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Residues and Principal Values on Complex Spaces 
M. HERRERA and D. LIEBERMAN 

Let ~ and 0 be smooth differential forms with compact support, of dimen- 
sions 2n and 2 n -  1, respectively, defined on an open set W in C", and let q~ be 
any holomorphic function defined on W. We prove in this paper that the limits 

ana 0 lim ~> -0- ~ -  (1) 
, ~ o  I(ol a I~ =~ 

exist, where [q[ denotes the absolute value of q~, and relate them to the topology 
of the variety tp = 0 and its complement in W. 

The limits exist even when W is an open set in a paracompact and reduced 
complex space X of pure dimension n, although in this case the domains 
W(lq~l > 6) and W(lq~l = 6) are only semianalytic, in general, and integration on 
them means integration on their regular points, in the sense explained in [2] 
and [7]. No assumptions are needed about the singular sets of X or Y. 

We prove the existence of these limits in the last two sections of the paper 
(Section 6 and 7), supposing first that W is a manifold and q~ = 0 has only normal 
crossings, and using then resolution of singularities to handle the general case 
(el. Theorem 7.1). 

Suppose now that Y is a closed l-codimensional subspace of the complex 
space X, locally defined by one equation. In Section 5 we use the results just 
described to define the residue Res [~]  and the principal value PV [(5] of a 
meromorphic p-differential form & on X, having its poles on Y: they are 
currents on X of dimension 2n - p - 1 and 2n - p, respectively, and Res [co] 
has support on Y. 

We proceed first locally. Consider an open set W in X, on which (5 is 
representable as a quotient eo/q~q (q integer ~0), where co is a holomorphic 
p-form (in the sense of Grauert-Grothendieck) on W and q~ e F(W, Ox) is a 
holomorphic equation for Y in IV. Then 

Res [--~-~ ] (00 = t i m I [ W ( = 6 ) ]  t co A0~ ] 

and (2) 

PV [-~-] (p)= lim I [ W ( >  6)]{ a~ A/~/, 
t q'J \ - --¢w-/  

for all smooth forms ~t and fl with compact support defined on W, of dimensions 
2 n - p -  1 and 2 n -  p, respectively, and where the notations I [ W ( >  6)], etc., 
denote integration on the corresponding semianalytic domain. 
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r m l  rml 
Moreover, Res[~-~ [ and PVI~-~[ do not depend on the particular re- 

L T .1 L ~ J  

presentation co/cpq of ~ on IV, so that these local currents can be patched 
together to globally defined currents Res [~] and PV [c~] of the space X. 

In Section 5 we study the relationship of Res and PV with the standard 
cohomology and homology sequences associated with the couple (Y, X). To 
this purpose, we consider the exact sequence 

O--.12"x--.12x(. Y)--~Qx--~O, 

where 12 x and I2x(. Y) are the sheaves' complexes of holomorphic forms on X 
and of meromorphic forms on X with poles on Y, respectively, and Qx is the 
quotient complex, and the exact sequence 

O--V~.r . - -V~ .x - -V~ .x / roo-~O , 

where '~.x is the sheaves' complex of currents on X, '~ . r -  is the subcomplex of 
those currents with support on Y and '~ .x / r -  is the quotient complex. 

We show that PV and Res define complexes' homomorphisms 

PV : O~(* Y)--~'~zn_p,x/roo 

and • p t 

Res. Qx--* ~ 2 n - - p - -  t , Y  °° 

which, together with the standard map 

V : O~c-'~'~2,,-p,x 

constructed by integration, provide a commutative diagram of hypercohomo- 
logy 

• .. ~. HP(X; O'x) , HP(X; Ox(* Y)) ~. HP( X ;  Qx) ' " "  

lv tpv ~Re~ (3) 

• " - - * H 2 . - p F ( X ,  ' ~ . x ) - -~H2 . -pF(  X ,  '~.x/r~o)--*H2n-p - 1 F (X ,  ' ~ . I r ~ )  --~" ' '  • 

The hyperhomologies of the bottom line have been replaced here by homologies 
of global sections; they are isomorphic, since the different sheaves of currents 
involved are fine. 

The topological meaning of V, PV, and Res is expressed by Theorem 5.1, 
which states the existence of a homomorphism from diagram (3) to the com- 
mutative topological diagram 

• . .  , H P ( X ; ¢ )  , H ~ ( U ; ¢ )  ; H f + ~ ( X ; ¢ )  ....... , - - -  

• . . - -~  H 2 , _  p ( X ;  ~ ) - - - ,  H 2 n _  p ( U ;  ~,)--~H2n_ p_ I ( Y ;  C ) - - *  • . . ,  

in which the top line is the classical sequence of cohomology with dosed sup- 
ports (and supports in Y) associated to the couple (Y, X), and where the bottom 
line is the exact sequence of Borel-Moore homology (closed supports) associated 
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to (Y, X). The vertical maps are constructed by cap-product with the fundamen- 
tal class of X. 

In the case that X and Y are manifolds, this homomorphism between (3) 
and (4) reduces to an isomorphism (cf. 5.8), from which Leray-Norget's theory 
of residues can be deduced (cf. 5.9). In the general case, only the splitting of the 
homomorphism at the V-level can be asserted. 

The explicit construction of the homomorphism between diagrams (3) and 
(4) is given in the first sections of the paper. Most of the material in these 
sections is general, but we find its inclusion necessary for the proofs of com- 
mutativity in Section 5. 

Some details, however, cannot be found in the literature, as the existence 
of a splitting of De Rham homology similar to that described in [2] for co- 
homology, and the compatibility of this splitting with cup product. 

We want to remark that the local definitions of Res and PV on manifolds 
have been first proposed by L. Bungart in 1967. Our proof of their existence is 
an improvement of a proof also offerted by Bungart (unpublished). Particular 
cases of these results can be found in Dolbeault's thesis [12-], F. Norguet 1-8] 
and L. Schwartz [11]. 

