tion Ex = z admits an A-LSS for every z ∈ N(C)⊥. Also, the equation Ex = z admits
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an exact solution (which is also an A-LSS) for every z ∈ N(C) because N(C) ⊆ R(E).
Thus, Ex = z admits an A-LSS for every z ∈ K and, applying Theorem 3.4, it follows that
(A,N(BC)) is compatible.

Observe that if y /∈ R(BC)⊥ then uy /∈ R(E) = N(BC): In fact, uy ∈ N(BC) if and
only if BPB,R(C)y = 0 and N(BPB,R(C)) = R(BPB,R(C))

⊥ = R(BC)⊥, because PB,R(C)

is B-selfadjoint. Therefore, by Theorem 3.4, if y /∈ R(BC)⊥ then there exists Q ∈
P(A,N(BC)) such that Ezy = −Quy . So,

wy = uy + zy = uy + Ezy = (I − Q)uy = (I − Q)C†PB,R(C)y.

Conversely, suppose that (A,N(BC)) is compatible, N(BC) is A-nonnegative and let
Q ∈ P(A,N(BC)). If P ∈ P(B,R(C)), observe that (I − Q)C†P = (I − Q)C†PB,R(C).
Indeed, if P ∈ P(B,R(C)), there exists Z ∈ L(R(C)⊥, N ) such that P = PB,R(C) + Z (see
Theorem 2.3). Then, (I − Q)C†P = (I − Q)C†PB,R(C) because (I − Q)C†Z = 0.

Given y ∈ K, consider w = (I − Q)C†PB,R(C)y. Then, w ∈ uy + N(BC) and therefore,
it is a B-LSS of Cx = y (see Theorem 3.4).

On the other hand, given any B-LSS u of Cx = y, there exists z ∈ N(BC) such that
u = uy + z = uy + Qz and

hu,uiA = h(I − Q)uy + Q(uy + z), (I − Q)uy + Q(uy + z)iA
= hw,wiA + 2 Reh(I − Q)uy,Q(uy + z)iA + hQ(uy + z),Q(uy + z)iA
= hw,wiA + hQ(uy + z),Q(uy + z)iA ≥ hw,wiA,

because R(Q)⊥AN(Q) and R(Q) = N(BC) is A-nonnegative. Thus, w is an AB-LSS of
Cx = y. ¤

It follows from the proof of Proposition 3.9 that, given y ∈ K \ R(BC)⊥, the set of AB-
LSS of the equation Cx = y is

{(I − Q)C†PB,R(C)y : Q ∈ P(A,N(BC))}. (16)

On the other hand, if y ∈ R(BC)⊥ then uy ∈ N(BC). So, the problem of finding an AB-
LSS of Cx = y translates into finding a vector u ∈ N(BC) such that hu,uiA = 0, see (15).
Hence, if y ∈ R(BC)⊥, the set of AB-LSS is M = N(A) ∩ N(BC) and (16) describes a
proper subset of the set of AB-LSS of Cx = y. However, it contains the minimal norm
AB-LSS of Cx = y.

Proposition 3.10 Let A ∈ L(H)s such that (A,N(BC)) is compatible and N(BC) is an
A-nonnegative subspace of H. If y ∈ K then vy = (I − PA,N(BC))C

†PB,R(C)y is the unique
minimal norm element of the set of AB-LSS of Cx = y. Moreover, if M = {0} then vy is the
unique AB-LSS of Cx = y.

Proof If y ∈ K \ R(BC)⊥ and v is an AB-LSS of Cx = y, there exists Q ∈ P(A,N(BC))

such that v = (I − Q)uy . By Proposition 2.5,

kvk = k(I − Q)uyk ≥ k(I − PA,N(BC))uyk = kvyk,
and kvk = kvyk if and only if v = vy . Therefore, vy = (I − PA,N(BC))C

†PB,R(C)y is the
unique minimal norm AB-LSS of Cx = y.
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On the other hand, if y ∈ R(BC)⊥ then uy ∈ N(BC). Therefore, vy is the minimal norm
AB-LSS of Cx = y because vy = 0. ¤

Proposition 3.3 characterize the B-LSS of Cx = y in terms of a set of inner inverses
of C. The end of this section is devoted to parametrize the set of AB-LSS of Cx = y in
terms of weighted generalized inverses.

