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Metamodeling is playing an increasingly important role in object-oriented software engi-
neering. However, most approaches use metamodels in a very pragmatic way and important
conceptual questions are left open.

In this paper, an object-oriented metamodeling methodology based on a formal metalan-
guage is introduced. The methodology allows for the description of all relevant properties
of a metamodel, i. e. abstract syntax, static and dynamic semantics. Di�erent kinds of in-
stantiation relations are identi�ed and a dichotomy for the classi�cation of metaentities is
developed. The reection of the instantiation relations by the metalanguage is shown.

1 Introduction

Metamodeling is used as a general technique for integrating and de�ning models from dif-
ferent domains. Common aspects of these di�erent views can be identi�ed and shared. The
metamodeling technique consequently can be applied in quite di�erent application domains,
especially for standardization purposes. Metamodels should therefore be rigorously de�ned as
well as being intuitive and well-structured. Many general methodological aspects of modeling
are also valid for metamodeling, however, further issues need to be considered in detail.

In this paper we present a metamodeling methodology based on a formal metalanguage.
This methodology allows for the description of all relevant aspects of the entities of the
metamodel. We are particularly interested in the description of dynamic semantics because
this aspect has been neglected in common metamodeling approaches. The metamodel level,
as well as the model level, are described. We provide a dichotomy for the classi�cation of
metaentities into intensional and extensional entities. Two kinds of instantiation relations are
identi�ed: inter-level instantiation and intra-level instantiation. The compatibility of these
relations is proved.

The examination of behavior of intensional as well as extensional enities within a single
approach may lead to an integration of process aspects of software engineering with the used
modeling techniques.
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1.1 Metamodels for the De�nition of Multiple View Languages

A widely used and generally accepted technique in modern software engineering is the com-
bination of di�erent models (or views) for the description of software systems. The primary
bene�t of this approach is the modeling of related aspects (like structure or behavior). For this
principle, called Separation of Concern, di�erent specialized techniques, mostly of diagram-
matic nature, have been developed. The use of di�erent models clari�es di�erent important
aspects of the system, but it has to be taken into consideration that these models are de-
pendent on each other and are semantically overlapping. Therefore, it is necessary to state
how these models are related. The di�erent views on a system have to be semantically
compatible and there are several constraints between them.

Metamodeling is a very promising technique for the de�nition of multiple view languages
like the Uni�ed Modeling Language [UML97]. Using a metamodel, it is possible to determine
how these models constitute the whole system. We would like to point out that while we
are using an object-oriented approach to metamodeling, we are in no way restricted to the
integration of object-oriented modeling techniques. Within our ongoing work, we have applied
this approach to object-oriented modeling techniques [MK98], as well as to the integration of
speci�cation techniques [Gei98].

1.2 Outline

In Section 2, we sketch the commonly accepted four level approach to metamodeling that
serves as the basis for our methodology. We introduce the dichotomy of intensional and
extensional metaentities and discuss the general structuring mechanisms used in our method-
ology. A running example is used in Section 3 in order to demonstrate the application of
the methodology. Key-concepts of metamodeling, such as instantiation, metaclasses, abstract
syntax, and static/dynamic semantics are explained and exempli�ed. The crucial Inten-
sional/Extensional Dichotomy is the subject of Section 4. We explain the di�erent kinds of
instantiation relations in detail and then show compatibility properties of the metalanguage
with respect to these instantiation relations, e. g. that instantiation is reected over di�erent
levels. Finally, in Section 5, we evaluate our approach using some common criteria for the
evaluation of metamodels. We summarize the bene�ts of our approach and compare it to
other existing approaches.

2 The Metamodeling Technique

We present a methodology for the de�nition of metamodels. The methodology is based on
the four-level approach, see Section 2.1. The presented approach allows not only for the
description of structural relations between the entities of a metamodel, but also for a formal
de�nition of structural constraints and dynamic behavior of the entities. The entities of the
metamodel are classi�ed and the di�erent kinds of instantiation relations are developed in a
systematic way.

2.1 The four-level Approach

A metamodel is a model for the information that can be expressed during (software) modeling.
Basically, a metamodel is a model of models. It consists of entities de�ning the model elements
and thereby the modeling language. The main purpose of a metamodel is to relate these model
elements. The di�erent levels of abstraction are illustrated in Fig. 1 [Ode95].