P. Dolbeault has also constructed recently a canonical current extending 
a meromorphic form on a manifold (cf. [13], [14], [15]), which can be shown 
to be equal to the principal value defined here. Both treatments rely on Hiro- 
naka's resolution of singularities, but we think they are different enough as to 
justify its separate publication. Results of the present work have been exposed 
in the Congress of Several Complex Variables at the University of Maryland 
[7a]. 

I. Cup Product and Hypercohomology 

All sheaves considered in this section are sheaves of II~-vector spaces. 
Tensor products are always defined over ~2, and all double complexes are 
considered with their total differentials and graduations. 

Let ~ ' =  (~q:q ~ Z) be a complex of sheaves on a topological space X, 
such that ~P = 0 if p < 0, and let q~ be a family of supports in X. The hyper- 
cohomolooy H~(X; ~') of ~" on X with supports in tp is the cohomology of the 
complex F,/K'(X; ~') of global sections, cg'(X; ~q)denotes here the canonical 
flabby resolution of ~q (cf. [3], 11.2). 

To define hypercohomology one can also use, instead of cg'(X; ), any 
functorial exact resolution of sheaves on X by ¢p-acyclic sheaves; f.i., the 
canonical simplicial resolution ~ ¢ - - ~ ' ( X ;  z~') of Godement (cf. [4], IL2). 

We recall that, i f~  is a sheaf on another space Y, there is a canonical product 

x : × v ;  
and that 

~ ° ( X ;  ~ ) = ~ ° ( X ;  ~¢), ~"(X;  ~¢)=~°(X; ~ " - I ( X ;  ~) ) .  

1.1. Consider two complexes of sheaves c,o. and ~ "  on the topological 
spaces X and Y, respectively, and such that ~ P  =.A/'P = 0 if p < O, together with 



262 M. Herrera and D. Lieberman: 

augmentations ~¢---~.L~ ° and ~--*~4/'°. The products 

(-)q" X : ~:"(X; A ~)  ~) ~-'(Y; W~)--* ff~ +'(X x Y; .£aq ~) jVs), (q, r e Z) 

induce a differential homomorphism x such that the following diagram 
commutes 

,~'(X; _9 °') @M'(Y; J¢") 

T 
~"(X; ~¢)(~ ~ ' (Y;  ~)  

× , ~ " ( X  x Y; £f'~).A/") 

T 
× , ~ - ' (X x Y; ~¢ ~) ~ ) .  

(1) 

Let ~o and ip be families of supports in X and Y, and apply to (1) the functor 
F~ >< F~. Then one obtains in the cohomology level a commutative diagram 

H~(X; Le')® H~(Y;N') " ,m+~r..~ × ~,~- × y; ~e '~  X ' )  

T T 
× ~Hw×~(X x H~,(X; d) ® H~(Y; ~) P + q Y; ~ ~ ~) . 

1.2. Suppose now that Y is a closed subspace of X, that 0// and ~e ~ are 
sheaves on X and that ~o is a family of supports in X. There exists a canonical 
homomorphism 

A':Fr×~,(X x Y); ~//~//')---~F,01r(X;q/®~//~), 

where Y also denotes the family of closed sets in Y and (P]Y the family of closed 
sets in Y that belong to (p. In fact, take a section 7 in Fr×~(X × Y;q/@V); 
it is immediate that the function A~(x)=0 if x e X - Y ,  and A'r(x) 
= 7(x) e ~ ® ~/'x if x e Y, is continuous, so that A~ ~ F~t r(X; q/® ~'). 

One also obtains a homomorphism 

•' : t a x ;  og)® G(y; ~) - - ,G i  r (x;  0a ® ~ )  

composing A' with the canonical map 

rr(X; ~ ) ®  G(Y;  ~ ) - ~  rr ×~(X x Y; °ll @ ~e~) . 

1.3. Let LP" and Jff" be complexes of sheaves on X which are zero in negative 
degrees, together with augmentations ~¢---,£e" and ~---~J('. Let Y be closed 
in X and tp a family of supports in X. The maps A', ~'  and x give us a com- 
mutative diagram of differential homomorphisms 

rr(X;  ~-'(Le')) ® G(Y;  ~'(W'))  

Fr×+(X x Y; ~'(df ' )(~ ~'(JV'))-y-~F~01~(X; ~'(&¢') ® ~-'(JV')) (3) 

i } 
Fr×+(X x y;#-.(&a. ~) .W"))  ,F+lr(X;~'(.~qr®Jff)); 

in fact, only the bottom arrow needs to be constructed, and this can be done 
by induction on ~-"(X)= cg°(X; #-"-1). 
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Passing to cohomotogy, we get commutative diagrams 

H~(X; &f) H,p(Y, JV') 

(4) 

H'y ×,~(X x Y; ~q~" (~ JV")--~ H'~Iv(X ; ~q~" ®,/V') 

and 
H "r ( X ; ,~/ ) ® H "~ ( Y , 

I (5) 
H'y × ~,(X x Y; al @ g#)-+ H'~Iy(X; ~ ® ~) 

which are compatible in an obvious sense. 

1.4.1n the situation of i.i, suppose moreover that X is a complex analytic 
space, that Y = X and ~gf'" = Jl/'" -- cx is the sheaf of germs of smooth differential 
forms on X, with complex coefficients (~], 3.4), with its augmentation ~--+ ¢x. 
We have in this case a product A : ¢x ® cx -+ cx × x which, after followed by 
the diagonal map in (2), gives us diagram 

• e } ) Q H $ ( X ; e x )  , ~+~ • " H~(X, v H ~ ( X ,  8x) 

T T (6) 
Hg(X;¢)  ® H ~ ( X ; ¢ )  - - ~  P+q • u H , ~ ( X , C ) .  

In the situation of 1.3, a similar argument provides us with a commutative 
diagram 

H'r(X; 8x)®H~,(Y; ex) v ~H~,Ir(X; dOx) 

T T (7) 
H~(X;(F) ®H~(Y;~)  ~--5~, H~lr(X;q~ ) 

that can be factored through the product X x Y. The bottom product, followed 
by the restriction H'~Ir(X;C)- - )H'~tr (Y;~  ), gives rise to the standard cup 
product. 