Definition 3.11 Given C ∈ CR(H, K) and weights A ∈ L(H)s and B ∈ L(K)s , D ∈
L(K, H) is a weighted generalized inverse of C if D is a solution of

CXC = C, XCX = X, A(XC) = (XC)∗A, B(CX) = (CX)∗B. (17)

The above equations can be seen as an extension of the previous definitions given for positive
weights by Eldén [11] (in finite dimensional spaces) and by G. Corach et al. [6] (in infinite
dimensional Hilbert spaces).

The following theorem presents conditions for the existence of weighted generalized in-
verses (respect to selfadjoint weights A and B) of a closed range operator C and character-
izes those inverses in terms of the Moore-Penrose inverse of C and the sets of A-selfadjoint
and B-selfadjoint projections. The proof is omitted since it is analogous to the proofs given
in [6, Sect. 3].

Theorem 3.12 Given C ∈ CR(H, K), A ∈ L(H)s and B ∈ L(K)s there exists D ∈ L(K, H)

such that D is a solution of (17) if and only if (A,N(C)) and (B,R(C)) are compatible
pairs. In this case,

GI (C,A,B) = {(I − Q)C†P : Q ∈ P(A,N(C)) and P ∈ P(B,R(C))}

is the set of all bounded linear solutions of (17).

Finally, if y ∈ K \ R(BC)⊥, it is possible to parametrize the set of AB-LSS of the equa-
tion Cx = y using a set of weighted generalized inverses.

Proposition 3.13 Let C ∈ CR(H, K), A ∈ L(H)s and B ∈ L(K)s such that (B,R(C)) and
(A,N(BC)) are compatible, R(C) is B-nonnegative and N(BC) is A-nonnegative. Given
y ∈ K \ R(BC)⊥, the set of AB-LSS of the equation Cx = y is given by

{Ty : T ∈ GI (PR(C)ªN C,A,B)}.

Proof By Proposition 3.9 we know that given y ∈ K \ R(BC)⊥, the set of AB-LSS of
Cx = y is

{(I − Q)C†Py : Q ∈ P(A,N(BC)),P ∈ P(B,R(C))}.
Given P ∈ P(B,R(C)), let E = PN ||R(C)ªN +N(P ). If C̃ = PR(C)ªN C then R(C̃) = R(C) ª
N and, by Proposition 2.4, it follows that P = PB,R(C̃) + E. On the other hand, for any
Q ∈ P(A,N(BC)), (I − Q)C†E = 0, because R(C†E) ⊆ N(BC). Then the set of AB-
LSS of Cx = y can be written as

{(I − Q)C†PB,R(C̃)y : Q ∈ P(A,N(BC))}. (18)
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Next, we show that, if Q ∈ P(A,N(BC)) then (I − Q)C† = (I − Q)C̃†. If C̃ = PR(C)ªN C

then it is easy to see that C̃† = PN(PR(C)ªN C)⊥C† = PN(BC)⊥C† because

N(PR(C)ªN C) = C−1(N ) = N(BC).

Furthermore, if Q ∈ P(A,N(BC)) then (I − Q)PN(BC) = 0. So, (I − Q)C̃† =
(I − Q)PN(BC)⊥C† = (I − Q)C†.

Observe that R(C̃) is a B-non-degenerated subspace of K (i.e. its B-isotropic part is
trivial). Therefore, P(B,R(C̃)) = {PB,R(C̃)} and it is easy to see that the set given in (18)

coincides with {Ty : T ∈ GI (C̃,A,B)}. ¤

4 A Min-Max Solution of the Equation Cx = y

In Sect. 3 we established a relationship between the B-LSS of Cx = y and the solutions
of the normal equation C∗B(Cx − y) = 0. More precisely, supposing that R(C) is a B-
nonnegative subspace of K, we proved that u ∈ H is a B-LSS of Cx = y if and only if it is a
solution of the normal equation C∗B(Cx − y) = 0. Notice that, if R(C) is a B-nonpositive
subspace of K, vectors u ∈ H satisfying

hB(Cu − y),Cu − yi = max
x∈H

hB(Cx − y),Cx − yi,

can be characterized following the same ideas as in the B-least squares problem. In fact,
similar results to those given in Theorem 3.4 can be established mutatis mutandis.