On the data- and process-level, the entities are run-time objects, i.e. instances of classes
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Figure 1: Di�erent Levels of Abstraction

and processes running on a concrete system. On the level of models, we have di�erent
models describing the underlying physical system, e.g. Employee and Employer are classes
of a structure diagram. The next abstraction, the metamodel level, describes the model in
which, for example, the entities are classes and objects. Following the example given in Fig. 1,
we consider Employer as an instance of Class of the metamodel. In order to express these
concepts, we need a further level, de�ning the used language for the metamodel. This level
is called meta-metamodel level.

The integration of di�erent models using the metamodel is depicted in Fig. 2.1 First,
the elements of each model are interpreted in the metamodel. This interpretation, depicted
as dashed lines, is usually done implicitly by the de�nition of the modeling language itself.
Within the metamodel the modeling entities themselves, as well as the relationships between
these entities are described, e.g. an Association consists of AssociationEnds. Furthermore, en-
tities of di�erent models might be also related. Consider for example the association between
Class and Behavior which establishes the relation between structural (Class) and behavioral
elements (StateMachine). This exempli�es also the need for further constraints in order to
exclude that a StateMachine is also related to another StateMachine. Generally, such con-
straints are very important in order to state the relationship between di�erent entities of the
metamodel.

According to [Atk97], we distinguish two metamodeling approaches. The loose approach
permits that an instance of a metaentity (e.g. metaentity Object) occurs on the same level
as its template (e.g. metaentity Class). In a strict approach a template is located on a higher
level than its instance. In the following, we will concentrate on loose metamodeling.

It is also possible to consider more than four levels. A crucial question is how to terminate

1This example is taken from the UML.
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the hierarchy. One technique is that the top-level model is an instance of itself. This solution
gives rise to self-referencing problems. To avoid this, we propose the use of an independently-
de�ned metalanguage. Overall, our approach is not only applicable for the de�nition of a
metamodel but also to higher levels, e.g. the meta-metamodel level.

2.2 Intensional and Extensional Entities

An important contribution of this paper is the distinction between intensional and extensional
metaentities. Intensional entities have a counterpart in the concrete syntax of the modeling
language, such as Class or Association. In contrast, extensional entities, such as Object
or Link, are used to store necessary run-time information. Extensional entities are usually
closely coupled to an intensional entity in a way that the structure of the extensional entity is
described by an intensional entity { for example, the structure of an Object is given by a Class.
One of the major advantages of metamodels is the ability to de�ne the relation of intensional
and extensional entities within one level. In this way, the \semantics" of an intensional entity
can be explained as the set of all corresponding extensional entities ful�lling the requirements.
A remarkable feature of metamodeling (loose approach) is that the semantics of a metaentity
can be de�ned within its own level.

2.3 Structuring Metamodels

A major focus of our work is the attempt to develop well-structured metamodels. For this
purpose we use structuring techniques that are well-known from software engineering. First
of all, we decompose a metamodel in di�erent metaclasses. Within a metaclass, we are able
to express all aspects relevant to a metaentity:
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� Abstract Syntax: An abstract description of the entities that form a model of the
respective language.

� Static Semantics (context conditions, constraints) : Well-formedness conditions between
the syntactic entities, such as absence of circular inheritance.

� Dynamic Semantics (denotation): The (operational) behavior of the entities of the
speci�cation, such as I/O, reaction to stimuli, e�ect of executing an operation, etc.

The description of dynamic semantics in a metamodel, in particular, is not treated pre-
cisely in other approaches. The dimensions of metamodeling are depicted in Figure 3. Here,
the concepts of intensional and extensional entities and its relation to abstract syntax, static
and dynamic semantics is summarized.

Intensional 
Entities

Extensional 
Entities

abstract Syntax

sta
tic

 S
em

an
tic

s

dy
na

m
ic

 S
em

an
tic

s

Figure 3: The Dimensions of Metamodeling

A metaentity has an internal state that is protected by object-oriented encapsulation prin-
ciples. This ensures that each metaentity has its own meaning, as independent as possible
from other metaentities. We call this principle, localization principle (see [ �Ove98]). In classi-
cal approaches for the de�nition of semantics of languages, e.g. [Mey88], this localization is
not ensured. The advantages are twofold: �rst, we achieve a better understandability and
readability. Second, and maybe more important, we achieve an increased exibility with
respect to extensions and changes. This has proved very important for the development of
metamodels.