1.5.Let Y be closed in X, U = X - Y and denote by j :  U--*X the inclusion. 
Consider a flabby resolution 5f x of C on X and the exact sequence of flabby 
sheaves 

0 - , ~ i ,  ~ - ~ / - , j ~ - + 0 ,  

where 5f~ = ~fxl U, and j ~f~ denotes the direct image of ~ by j. 
In the associated exact sequence of sections over X one has F ( X ; j 3 ~ )  

= F(U; 5fx) and F(X;  ~x,v) = Fr(X; ~fx)- Passing to cohomology one obtains 
the long exact sequence 

• . . - ~  H P ( X ;  ¢ ) ~  H~(U; ¢ ) - ,  H~ + ~ (X; C ) ~ . . . .  (8) 

There is a product between this sequence and the usual exact sequence with 
compact supports 

• ..--~H~q(U;~)--~H~q(X; ~E)--~ H~(Y; ~E)--~ • • •, (9) 
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by means of cup product and the product defined in t.3(5), and which is 
described in the following commutative diagram: 

HP(X) --. HP(U) ~ H~+'(X) --~ Hp+'(X) 

® o) ® ® 
N~+'(X) +-- H~+'(U) +-- II~'(Y) +-- H~(X) (I0) 

r r p + q  + 1 z't:-x r r p + q +  1 H~+q+'(X)+--H~+~+'(U) n~l r ta)--~n,  (X). 

1.6, In the conditions of 1.5, suppose that X is locally compact. The Borel- 
Moore homology groups H.(X; fig) with closed supports and coefficients in 
are canonically dual to H'~(X; fi) (cf. [3], V.3(2)) 

H,~(X; fi) z Hom(nT(x , fi), fi). (11) 

So, each fLxed homology class in Hp+q+ 1 (X; f l )  allows to replace (10) by a 
commutative diagram of pairings (all groups with coefficients in fi) 

HP(X) ~ HP(U) --,H~+'(X) 
® ® ® 

H~+ I(X)+--H~+ I(U)+ -- H~(Y) (12) 

This method defines, in fact, a cap product that makes commutative the 
following diagram 

• . . - - ,  H m ( X ) ® W ' ( X )  - - ,  n , ~ ( X ) ® H ~ ( U 1  - - ,  H , , ( X ) ® N ~ + ' ( X ) - - , . . .  

I I I 
• ..---~ Hom(H 7 -P(X), C)---~ Hom(H7 -P(U), fi)--. Horn(H7 -P- '(Y), C)--~.. •. 

1.7. The case that will be of importance to us is when X is a complex analytic 
space of dimension n, Y is a closed l-codimensional subvariety and we choose 
the fundamental homology class IX] e H 2,(X, fi) of X. Then (I 3) yields, modulo 
the isomorphism in (I I), the commutative diagram 

--~ nP(x; f i )  ~ nP(u; f i )  --~ H~+*(X;fi) - .  

- - - ,~2n- , (x ;  f i ) - ,H2n_p(U;  fi)---, H2 n - , -  t ( g ;  f i ) ' - '  • 

If X is a manifold (has only simple points), •(X) and c~(U) are both iso- 
morphisms (inverse to Poincar6 dualities' isomorphisms, cf. [3], V.10.2), so 
that c~(Y) is also an isomorphism. 



Residues and Principal Values on Complex Spaces 265 

2. De Rham Cohomology of a Complex Space 

The purpose of this section is to construct the exact sequence 1(14), in the 
condition stated there, by means of analytic differential forms on X with polar 
singularities on Y. 

2.1. Let X be a complex space of dimension n, Y a closed analytic subspace 
of X locally defined by one equation and i: Y--*X the inclusion. Let t2 x be the 
complex of sheaves of (Grauert-Grothendieck) analytic differential forms on X 
(cf. [2], 3.2), and f2x(* Y) be the complex of analytic differential forms on X with 
poles on Y ([5], p. 97). We suppose that U = X - Y is dense in X, and denote by 
j: U----, X the inclusion. 

The complex t2x((* Y) is defined as the sheaf on X such that, for any open W 
in X, F(W; f2x(* Y)) is the subcomplex of those sections & in the complex 
F(W - Y; f2x) with the property: for any point x e W n  Y, there exists a neigh- 
borhood Wx C W of x and an equation ~0 e F(W,; •x) of Y on Wx such that 
tpP&lWx - Y = o g l W x - Y  for some ogeF(Wx;f2x), and some integer p > 0 .  

The couple (~0 p, o9) will be called a representation of & on W x, and the nota- 
O9 

tion & = ~ -  on Wx will be frequently used. f2x(. Y) is a subcomplex of the 

direct image sheafj(f2[,) of I2[r = f2 x t U. 
In a similar way, using the complex Cx of smooth differential forms on X 

(cf. [2], 3.4) in the place of Ox, one defines the complex 8}( .  Y) of semi-mero- 
morphic forms on X with poles on Y; it is a subcomplex ofj(8b), and there is a 
canonical homomorphism t2x(* Y)---, 8x(* Y). 

It is clear that f2 x is a subcomplex OfOx(. Y); we denote by Qx = f2x(* Y)/O'x 
the quotient complex, and proceed to study the exact sequence 

O---~f2"x-+fJx(. Y)-+Q'x--~O. (1) 

Consider the complex 5~x of semianalytic cochains of X with coefficients 
in rE, which is a flabby resolution of fig on X ([2], 2.10). Integration on the 
semianalytic chains of X and U provides homomorphisms Ox-+Se x and 
j(t2"v)--.j(6e~), where 6et; = 5exl U (cf. [2], 3.6), so that there is a commutative 
diagram of complexes 

6ex ' J~tJ 

I T l,,-, (2) 
f2~ ,12x(. Y). 