The purpose of this section is to study the solutions of the normal equation without the
restriction of R(C) being B-definite. We will prove that the solutions of the normal equation
C∗B(Cx − y) = 0 can be related to the solutions of a min-max problem.

Definition 4.1 Let C ∈ CR(H, K) and B ∈ L(K)s such that R(C) is B-decomposable.
Given y ∈ K, a vector u ∈ H is a B-min-max solution (B-MMS) of the equation Cx = y if

hy − Cu,y − CuiB = min
s∈S+

max
t∈S−

hy − (s + t), y − (s + t)iB (19)

= max
t∈S−

min
s∈S+

hy − (s + t), y − (s + t)iB (20)

where R(C) = N u S+ u S− is a decomposition as in Definition 2.1.

Remark 4.2 Given a decomposition R(C) = N u S+ u S− as above, observe that N u S+
is a closed subspace and

max
t∈S−

min
s∈S+

hy − (s + t), y − (s + t)iB = max
t∈S−

min
x∈S++N

hy − (x + t), y − (x + t)iB. (21)

Indeed, for a fixed t ∈ S−,

min
x∈S++N

hy − (x + t), y − (x + t)iB ≤ min
s∈S+

hy − (s + t), y − (s + t)iB

because S+ ⊆ S+ + N . On the other hand, if w ∈ S+ + N satisfies

hy − (w + t), y − (w + t)iB = min
x∈S++N

hy − (x + t), y − (x + t)iB,
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then, by Lemma 3.1, y − (w + t) is B-orthogonal to S+ + N , that is hy − (w + t), xiB = 0
for every x ∈ S+ + N . Suppose that w = s0 + n0, with s0 ∈ S+ and n0 ∈ N . Hence,
h(y − t) − w,n0iB = 0 and hn0, n0iB = 0 because n0 ∈ N . Therefore,

hy − (w + t), y − (w + t)iB = h(y − t) − s0, (y − t) − s0iB
≥ min

s∈S+
hy − (t + s), y − (t + s)iB.

So, considering the maximum over the vectors t ∈ S−, (21) follows.

Also, notice that the decomposition R(C) = N u S+ u S− in Definition 2.1 is not nec-
essarily unique. However, the following result shows that the B-MMS definition is inde-
pendent of the selected decomposition. Furthermore, it characterizes the B-MMS of the
equation Cx = y. Along the following paragraphs, Z denotes the set of B-neutral vectors
in K.

Theorem 4.3 Let C ∈ CR(H, K) and B ∈ L(K)s such that R(C) is B-decomposable. Given
y ∈ K, u ∈ H is a B-MMS of Cx = y if and only if u ∈ u0 + C−1(Z), where u0 ∈ H is a
solution of the normal equation C∗B(Cx − y) = 0.

Proof Suppose that u ∈ H is a B-MMS of Cx = y, Then, by Remark 4.2,

hy − Cu,y − CuiB = max
t∈S−

min
s∈S+

hy − (s + t), y − (s + t)iB,

where R(C) = N u S+ u S− is a decomposition as in Definition 2.1. Fixed t ∈ S−, by
Lemma 3.1, it follows that mins∈S+h(y − t) − s, (y − t) − siB is attained at s0(t) ∈ S+ if
and only if hy − t − s0(t), xiB = 0 for every x ∈ S+. Then, hy − s0(t), xiB = hy − t −
s0(t), xiB = 0 for every x ∈ S+ because S− is B-orthogonal to S+. Therefore, s0(t) = s0 is
the unique vector in S+ which satisfies

h(y − t) − s0, (y − t) − s0iB = min
s∈S+

h(y − t) − s, (y − t) − siB.