In general, a metaclass might be related to other metaclasses by an association relation-
ship. An extensional entity is connected to its intensional entity by a special instantiation
association. The division between intensional and extensional entities partitions the meta-
model in two parts that are only connected by these special associations. In Section 4.2 we
formulate guidelines concerning these associations. The generalization-specialization rela-
tionship is important for de�ning abstract metaclasses as interfaces for metaentities. These
interfaces have to be ful�lled by the specialized metaentities. In Section 3, we illustrate the
structuring techniques as well as the methodological aspects of our approach.

In Figure 4, the di�erent roles of abstract syntax, static and dynamic semantics for inten-
sional and extensional objects are summarized. The most remarkable di�erence is observable
in the dynamic semantics. While dynamic semantics on the extensional level means run-time
behavior, dynamic semantics on intensional level describes system evolution in the develop-
ment process.
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Figure 4: Intensional vs. Extensional Entities

2.4 The Metalanguage

It is commonly accepted that modeling languages require a formal semantics in order to
be unambiguous. Since we use a metamodel for the de�nition of modeling languages, the
metalanguage necessarily must have a formal semantics. According to 2.3, the metalanguage
should support the following concepts:

� Objects: encapsulation of an object's internal state. An object de�nes an entity that
may only be accessed in a controlled way.

� Object Identity: the notion of a persistent identity for an object. Therefore, object
identities should be reected in the semantics of the metalanguage.

� Object Behavior: the possibility of objects evolving in a pre-de�ned way. According to
the localization principle, we propose the use of method de�nitions for the de�nition of
object behavior.

� Classes: the ability to describe the common aspects of objects and encapsulate them
in a class structure. Objects should then be instances of a type corresponding to the
class. The features of an object should be accessible via methods.

� Compositionality (associations): the ability to declare a structural connection between
classes so that a class can access services of the associated class.

� (multiple) Inheritance: de�ning a class as an extension of one or more existing classes.

� Polymorphism: the ability to de�ne operations that act upon several distinct classes.

� Constraints: the ability to describe constraints between objects or pre- and post-
conditions of object operations in some kind of predicate logic.

There are several formal languages ful�lling the above requirements of the metalanguage.
In the following, we have chosen Object-Z [DRS94] as the formal metalanguage. Object-Z
ful�lls all requirements stated above and provides additional concepts (e.g. parameterization)
that can be used in a sensible way. Furthermore, the structure of an Object-Z speci�cation
can be illustrated by a class diagram preserving the classical representation of metamodels.

3 Illustrating the Technique

In this section, we show how our approach can be used for the de�nition of modeling languages.
Using a running example, we discuss concepts employed in our work.
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3.1 The Running Example

We demonstrate our methodology by de�ning a metamodel for the integration of a simple
non-deterministic automaton with a toy programming language. In Figure 5, the entities of
the metamodel are shown using the UML notation. We �rst give a brief informal explanation
of the semantic entities. In the following, we will demonstrate our method by describing the
entities of the metamodel in our framework.

3.1.1 Automata

An Automaton consists of a set of states, an initial state and a set of transitions. A Transition
has a source and a target state. It is labeled with a condition - a boolean expression - and
an action - a statement. Executing a transition causes the action to be executed (method
Execute).

The semantics of an automaton is given by the associated class Con�guration. During
run-time, an automaton resides in exactly one state (actualState). The dynamic semantics of
an automaton is given by the method ExecuteStep that chooses an enabled transition (i. e. the
transition's source state is the actual state and its condition is evaluated true) and executes
it.

BooleanValue

DataValue
value : T

IntegerValue

+declaration

1

+value
1

+resType
1

+argtype
*

+{ordered}

+type
1

VarDecl
varName : Name
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+type1 Instance

+operator

1 Operator
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opname()
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1

Variable
1

1
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1
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Figure 5: The Running Example
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3.1.2 Programming Language

Our programming language basically consists of variable declarations (VarDecl), Types, State-
ments and Expressions. A VarDecl introduces a name and a type for a variable. A Type has
a name { further details of Type are omitted. A Statement 's dynamic semantics is de�ned
by the method Execute describing the e�ect of executing the statement. The only statement
considered here is the Assignment statement, consisting of a Variable and an Expression that
is to be bound to the variable. An Expression has a type and it can be evaluated using
the method Eval that is returning an Instance. The only kind of expression we have in our
example is a CompoundExpression, consisting of an Operator and a list of operands.2 An
Operator has a signature (argtype, restype) and a semantics, determined by the attribute
outrel , specifying how operands are mapped to the result.

A Variable has a declaration and is bound to an Instance at run-time. An Instance has
a type. In our example, the only instances covered are DataValues, carrying a value. We
distinguish BooleanValues and IntegerValues.