For any family of supports ~o on X, H'.(X; S~x) ~- H'.(X, fig), since ~x  is a 
resolution, and H'.( X ; j 6~) ~_ H" F.( X ; j Sf~) ~- H" F.,~ v( U ; .fax) = n' .  ~ v( U ; fig), 
becausej 6at; is flabby. Taking hypercohomology in (2) we obtain a commutative 
diagram 

H;(X;fig) ~ H~,~v(U;fig) 

,~] [+(.r) (3) 

Y)). 
20 Math, Ann. 194 
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We recall that I~, is a right inverse to the canonical edge homomorphisrn 
e:H',(X;~E)---~H',(X;I2"x), which gives a splitting of the exact sequence 

0-+H~(X;C) e~ H'~(X ; I2"x) '~ , H'c,(X ; ¢)--~0; (4) 

the homomorphism I2x---* 8x maps (4) into the similar sequence for ~x, with 
compatibility of the splittings ([2], 3.11). 

2.2. We now want consider the two exact sequences of hypercohomology 
associated to (1), with closed supports and with supports in Y; they are related 
by a commutative diagram 

• ..--*HP(X; D'x(* Y))--~HP(X; Qx) ..... ' HP+ I(X; f2x)-*"" 

...--~H~(X; 12x(* Y))---~ H~(X ; Qx)--~-~ H~. + ' (X; f2x)-~ • .., 

by means of which we identify r /and - 6 ;  ~ denotes the connexion homo- 
morphism. 

The complex Qx has support on Y, so that the hypercohomologies of Q' 
with closed supports and with supports in Y are isomorphic. Composition with 
-tS, followed by Ir:H(,+I(X; t2"x)--,H~. + I(X;~) (as in (4)), gives us a homo- 
morphism/~ = Iror/= - Iro6 

Hn( ~ ;  @x) ~ (X, f2x) (6) 

2.3. Theorem. Let Y be a closed analytic subspace of the complex space X 
and suppose that Y is locally defined by one equation, and that U = X -  Y is 
dense in X. Then there is a commutative diagram 

-+ Hv(X ;~) --~ Hv(U;(E) ---,H~, + I(X;(E)--+ 

'l l,, .v, l~ (7) 
--~ HP(X ; f2x)-+HP(X; f2"x(* Y))---~ HP(X ; Q'x) ---~, 

where I splits canonically. In the case X is reduced, and U is regular, # also splits 
and I(* Y) is an isomorphism. 

Proof. Construct the top sequence in (7) with the complex of semianalytic 
cochains on X, as in 1.5. The homomorphisms I, I( ,  Y) and # have been con- 
structed in 2.1 and 2.2. 

The left square commutes by (3), for closed supports. Commutativity of the 
right square follows from (5) and the commutativity in the canonical diagram 

H{,+ I(X;(E) --~ Hp+ I(X;~E) 

H~ '+ l(X; Qx) -'~Hp+ I(X; Ox)" 
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The commutativity of the middle square involves only diagram chasing 
and is left to the reader. I splits canonically by ([2], 3.11). 

Suppose now that U is regular. By Grothendieck's Theorem 2 in [5], 
t(* Y): ~,~¢q(f2x(* Y))--~q(/6at~)~-R~,(ff~v) is an isomorphism, and a standard 
spectral sequences argument assures that 

n ' . (x ;  ~x(* Y))--~n.(x;jsf~) ~ H ~  v(U; ¢) 

is an isomorphism. In the case ~ = closed subsets of X, one concludes that I( .  Y) 
is an isomorphism. In the case tp = closed subsets of Y, one deduces that 
H'r(X; ~ ( *  Y))= 0. So, the connexion homomorphism for the sequence in (5) 
with supports in Y is an isomorphism, and t/is an isomorphism. Then # = Irot/ 
splits canonically, because I r does ([2], 3.11). 

2.4. Corollary. In the conditions of Theorem 2.3, suppose that X is a manifold 
(more generally, that U is regular and f2" x is a resolution oflE on X). Then I, I(* Y) 
and It in (7) are all isomorphisms. 

In fact, I(* Y) is an isomorphism by Grothendieck's theorem, and I also is, 
since f2 x is a resolution, so that It is an isomorphism, too. 

3. Splitting and Cup Product 

We prove now that the splitting of the De Rham cohomology of an analytic 
space proved in [2] is compatible with the cup product, and state some lemmas 
to be used later. We assume that X is a paracompact analytic space over C, 
although the proofs also work for real analytic or semianalytic spaces. 8x is 
the complex of smooth of differentiable forms of X, with coeffÉcients in ~ ([2], 
3.3), and ~.  is the complex of sheaves of semianalytic chains on X, with 
coefficients in C. 

3.1, For each open U in X, S.(U)= Fc(U; ~.  (U)) denotes the complex of 
semianalytic chains in U with compact support (cf. [2], 2). As proved in [2], 2.8, 
S. : U--~S.(U) is a torsion free quasi-coresolution of C on X by flabby cosheaves, 
in G. Bredon's terminology. This implies that 

H.(S.(U)) "~ Hf(U; ~2), (1) 

the Borel-Moore homology of U with compact supports. 

Define now the complex of sheaves 6axo x on X × X as the one generated 
by the presheaves 

~a";+x:UxV-* X Hom(Sp(U)~S~(V),(U), m e Z ,  
p+q=m 

where U and V are open in X, and the coboundaries are constructed as usual 
from the boundaries in S.. One deduces from (1) and the algebraic Kiinneth 
formula applied to the complex E S.(U)® S(V), that ~®x is a flabby resolution 
of ~ on X x X. 
20* 
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We have also canonical homomorphisms of resolutions 

~fr ~ ~x--+ ,Se~ ® x *--.Sex × x , (2) 

where the right complex is that of the semianalytic cochains of X x X, and the 
right arrow is induced by the products 

S.(U)®S.(U)-*S.(U x U) (U open in X), 

defined in [2], 2.9. 

3.2. Proposition./he following diagram commutes 

H'.(X; ~'x) ® H'~(X; ~'~) " ,  n;~ ~(X; ,C-.) 