Hence, hy − Cu,y − CuiB = maxt∈S−h(y − s0) − t, (y − s0) − tiB .
Analogously, this maximum is attained at t0 ∈ S− if and only if hy − s0 − t0, tiB = 0 for

every t ∈ S−. Moreover, by Remark 4.2, hy − s0 − t0, xiB = 0 for every x ∈ S− + N .
Let u0 ∈ H such that Cu0 = s0 + t0. Since R(C) = N u S+ u S−, it is easy to see

that hy − Cu0, ziB = 0 for every z ∈ R(C). Hence, u0 is a solution of the normal equation
C∗B(Cx − y) = 0 and

hy − Cu,y − CuiB = hy − Cu0, y − Cu0iB.

Since hy − Cu0, ziB = 0 for every z ∈ R(C), then

hy − Cu0, y − Cu0iB = hy − Cu,y − CuiB
= h(y − Cu0) + (Cu0 − Cu), (y − Cu0) + (Cu0 − Cu)iB
= hy − Cu0, y − Cu0iB + hCu0 − Cu,Cu0 − CuiB,

and the above equation holds if and only if hCu0 − Cu,Cu0 − CuiB = 0. Therefore, u ∈
u0 + C−1(Z).
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Conversely, consider a solution u0 ∈ H of the normal equation C∗B(Cx − y) = 0 and let
u ∈ u0 + C−1(Z). Then, hCu − y,Cu − yiB = hCu0 − y,Cu0 − yiB .

Suppose that R(C) = N u S+ u S− is a decomposition as in Definition 2.1, and let x0 ∈
S+ + N and t0 ∈ S− such that Cu0 = x0 + t0. Since hy − Cu0, xiB = 0 for every x ∈ R(C)

and S+ + N is B-orthogonal to S−, it is easy to see that hy−x0 − t, xiB = hy−x− t0, tiB = 0
for every x ∈ S+ + N and t ∈ S−. Then, considering the equation Px = y − t0 (where P is
the orthogonal projection onto S+ + N ) it follows by Lemma 3.1 that

hy − Cu,y − CuiB = hy − x0 − t0, y − x0 − t0iB
= min

x∈H
hy − t0 − Px,y − t0 − PxiB

= min
s∈S++N

hy − t0 − s, y − t0 − siB
= min

s∈S+
hy − t0 − s, y − t0 − siB

= min
s∈S++N

max
t∈S−

hs + t − y, s + t − yiB. ¤

Corollary 4.4 Let C ∈ CR(H, K) and B ∈ L(K)s such that R(C) is B-decomposable. Then,
there exists a B-MMS of Cx = y for every y ∈ K if and only if (B,R(C)) is compatible. In
this case, u is a B-MMS of Cx = y if and only if Cu ∈ PB,R(C)y + Z .

Proof Suppose that (B,R(C)) is compatible. If u is a B-MMS of Cx = y then u = u0 +
z, where u0 is a solution of the normal equation C∗B(Cx − y) = 0 and z ∈ C−1(Z). By
Proposition 3.2, u0 = C†PB,R(C)y + n with n ∈ N(BC) = C−1(N ). Hence, Cu = Cu0 +
Cz = PB,R(C)y + C(n + z) ∈ PB,R(C)y + Z .

Conversely, if Cu = PB,R(C)y + z and z ∈ Z then u = C†PB,R(C)y + (C†z + PN(C)u) ∈
uy + C−1(Z), where uy is the minimal solution of the normal equation C∗B(Cx − y) = 0.
Then, by Theorem 4.3, u is a B-MMS of the equation Cx = y. ¤

Acknowledgements The authors would like to acknowledge the referee, whose comments helped us to
improve this work.