3.2 Di�erent Instantiation Relations

We can now begin with the de�nition of meta entities in the metalanguage Object-Z. A good
introduction to Object-Z can be found in [DRS94].

There are di�erent instantiation relations. In our example, we would like to state that an
Instance knows its Type3. This is given by the association type in the class diagram or by
the attribute type of the class Instance.

Type

name : Name

Instance

type : Type

A completely di�erent relationship is the instantiation of metamodel entities. For example,
we would like to de�ne the built-in types int and bool :

int ; bool : Type

int :name = Integer ^ bool :name = Boolean

Note that Integer and Boolean are prede�ned names.
With the above de�nition, we have crossed the border from metamodel level to model

level (compare Figure 1) by instantiating a concept (Type) from the metamodel level. This
shows that the instantiation relation between the di�erent levels is mapped naturally to the
instantiation mechanism provided by the metalanguage Object-Z.

3.3 Structuring of the Metamodel

The metalanguage provides several structuring mechanisms (e. g. parameterization, inheri-
tance), which are also very useful for structuring the metamodel.

2Atomic expressions are those consisting of a constant operator and an empty operand.
3Here, we do not consider the internal structure of Type.
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DataValue[T ]
Instance

value : T

8 e1; e2 : DataValue[T ] � e1 = e2 , e1:value = e2:value

The metaclass DataValue[T ] inherits properties of Instance, i.e. a DataValue is an In-
stance. We de�ne DataValue as a generic class over some internal datatype T. DataValues
of a programming language, in contrast to Objects that have a unique identity, share the
characteristic of extensional equality.

We would like to introduce BooleanValues and IntegerValues. The instances of the classes
BooleanValue and IntegerValue constitute the carrier sets for the built-in types int and bool .
We use the internal data types (B and Z) provided by the metalanguage for this purpose.

BooleanValue
DataValue[B ]

type = bool

IntegerValue
DataValue[Z]

type = int

By the inherited constraint of extensional equality, it is assured that there are exactly two
instances of BooleanValue, namely tt and � .

tt ;� : BooleanValue

tt :value ^ : � :value

3.4 Abstract Metaclasses

An abstract metaclass is a metaclass that cannot be instantiated. It is only possible to in-
stantiate subclasses of an abstract metaclass. Abstract metaclasses are used for the de�nition
of interfaces within the metamodel.

Expression

type : Type

#Expression = 0

Eval b= [ val ! : #Instance ]

Expression is an abstract metaclass as required by the constraint #Expression = 0. It
provides an interface that has to be realized by all expressions, namely that every expression
has a type and can be evaluated. This is expressed by the attribute type and the de�nition
of the \virtual" method Eval that results in an Instance. The declaration val ! : #Instance
means that the variable val is polymorphic, e.g. it is of type Instance or of any class type
derived from Instance by inheritance.

3.5 Abstract Responsibilities of Metaclasses

One of the main purposes of metamodeling is to provide a complete and abstract description
of the entities. We propose using structuring techniques for this purpose. Therefore, we
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propose de�ning a general metaclass Operator and instantiating this class in order to obtain
the pre-de�ned operators.

Operator

argType : seqType
resType : Type
outRel : (seq #Instance) 7! (#Instance)

8 s : dom outRel � #argType = #s
8 i : 1 : :#argType; s : dom outRel � argType(i) = (s(i)):type
8 i : ran outRel � resType = i :type

Eval
args? : seq #Instance
inst ! : #Instance

args? 2 dom outRel
inst ! = outRel(args?)

The signature of an Operator is de�ned by a sequence of argument types argType and
a result type resType. For example the lessOperator (see below) takes two int expressions
and results in a bool expression. The meaning of an Operator is de�ned by a partial function
outRel . The constraints in the class Operator state that an Operator can only be applied to
Instances of its argument types. The method Eval takes a sequence of instances and delivers
the instance that is yielded by applying the outrel relation to them.

lessOperator : Operator

lessOperator :argType = hint ; inti
lessOperator :resType = bool
8 i1; i2 : IntegerValue; b : BooleanValue �
(b = lessOperator :outRel(hi1; i2i) ^
b:value , (i1:value < i2:value))

plusOperator : Operator

plusOperator :argType = hint ; inti
plusOperator :resType = int
8 i ; i1; i2 : #IntegerValue �
(i = plusOperator :outRel(hi1; i2i) ^
i :value = (i1:value + i1:value))