H;(X;C) ® H;(X;¢) ~---~U;~,~(X;¢). 

Proof. Cartesian product and integration give a commutative diagram 

H;(X, ~'}) ® H'~(X; ~'~)~ H;(X; N)  ® H~(X; ~;3 

q l 
H;~,~(X × X; ¢ x ~  ~'~)-- .H;~(X x X; ~;~6 ~;~) , 

which we follow by the diagram of hypercohomologies that corresponds to the 
canonical diagram 

tx&~x ^,exxx 

The three complexes of the bottom line are flabby resolutions of~ on X × X; 
hence, the hypercohomology homomorphisms that they induce are iso- 
morphisms. Finally, the diagonal map X--,X × X provides a commutative 
diagram 

H'~(x x x; ~'~x)--,H'~(x × x; J~) 

l i 
H;~,~(X; ~'i) , H;~,~(X; ~i) ,  

which, joined to the others, gives the proposition. 
We omit theproof  of the following proposition, which is similar to 3.2. 

3.3. Proposition. Let Y be a closed analytic subspace of X, and q) a family 
of supports in X. Integration and cup product (as defined in 1.3 and 1.4) give a 
commutative diaqram 

H'r(X ; 8"x) ® H'.(Y ; 8x)--.H~,(X; ¢) ® H~(Y ; ff~) 

H;l~(x ; t'~) , H;tr(X;C). 
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3.4. Proposition. In the conditions of Proposition 3.3, suppose that X has 
dimension n. 7hen there exists a commutative diagram of canonical pairings 

~(X;¢)@H2.-p(y;ff~)_.~H~(X; 8x)@Hc. 2.-p (y,. 6,x)__., H{~(X; ¢) ® H2.-p(y; ¢ )_ ,0  

(3) 

Proof One gets sequence (3) by tensoring over C the exact sequence 

0--* Hf(X; (U)---~ H~(X; ~)--* Hf(X; ¢)--* 0 (4) 

with the similar one for d~x on Y; both sequences split canonically, since the 
proof of the splitting for 5~x in [2], 3.11, applies also for 8xl Y on Y. Hence, 
(I ® I)o (e ® e) in (3) an isomorphism, and the sequence splits. To construct the 
pairings and prove commutativity, we consider the following diagram 

~I~,(X;(U)®HZ"-P(Y;C)-~H~(X; gx)® H~2"-"(Y; 8x)---~ H~,(X; ¢)®H~2"-" (y,¢). 

H ~ ( X ;  ¢ )  ...... 5 .  . , H c l r ( X  ' ~rx)  2 .  . ' Hdl r(X, rE). 

The left square commutes by 1.4(7), and the right one by 3.3. Inclusion of 
supports maps the bottom sequence homomorphically into 

O__~H~,(X; ¢) , 2, e nc (X; ,~;,) ' , H ~ " ( X ; ¢ ) ~ 0 ,  (5) 

where we can identify 2, Hc (X; 8x)'~H2"(F~(X, 8x)), since gx is c-fine. Finally, 
integration of the terms in (5) over the fundamental class of X gives a diagram 

O ~  H?"(X ; ¢ ) ~  H?"(5(X ; ~ ) ) ~  H?"(X ; ¢)--,0 

whose commutativity follows from next lemma. 

3.5. Lemma. Integration defines a commutative diagram of canonical 
pairings (q ~ Z) 

~ ( X ;  ¢) ® H:(X; ¢)--, H~(X; ¢) ® Hq(rc(x, ,~i))--, H~(X; ¢) ® H:(X; ¢) 

Proof. Consider the sheaves ~ .  and 5"" of semianalytic chains and cochains 
on X, with coefficients in t~, and denotes S'(X) = Fc(X, ~'). There is a pairing 

v : 5fq(X) ® Sq(X)--~IE (7) 
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defined as follows: choose s e 5¢~(X) and fe  S~(X), and let K be the (compact) 
support of f; choose a relatively compact open set U D K, and call V = X - K. 
The sheaf 6aq is soft, so that we can write s = Sv + Sv, with support (Sv) C U and 
support (Sv)C V. Then the definition v(s ® f )=  f(sv) doesn't depend on the 
elections, and is compatible with differentials. It induces a perfect pairing 

v : H~ (X; ¢) ® H~ (X; ¢ ) ~  IE (8) 
and an isomorphism 

Hq(X; IF.) ~ HomIH~(X; ¢), ¢) (9) 

that coincides with that given by formula (2) in [3], V.3. Moreover, integration 
defines a pairing 

: ~ ( x ) ®  rclx, ~)-- .c ,  (lo) 

that is compatible with the pairing in (7) and the integration homomorphism 
I : gj--~ 5e" Passing to cohomology we obtain commutativity in the right side 
of the diagram in 3.5. 

Consider finally a ® b ~ H~(X ; C) ® H~(X ; q;); v(a ® b) = v(a ® I e(b)), be- 
cause 1e is a canonical isomorphism, and v(a® le(b))= z(a® e(b)) by what 
we proved first. This finishes the lemma, and the proof of 3.4. 

The proof of the following proposition is similar to that of 3.4: 

3.6. Proposition. Suppose the analytic space X has dimension n. 7hen there is 
a commutative diagram of canonical pairings 

0--, n ' ( X  ; ¢ ) ® ~ ; ¢ ) - - ,  H"(X; ~;,)® n~"-~(X; ~,) ~ m ( X  ;aZ) ® H~"-"(X;¢)- 
1 / " f ~  

where the top sequence is exact and splits canonically. 