References

1. Ben-Israel, A., Greville, T.N.E.: Generalized Inverse: Theory and Applications. Springer, Berlin (2003)
2. Bognár, J.: Indefinite Inner Product Spaces. Springer, Berlin (1974)
3. Chandrasekaran, S., Gu, M., Sayed, A.H.: A stable and efficient algorithm for the indefinite least squares

problem. SIAM J. Matrix Anal. Appl. 20(2), 354–362 (1998)
4. Chipman, J.S.: On least squares with insufficient observations. J. Am. Stat. Assoc. 59, 1078–1111 (1964)
5. Chipman, J.S.: Specification problems in regression analysis. In: Proc. Sympos. Theory and Application

of Generalized Inverses of Matrices (Lubbock, Texas, 1968), pp. 114–176. Texas Tech. Press, Lubbock
(1968)

6. Corach, G., Maestripieri, A.: Weighted generalized inverses, oblique projections and least squares prob-
lems. Numer. Funct. Anal. Optim. 26(6), 659–673 (2005)

7. Corach, G., Maestripieri, A., Stojanoff, D.: Oblique projections and Schur complements. Acta Sci. Math.
(Szeged) 67, 337–256 (2001)

8. Corach, G., Maestripieri, A., Stojanoff, D.: Oblique projections and abstract splines. J. Approx. Theory
117, 189–206 (2002)

9. Corach, G., Maestripieri, A., Stojanoff, D.: A classification of projectors. Banach Cent. Publ. 67, 145–
160 (2004)

10. Dixmier, J.: Etudes sur les variétés et opérateurs de Julia, avec quelques applications. Bull. Soc. Math.
France 77, 11–101 (1949)



A Geometrical Approach to Indefinite Least Squares Problems 81

11. Eldén, L.: Perturbation theory for the least squares problem with linear equality constraints. SIAM J.
Numer. Anal. 17(3), 338–350 (1980)

12. Golub, G.H., Van Loan, C.F.: An analysis of the total least squares problem. SIAM J. Numer. Anal.
17(6), 883–893 (1980)

13. Hassi, S., Nordström, K.: On projections in a space with an indefinite metric. Linear Algebra Appl.
208/209, 401–417 (1994)

14. Hassibi, B., Sayed, A.H., Kailath, T.: H∞ optimality criteria for LMS and backpropagation. Adv. Neural
Inf. Process. Syst. 6, 351–359 (1994)

15. Hassibi, B., Sayed, A.H., Kailath, T.: Linear estimation in Krein spaces—Part I: Theory. IEEE Trans.
Autom. Control 41(1), 18–33 (1996)

16. Hassibi, B., Sayed, A.H., Kailath, T.: Linear estimation in Krein spaces—Part II: Application. IEEE
Trans. Autom. Control 41(1), 33–49 (1996)

17. Hassibi, B., Sayed, A.H., Kailath, T.: Indefinite-Quadratic Estimation and Control. A Unified Approach
to H2 and H∞ Theories. Studies in Applied and Numerical Mathematics. SIAM, Philadelphia (1999)

18. Iokhvidov, I.S., Azizov, T.Ya.: Linear Operators in Spaces with an Indefinite Metric. Wiley, New York
(1989)

19. Maestripieri, A., Martínez Pería, F.: Decomposition of selfadjoint projections in Krein spaces. Acta Sci.
Math. 72, 611–638 (2006)

20. Mary, X.: Moore-Penrose inverse in Krein spaces. Integral. Equ. Oper. Theory 60(3), 419–433 (2008)
21. Morley, T.D.: A Gauss-Markov theorem for infinite-dimensional regression models with possibly singu-

lar covariance. SIAM J. Appl. Math. 37(2), 257–260 (1979)
22. Nagpal, K.M., Khargonekar, P.P.: Filtering and smoothing in an H∞ setting. IEEE Trans. Autom. Con-

trol 36, 152–166 (1991)
23. Rao, C., Mitra, S.K.: Theory and application of constrained inverse of matrices. SIAM J. Appl. Math.

24, 473–488 (1973)
24. Sayed, A.H., Hassibi, B., Kailath, T.: Fundamental Inertia Conditions for the Minimization of Quadratic

Forms in Indefinite Metric Spaces. Oper. Theory: Adv. Appl. Birkhauser, Cambridge (1996)
25. Sheng, X., Chen, G.: The generalized weighted Moore-Penrose inverse. J. Appl. Math. Comput. 25,

407–413 (2007)


	A Geometrical Approach to Indefinite Least Squares Problems
	Abstract
	Introduction
	Preliminaries
	Least Squares Problems
	Minimizing in the Set of B-LSS

	A Min-Max Solution of the Equation Cx=y
	Acknowledgements
	References