Based on Operator, we can now de�ne a CompoundExpression, which is an Expression
that consists of an Operator applied to its operands. The abstract Eval-operation has to be
implemented: the operands are evaluated and the operator is applied to the results.
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CompoundExpression
Expression

operand : seq #Expression
operator : Operator

#(operator :argType) = #operand
type = operator :resType

Eval b= [ inst ! : #Instance ] �
([ args : seq #Instance ] � (o9 i : 1 : :#operand �

[ e : #Expression; inst : #Instance j e = operand(i) ^ inst = args(i) ] �
e:Eval [inst=inst !])

o
9operator :Eval [args?=args])

3.6 Intensional and Extensional Entities

The di�erence between intensional and extensional entities is demonstrated by the following
example:

A variable declaration is an intensional object, i.e. variable declarations are part of the
modeling language. A variable declaration's state remains constant during computation time.
The corresponding extensional entity is a Variable. It is linked to an intensional object, its
declaration. It is storing run-time information over the variable, i.e. the value the variable
currently holds. The dynamic semantics of variables is given by the method Attach that
allows the changing of the value of a variable. It is typical for extensional objects that they
provide methods with � lists that serve to alter their state.

VarDecl

varName : Name
typeName : Name
�
type : Type

type:name = typeName

Variable
Expression

declaration : VarDecl
value : #Instance
�
type : Type

type = declaration:type = value:type

Attach
�(value)
val? : #Instance

value 0 = val?

Eval b= [ inst ! : #Instance j inst ! = value ]

3.7 Integration of di�erent Modeling Languages

Now consider the class Automaton from Figure 5. Its transitions are labeled with conditions
and actions:
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Transition

source; target : State
cond : #Expression
action : #Statement

cond :type = bool

Execute b= action:Execute

A Transition consists of a source and a target state and is labelled with a boolean ex-
pression, denoting whether it can be executed or not. Its dynamic semantics is given by the
operation Execute, executing its action { an arbitrary statement.

Automaton

states : F State
transitions : F Transition
initialState : State

8 t : transitions �
ft :source; t :targetg � states

initialState 2 states

Con�guration

automaton : Automaton
actualState : State

actualState 2 automaton:states

INIT
actualState = automaton:initialState

SetActualState
�(actualState)
newState? : State

actualState 0 = newState?

ExecuteStep b= : : :

An Automaton represents an intensional object, i.e. the states, transitions and its ini-
tial state must be described in an appropriate modeling language. A Con�guration is an
extensional object that is linked to an intensional object, its automaton. It consists of an at-
tribute actualState, which holds the state the automata is residing in. Its dynamic semantics
is given by the methods SetActualState and ExecuteStep, which describe the behavior of the
automaton.

3.8 Modifying the Model

The distinction between intensional and extensional entities becomes apparent if one considers
the behavior of the metaentities. While the dynamic semantics of extensional entities de�nes
the system dynamics, the dynamic semantics of intensional entities describes how the structure
of the system might evolve. This feature is especially useful for describing the consistent
modi�cation of the model in the sense of system evolution.

Let us consider the following simple example of model modi�cation: the renaming of a
type.
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TypeRen
Type

Rename
�(name)
newName? : Name

name 0 = newName?

Using the operation Rename, it is possible to change the name of the type. The problem
is that the model becomes inconsistent, since further model elements refer to the modi�ed
type by its old name. It is therefore necessary to change further modeling elements.

In our example, we have to rename the type name of the a�ected variable declarations:

VarDeclRen
VarDecl

Rename
�(typeName)
newName? : Name

typeName 0 = newName?

A consistent type renaming renames the type itself, as well as all references to it:

TypeRen2
Type
Rename b= [�(name) newName? : Name j name 0 = newName? ] �

o
9 v : VarDeclRen j v :typeName = name � v :Rename

Again, we take advantage of the reference semantics, seeing as we do not need to change
further modeling elements, like Variable or Expression. Due to the persistent object identity,
the changes are local. Since our model identi�es the same concepts that are used in di�erent
models, the side-e�ects are minimal.

Class

operation()

operation()

Abstractor

Class ConcreteImp1

Implementor
imp

operationImp()

operationImp()

Figure 6: Introducing the Bridge Pattern

A more complex situation is the introduction of a design pattern in a software design. Con-
sider, for example, the introduction of the bridge pattern depicted in Figure 6 (see [GHJV95]
for a discussion of the pattern).
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From a software engineering point of view, it is very important to consider how design
patterns could be introduced within existing software designs. We believe that our metamodel
based approach could serve as a foundation for the de�nition of such modi�cations of the
system.