3.7. CoroHal~. Let Y be a closed analytic subspace of the analytic space X; 
suppose that X has dimension n. 7hen the dia#rams 

H 'F(X ,  gx) z , HP(X;IE) 

H2n-I'£(Y CX)]* e* ~,.., , ,,,,,, [H/"- ' (X;IE)]*,  

and 
H~(X, g~,) ,, x , H~(X; ~) 

~ l  i n' (,2) 
[H2"-"Fc( Y, Cx)]* : ,  [H~,,-p(X;¢)],  

are commutative, where I-.]* ~. Horn(., ~), and the vertical homomorphisms are 
deduced from the pairings in 3.6 and 3.4 (hypercohomology is replaced by co- 
homolooy, when possible, and both e* are dual to canonical edge's homomorphisms, 
cf 2.I (4)). 
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Proof Consider for instance diagram (11). Take ~oeHPF(X, 8x) and 
cte H2"-p(X, IU); then nol(to) sends ~t into the evaluation on [X] of I(~o)u~, 
and e*o c~(~o) sends a into the evaluation on [X] of ~oue(a), which is equal to 
the evaluation on IX] of l(ogwe(~t)), by 3.5; finally, l(ogue(~))=Io~uIe(c 0 
=Iogua,  by 3.2. 

3.8. Corollary. In the situation of 3.7, suppose that Y is locally defined by one 
equation; then there is a commutative diaoram 

H'F(X, ~x(* Y)) ' ~ H ' ( U ; ¢ )  

~'~ l ~ (13) 
[H~"-Prc( U, 8~,)]* ~-7-', [H~ ~"-'(U;¢)]*" 

Proof Consider the restriction HPF(X, 8x(, Y))--~HPF(U, 8~), and apply 
(11) to the space of U, in the place of X. 

4. De Rham Homology of a Semianalytic Space 

4.1. We suppose in this section that X and Y are closed semianalytic sets 
in a paracompact real analytic space, that Y C X, U = X - Y, and that i : Y--,X 
andj : U--,X are the inclusions. X will be considered together with its complex 
gx of smooth ~E-valued differential forms ([2], 3.3) and Y together with the 
complex ~r~ = ~xl Y. There are epimorphisms 

~-- . i~ '~ ,  ¢~--. ~ ,  (1) 

and the kernel of the first one is denoted by ~x, r; clearly 

C(x, ¢x.,) ~- re(u, ~ ) .  

The semianalytic chains in Y are mapped inyectively by i into the chains 
in X. This defines an epimorphism 5~x---~i5¢~; between the complexes of semi- 
analytic cochains, and its kernel is denoted by 5Px, r. 

We use the standard notations Cy = i(Cl Y) and ~ v  =J(~} U), where C is the 
constant sheaf over X. Define complexes ~',  C~, and ~Uv by ~o = ¢U and ~P = 0 
if p ~: 0, and similarly for cU~, and C~. 

There is a commutative diagram of complexes (2), where the 

o--, cb ~ ¢ - - ,  ¢~ ~ o  

I 1 
0---* ~x. r---* 8x ---~ i 8~.~o ---~ 0 (2) 

o - - , s q , ~  ~ --,i(~i)--,0 

horizontal sequences are exact, the bot tom vertical arrows are obtained by 
integration and the top vertical arrows are augmentations (in degree 0). Corn- 
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position of the vertical arrows, in degree zero, gives the augmentations rE-+ ~ ,  
~Er-~ i~  and ~Ev--~x,r; the first two of these complexes are resolutions 
([2], 2.11), so that the last one also is. 

Consider now the diagram of hypercohomology with compact supports 
associated to (2). After convenient identifications, taking into account that 
gx,r, gx and 8 r are c-acyclic, one obtains the commutative diagram (3) of exact 
sequences, where the compositions of the vertical arrows are canonical iso- 
morphisms. 

........ ,Hf(U;{E) }Hf(X;¢) ........ } HP(Y; CE)---. ... 

i 1 l 
• ..--.HPrAu, ~)-- .H'r~(x,  o'k)-~H'r,(Y, ~)--+"" (3) 

• -.--,H" re(u, ~¢;)--,H~ re(x, ~;)--,H~ rAY, ~ ) ~ . . - .  

4.2. Currents on semianalytic sets. Let M be a closed semianalytic subset 
of the open set V in 1R'. By definition of the complex 8M, there is an exact 
sequence ([2], 3.3) 

0- , rAy;  ~i,u)~rc(v;  e/,)--,r~(v; ~k)--,0, 

where 6~r~u = ker(~/,---~ d~M). 
Consider the space Fc(V, d~;.) with its usual locally convex inductive topology. 

This is the topology of convergence of the coefficients of forms in Fc(V, ~,), 
together with their derivatives, on the compact subsets of V. The projection 
F~(V, 81.)---~F~(M, 8M) has closed kernel, which allow us to define on F~(M, ~ )  
the quotient Hausdorff topology. 

In the case of our semianalytic space X, we define on Fc(X, 8x) the unique 
locally convex inductive topology that induces on the spaces F~(M, 8"M), 
associated to the local models (M, V) of X, the topology just described. 

Define the space '~q(X) of q-currents on X as the topological dual of 
F~(X, ~),  and the border homomorphism 

b~ :'~(X)--, '~q_ dX) (q e Z) 

by b~T (ct) = (-)~+ 1T(da), for Te  ' ~ ( X )  and a e F~(X, 6~] - t). The complex of 
sheaves '~.x of germs of currents on X is constructed accordingly; ' ~  = 0 if 
q < 0  or q>  dimX. 

Denote by '~.roo the subcomplex of '~.x of the currents on X with support 
on Y, and by '~.x/r~ ='~.x/ '~.r ~ the quotient complex. We have then an 
exact sequence 

0 " ~  t ~.roo--"-~ ' ~ . X ~  t~.X/roo-.-~O (4) 
of c-fine sheaves. 

Denote also by 'S/'. x = X(6a~x : q e Z) the complex of sheaves of germs of 
semianalytic chains in X, with the modified boundary a , = ( - ) ~ + ~ : ~ x  
" * ~ - t , x .  The complex '9 a. r of semianalytic chains in Y is defined in the same 
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way; it is clear that i '~ .  r is a subcomplex of'6a.x . Define '6~.x/r as the quotient 
complex, so that there is an exact sequence 

0--. i ' ~  r --* '~. x --+ '~.x/r --~0 (5) 

of soft sheaves. 
Integration of forms in Fc(X, 8x) on the chains in '6e. x defines a homo- 

morphism '6a.x-*'@.x and, in fact, a homomorphism from (5) to (4). Taking 
cohomology of the global sections we deduce a commutative diagram of long 
exact sequences 

--, Hp(F(Y, '6(. r) ) --~ Hp(F(X, '65.x)--. Hdr(x, '~.x/r))-- ' .  

l 1 1 ,6, 
--, Hp(r(g, '~.y~)) ~ n d r ( x ,  '~.x))--, H,(r(X, '~-x/,~))--'. 

On this point we should note that Hp F(X, '~. x) ~- Hp(X; t1~) and lip F(Y, '~. r) 
~Hp(Y;(12) (by [2], 2.8), and that ItpF(X,'~.x/y)~-Hp(U;'~.u)-~Hp(U;(E). 
The last isomorphism is obtained here by the canonical (restriction) map 
~x/r--- /~.v ,  and the five lemma. In fact, this method realizes the exact 
sequence of Borel-Moore homology (complex coefficients) 

• ..--~ H,(X)---, Hp( U)--* np _, ( Y)- , . . .  (7) 

by means of semianalytic chains. 
We now want to define a canonical homomorphism from diagram (6) into 

the dual of the bottom diagram of (3): 

[H p Fc(Y, 9~;)] *--~ [H p Fc(X, 6~x)]*----~ [HPF~(U, ff'x)]*---~ 

- .  [H~ rc(Y, 6{,)]* ---, [H~ rc(x, ,~x)]*---' [HP Fc(U, ,~x)]*--., 

where [-3" ~ Hom(., ~). 
First, we observe that there is a commutative diagram 

Hpr(x,  '~.x) ~" ' [H~rc(x, ~D]* 

1 I t* (9) 
H.r(x, '~.x)-T~ [H, r~(x, #D]*,  

where the top arrow is the isomorphism 3(9) and the bottom one is deduced 
from the injection F(X. '~.x)--~Hom(F~(X, 8x), tE ). 

If we follow ~ by the transposed homomorphism e*: [HPF~(X, ~x)]* 
~[Hf (X ,  ~)]* to the one in (3), we obtain a sequence of homomorphisms 

lip F(X, 'Sf . x)-~ Hp F(X, '~. x)--* [ Hf (X ; C)]* (10) 

Whose composition is an isomorphism, since it can be factored as e*oI*o v', 
and both v' and (eol)* are isomorphisms. Moreover, the end terms of (10) are 
canonically identified with Hp(X, C), the first by [2], 2.8 and the second by 3(9). 
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We have so obtained a canonically splitting exact sequence 

0 - .  Hp(X ; l~)--. Hp F(X, '~.x)--* Hp(X ; {E)-,O . (11) 

The same method can be applied to the other terms in (6). 
One constructs a right inverse z to HpF(X; '6e.x/r)--*HpF(X, '~.x/r~)by 

applying first ~:H~r(X,'~.x/r~)~[HPFc(U, ~})3", which is deduced from 
the map 

r(x, ' ~ x / r - )  -~ r(x, '~px)/r(x, '~p r - ) - .  [5(u, eft)]*, 

and then following with the edge homomorphism's dual 

e*:[H~r~(u; g))]*--, [Hg(U; ~)3" __ H,(U; C).  (12) 

Similarly, a right inverse x to tt,(Y;~)----~HpF(Y, '~.r®) is constructed as 
shown in the following diagram, 

Hp F(Y, ' ~ .  r®) . . . . .  z_ . . . .  ÷ [ H / ( Y ;  rE)]* ~ Hp(Y; rE) 

(13) 

where e* is dual to e (cf. (3)) and ~ is deduced from the canonical homomorphism 

r(Y, '~.r~)~ [re(Y, ~ ) 3 " .  

It is easy to check that the maps so constructed are compatible, as expressed 
in the following 

4.3. Theorem. Let Y C X be closed semianalytic sets in a paracompact 
real analytic space. With the notations in 4.2, there is a commutative diagram (14), 
in which compositions of vertical homomorphisms are natural identifications. 

• .. ,Hp(y ;¢ )  ,Hp(X;¢)  , Hp(U;¢) ,--. 

! I 1 

.......... ,H~(Y; c )  , H , ( x ;  c)  ....... ,H~(U;C) ,..., 

4.4. Remark. In particular, we have obtained a natural splitting of the 
"De Rham homology" HpF(X; '~.x) of X, in which one factor is the Borel- 
Moore homology Hp(X; C). Examples where the two homologies are different 
can be constructed, using examples where Poincar8 lemma fails for gx (of. [2], 
3.7). 

Also, Theorem 4.3 holds if one replaces the complex '~-r® by the more 
natural one '~.r .  However, from the point of view of residues, it seems that one 
has to work with '~-r=- 
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4.5. Corollary. In the conditions of Theorem 4.3, suppose that X and Y are 
manifolds, and let i : Y--~ X denote the inclusion. Then all vertical homomorphisms 
in diagram (14) are isomorphisms. 

Proof If X is a manifold of dimension m, the sheaf map '5~. x -* '~ ,  x induces 
an isomorphism a~f('Ae.x) ~- :'~f('~.x) in the homology level. In fact, ~'~p('~.x) 
~_~ ifp = m, and ~fp('~.x) ~- O, otherwise (cf. [10], § 19); consequently, .~. ('~.x) 
is isomorphic with the homology sheaf ~f~.('SC.x) of X. 