4 The Intensional/Extensional Dichotomy

The terms Intension and Extension are de�ned in [CN93] as follows:

A term [an element of a proposition] may be viewed in two ways, either as a
class of objects (which may have only one member), or as a set of attributes or
characteristics which determine the objects. The �rst phase or aspect is called the
denotation or extension of the term, while the second is called the connotation or
intension. The extension of the term 'philosopher' is 'Socrates', 'Plato', 'Thales',
and the like; its intension is 'lover of wisdom', 'intelligent', and so on.

In our metamodel, we distinguish between objects that have a counterpart in the syntax
(intensional objects) and those that are of purely semantical nature, i.e. that carry run-time
information (extensional objects). Extensional objects are linked via a special instantiation
association with intensional objects. In our example, a Variable is an instantiation of a
VariableDeclaration, and a Con�guration is an instantiation of an Automaton. The role
of updating methods is di�erent for these kinds of objects. Updating (changing the state
of) an intensional object means manipulating the model, whereas updating the state of an
extensional object contributes to the dynamic semantics of one particular model.

4.1 Di�erent Instantiation Relations

We provide two di�erent kinds of instantiation relations in our metamodel approach. On
one hand, we have special instantiation associations between the entities of one level of the
metamodel. Such a relation connects an intensional object with an extensional object. Note
that this is not characterized by a special syntactic construct of the metalanguage. Neverthe-
less, it is important to identify these associations properly. We call this kind of instantiation
intra-level instantiation. Second, we have the instantiation mechanism of the metalanguage
(i.e. lessOperator : Operator). This instantiation, called inter-level instantiation, causes a
transition between levels. It represents the instantiation arrow between metamodel level and
model level, see Figure 1. This instantiation preserves the characteristics of extensionality
and intensionality, i.e. the instantiation of an intensional object on the metamodel level is an
intensional object on the model level.

In Figure 7, the di�erent instantiation relations are depicted. There are several views on
a semantic entity:

� It can be viewed as an extension of some intensional object from its upper level.

� It can be instantiated by some object on its lower level, thus being viewed as an inten-
sional object.

� Within its own level, a semantic object is either intensional, if it is directly reected
in the syntax of the modeling language, or it is an extension of an intensional object,
representing information about the history of a computation.
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Figure 7: Instantiation Relations

4.2 Implications of the Dichotomy

In the following, we formulate some guidelines for the construction and evaluation of meta-
models. We do not consider these guidelines obligatory. However, non-conformity of the
metamodel with these guidelines should be carefully justi�ed.

� Classi�cation of metaentities:
The entities of the metamodel should be divided into intensional and extensional enti-
ties. The intra-level instantiations (instance of associations) should be distinguished.
Normally, their cardinality should be 1 : n from intensional to extensional. Every in-
tensional and every extensional entity should participate in, at the most, one intra-level
instantiation. In our running example (see Fig. 5), the entities on the left side are
intensional entities while the entities on the right are extensional.

� Unambiguity of intra-level instantiation:
An extensional entity is connected to exactly one intensional entity by the instance of
association. In statically typed languages, the instantiated association (link), once
established, remains constant, i. e. an object cannot change its type.

� Preservation of dichotomy by inheritance:
The partition in intensional and extensional entities is preserved by the inheritance
relationship. There exists no (concrete) metaentity that is super-type of an extensional
and an intensional entity. Furthermore, no intensional entity is a super-type of an
extensional entity and vice versa.

15



� Reection of associations between intensional entities via intra-level instantiation:
If two intensional entities are connected by an association, then this association is
reected by a corresponding association on the extensional level such that the traversal
along the associations is compatible, i.e. the diagram commutes in a certain sense. This
property is important since the instance of relationship is reected on the model-level
by the inter-level instantiation.

4.3 Properties of the Metalanguage

We will now state some properties of the metalanguage that are useful for the understanding
of the intensional/extensional dichotomy. In [GKP98], we have de�ned the semantic entities
and functions formally. In this paper, we give just a short overview:

The semantics of a class is the set of all possible valuations that might be assigned to an
object of the class. It is de�ned by the function classSem that assigns each class declaration
the set of all possible bindings. The semantics of an instance declaration of the form c : C is
de�ned by the function objSem that assigns to each instance declaration an object (reference).
The value of an object is de�ned by the function objectMap assigning the valuation for each
object. The function type delivers for an instance declaration its type and represents the
inter-level instantiation. The functions assoCD , assoCS , assoOD and deref are describing the
intra-level instantiation on the level of class syntax, class semantics, object syntax and object
semantics.

Model Level

Level
Metamodel

Semantics of Metalanguage

Syntax of Metalanguage

: : :g: : :g

true : Instance

assoCD (type)name : Name

bool : Type

otrueobool

Type
Instance

type : Type
value : V

true:type = boolassoOD (type)

ff(type 7! obool); (value 7! o� )g;
f(type 7! obool); (value 7! ott)g;
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assoCS (type)

f(type 7! onat); (value 7! o0)g;

bool:name = Bool

ff(name 7! oBool)g;
f(name 7! oNat )g;

Figure 8: Example

In Figure 8, an example of an intensional (Type) and a related extensional entity (Instance)
on the metamodel level is depicted. These are instantiated on the model level to the objects
bool and true. Accordingly, true is an extension of bool on the model level. The properties
apply, of course, to all pairs of intensional and extensional objects. Again, the proofs can be
found in [GKP98].
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� The semantics of an object is compatible with the semantics of the object's class.

� Every association between classes is reected by a compatible relation between valua-
tions on the semantical level.

� The instantiation relation between an extensional and an intensional object on the meta-
model level is reected by a compatible relation between corresponding extensional and
intensional objects on the model level, i.e. the intra-level instantiation is also instanti-
ated by an inter-level instantiation.

� Associations between semantics objects on the model level are compatible with the class
semantics of the participating objects.

Note that most other metamodeling approaches (e.g. [UML97, MOF97, Atk97]) do not
consider inter-level instantiation. Thus the relation between metamodel level and model level
is not precisely de�ned in these approaches.

5 Discussion

In the previous sections we have discussed our metamodeling technique. The major contri-
butions of this work are the following: We advocate the usage of a formal metalanguage and
we elaborate the concepts the metalanguage should provide. Based on these facilities of the
metalanguage, we show how the these techniques can be successfully applied in the de�nition
of metamodels. Here, one of the major aspects is the distinction between intensional and
extensional entities. Both kinds of entities and their instantiations have been investigated
in detail in Section 4. In contrast to existing metamodels, we also consider the dynamic
semantics of a metamodel.

5.1 Bene�ts of the presented approach

One bene�t of our approach is the suitability for the precise de�nition of multiple view
languages. In addition, our approach can be useful for several other areas in software engi-
neering. Using the proposed technique we are able to de�ne a complete model of the system
that comprises not only the intensional parts but also the extensional ones. Transformation
of models is naturally expressed by intensional-object-manipulating methods. I. e. adding a
transition to an automaton would be described by a method AddTransition which manip-
ulates the attribute transitions. Furthermore, context conditions for model transformation
can be expressed, e. g. the impact of a change request in one model on other models can be
speci�ed. As we have shown in Section 3, this enables us to de�ne system evolution as well as
the evolution of objects. The dependencies, the impact of changes and the system evolution
invariants can be expressed. Semantic preserving model transformations are also in the scope
of the presented approach. Using our technique, we are able to de�ne the conditions under
which a model transformation is semantically correct.

Methodological rules or style guides can be incorporated into the metamodel. This means
that even if a model is syntactically and semantically correct, it might not be conform to
some further conventions (e. g. naming conventions), or it might include some unwanted non-
determinism, some methods might be partially de�ned and cannot be called in every state of
an object etc. This important information can be expressed using our approach.
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Tracing through di�erent development phases can be expressed by storing the history of a
model element. In this way, the evolution of a modeling object might be traced from analysis
down to implementation.

5.2 Comparison to other Approaches

The Uni�ed Modeling Language is a set of object-oriented modeling languages [UML97]. The
relationship between the modeling languages is described by a metamodel [USE97]. Tech-
nically, the abstract syntax of UML is given by means of class diagrams, the consistency
constraints are de�ned by OCL [OCL97] formulas, and the dynamic semantics is explained
in natural language. We believe that the UML is very important progress towards a pre-
cise understanding of object-oriented modeling techniques. In particular, our work [MK98] is
based on it. In contrast to the UML, we use a single formal metalanguage for the de�nition
of object-oriented modeling languages. In this way, we avoid self-referencing problems and
achieve a precise semantics.

The Meta Object Facility (MOF) [MOF97] is a meta-metamodel (a model for the de�ni-
tion of metamodels). Its key goal is to provide means for extensionality and self-discovery
in systems. It addresses the manipulation of meta-data, e.g. the creation and retrieval of
metaentities. MOF is described by a combination of UML notations, CORBA interfaces,
explanatory text and constraints given in OCL. Our approach is also applicable for the def-
inition of a meta-metalanguage, like MOF. Basically, the advantage of our approach is the
utilization of a formal language for the de�nition of two layers, as well as the precise de�nition
of dynamic semantics.

Atkinson [Atk97] describes a metamodeling framework. He also identi�es the problem of
an entity being viewed as both instance and template4 and therefore introduces the concept of
clabject. A clabject is comprised of an intensional and its extensional entity. The instantiation
of clabject is not covered. As an additional di�erence to our work, Atkinson claims that
operations and methods are unimportant for metamodeling in practice, while we advocate
their bene�t for the description of system dynamics and evolution. The strictness of layers is
reected in our approach by the strict separation of the intensional and extensional objects
in every level of abstraction.

In [PBF98], a conceptual model representing the information acquired during object-
oriented analysis and design is presented. This conceptual model integrates entities and
metaentities into a single conceptual framework based on Dynamic Logic. The authors pro-
pose a transformation method consisting of a set of rules for systematically creating a single
integrated dynamic logic model from the separate elements that constitute a description of an
object-oriented system expressed in the Uni�ed Modeling Language. The intended semantics
for this conceptual model is a set of states with a set of transition relations on states. The
domain for states is an algebra whose elements are both entities and metaentities. The set
of transition relations is partitioned into two disjoint sets: a set of transition representing
modi�cations on the speci�cation of the system (i. e. evolution of metaentities), and a set of
transition representing modi�cations on the system at run time (i. e. evolution of entities).

The PUML group [EFLR98] aims at a precise semantic model for UML class diagrams.
This semantics model shall be used as a basis for the de�nition of (semantic preserving)
transformation rules. It is argued that a metamodel cannot serve as a precise description of
the meaning of UML constructs, but rather as a precise desription of the UML notation. The

4Template and Instance correspond to intensional and extensional objects in our work.
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authors describe abstract syntax, semantic domain and a mapping from syntax to semantics
in the speci�cation language Z. The similarities between their approach and the one presented
in this paper are thus the identi�cation of a dichotomy and a single-language approach. Inter-
level instantiation could be also expressed in the PUML approach, though it is not explicitly
formulated. The major di�erence between the two approaches is that no dynamic semantics
is described in [EFLR98], and that we apply a meta language that supports a reference
semantics, while in the PUML approach, the meta language supports value semantics only.

5.3 Metamodeling and Denotational Semantics

We believe that there is a strong relation between metamodeling and denotational semantics.
In both disciplines, the concepts of abstract syntax, static and dynamic semantics play a
central role.5

In the denotational semantics area, the abstract syntax is de�ned by abstract grammars,
the static semantics is de�ned by validity functions, checking the well-formedness of the
syntactic constructs of the abstract grammar. The dynamic semantics (denotation) is de�ned
by assigning mathematical objects from the semantics domain (usually sets and functions) to
the syntactic constructs. It is remarkable that the signature of the semantic functions usually
comprises an explicit state and delivers a state. This is necessary because, in set theory, there
is no explicit notion of state.

Abstract Syntax Static Semantics Dynamic Semantics

Metamodeling Class diagrams Object-Z state invariants & Object-Z methods
Object-Z classes & secondary attributes &
attributes axiomatic de�nitions

Denotational Abstract Grammars Validity conditions for Meaning Functions
Semantics constructs of the from constructs of

abstract grammar abstract grammar
into semantic domain

Figure 9: Metamodeling and Denotational Semantics

In the presented approach, the abstract syntax of a language is reected by the attributes
and associations of the extensional objects. The static semantics is given by additional sec-
ondary attributes and constraints on the attributes of the class. The dynamic semantics is
given by methods manipulating the extensional objects. The extensional objects are the cor-
respondents to the state in the denotation functions. A comparison between our approach to
metamodeling and denotational semantics is given in Figure 9.

We believe that these parallels have not become apparent so far because of the neglect of
dynamic semantics in metamodeling. In our opinion, the presented approach o�ers essential
advantages to the denotational semantics approach because it provides the full power of
object-orientation, instead of simple set theory, for the description of the semantic domain.

5We would like to point out that the presented approach is not a transformational one, i. e. we do not aim
at translating models in di�erent languages into one single language (the metalanguage), but we identify the
concepts common to the di�erent languages and express them in the metalanguage.
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