Moreover, the sheaf map i ' ~ . r - - , ' ~ . r~  also induces isomorphism in the 
homology level. In fact, this map is composition of i'A'~.r iy , i ,~.  r ey ~'~-r~, 
where I r is obtained by integration, and e r is a canonical inclusion. As shown 
above, I r induces an isomorphism in the homology level. To see that e r also 
does, it suffices to consider IRm= IR~)IR m-~ as a local model, s = dim Y, and 
the homotopy formulas associated to the retraction #t(u, v)=(u, tv) (teIR) 
(cf. [10], § 14 and 19). With a standard notation, we have 

ot - t~d(o~) = dM* ot + M* da (ct E/'cORm, 8~,.)), (15) 

where M* transforms p-forms into ( p -  1)-forms. A current T in F~(~m; '.@.~m) 
can be applied to both members in (15), when 0t has compact support, because 
in this case IR ~ and the suppor tof  M*a have compact intersection. Moreover, 
there is a well defined current TE F(IW, '~.~,) such that iT(~)= T(#~(~)). This 
fact, together with (15), imply that the maps 

er:  ~ .  (i '~. r)-* ~f¢~.('~. r~) 

are isomorphisms. 
As a consequence, we have isomorphisms in hyperhomology Hp(X; '6e.x) 

Hp(X; '~.x) and Hp(X; i'6e. r)---~ Hp(X; '~ .  too); the first one can be identified 
with the wanted isomorphism Hp( X ; fig) "~ lip F( X ; '~. x)---~ Hp F( X ; ' ~. x) because 
'be.x and '~ .x  are acyclic ('6e. x is soft and '~ .x  is fine); by the same reasons, the 
second isomorphism identifies with the mapping HpF(X;i'~.r)---~H~F(X; 
'~.r~o), or, what is the same, with H~(Y;fig)"~HpF(Y;'~.r)---~HpF(Y;'~.r~), 
considering that the sheaves involved have supports on Y. This in turn implies 
that the homomorphisms Hp(U;fig)---~H~F(X; '~.x/r~) in (14) are also iso- 
rnorphisms. 

5. Residues on Analytic Spaces 

5.1. Theorem. Let X be a paracompact reduced complex analytic space 
of pure dimension n and Y a t-codimensional closed analytic subspace locally 
defined by one equation. 

Consider the associated exact sequences of complexes of forms and currents 
on X (cf  no. 2 and 4) : 

O --, ~'x --. ~'x ( , Y ) -~ Q " ----~ O (1) 
and 

0--*'~. r,--. '~.x---~'~.x/r,---~0. (2) 
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There are canonical homomorphisms 

V: ~'~x----~t~2n_.,x, PV: ~Qx(* Y)'-+'~2n-',x/r~ 
and 

Res: Q ' - + ' ~ 2 . -  1--,r® 
that induce a commutative diagram 

. . . .  , n " ( x ;  ~2"x) > H " ( X ;  f2"x(, Y)) . . . . . . . .  > HP(X;  Q') ,... 

• . . ~ H 2 . _ p F ( X ,  '~.x)--* H2,_ p r (x ;  '~.xtr)- ,  H2.- p- l r ( x ;  '~. r~)--...- 

which is compatible with the topological diagram 

• .. ,H'(X;IE) > H ' ( X -  Y;C) ;Hf+~(X;1E)----~ ... 

1 1 ,41 
• " - ' - ~ H 2 n - , ( X ;  C)-*Hz,_p(X - Y; ~)---* H2,_,._, (Y)--* --- 

obtained by cap product with the fundamental class of X (cf 1(14)). 

Proof For each open set W in X, define V:F(W,  f2~)--~F(W, '~2,-v,x), 
o9--, V[~o], by the formula 

VEal] ( a ) = I [ X ]  (w A a) (~eFc(W, gx2"-P)), (5) 

where I[X] is the integration current over X, oriented by its fundamental 
class [X] e H2.(X; ~E) (cf. [2], 3.4). V is a sheaf map, and V [o~] is a (O-continuous, 
cf [7], II.A,2) current. I f  • ~ F~(W; oaxz"-P-1), Stokes' theorem ([7], II.B,2.9) 
implies that I[X] (d(o~ ̂  a)) = I[X]  (dco^ ~) + ( -  1FI [X]  (o) ^ da) = 0, from 
what we deduce 

V [doJ] (a) = ( -  1) p + i V [oJ] (da) = ( - 1) 2 "- p + i V [~]  (da) = b. V [co] (a), 

so that V is compatible with boundaries. 
We now give local definitions of PV and Res. 

5.2. Def'mition. Consider an open subspace W of X, and a holomorphic 
equation go ~ F(W, COx) of Y in W. For any form co ~ F(W, ~ )  and q ~ Z+, the 
principal value PV[~o/4o q] and the residue Res[eo/40 q] of the meromorphic form 
co/tp ~ e F(W, I2P(, Y)) are the currents 

PV [oV~oq (:0 = ~ I [w(>,~)] (o~ ̂  ~/q,~), 

ires [og~oq (/7) = ~ i [ W ( =  <~)] (o~ ̂  tT/q,'), 

(~ E U w ;  g~,"-p)) 

(/3E re(w; gi"-p-')). 

For any 6 > 0 ,  W(>6)  and W ( =6) denote here the semianalytic chains in 
W (d. [2], no. 2): 

[W(>6)]  = [W(>6) ,  e(>5)] e 5¢2,(W;~E), 

[W(=6)]  = [W(=6),  e(=6)] e 5 f2 . - l (W;¢) ,  
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where W(>f)=(xe W:l~oq(x)l>6), W(=6)=(x~ W:l~0~(x)l=~i), e(>6) 
/42,(W ( > 6); ~E) is the fundamental homology class of  the space W ( > 6), and 

e( = fi) = - de( > 6) ~/ /2  . -  1 (W ( = 6); rE) is equal to minus the boundary of  e( > 5) 
in the exact sequence of  Borel-Moore homology 

• ..---~ H2,(W( > 6); ¢)---~ H2._ , (W(  = 5); ¢)--* H2._ 1 (W(-> 6); ¢)--~ . . . .  

We have, in fact, that  d [W(  > 6)] = - [ W ( =  5)], according to definitions in 
[2], n. 2. 

The integrations in 5.2 are defined, since the forms to ^ a/q~ q and o9 ^ fl/q~q 
are regular and their supports  have compact  intersection with W ( >  5) and 
W(= 5), respectively. The  existence of  the limits in 5.2., and their cont inuous  
dependence of ~ and t ,  will be proved in sections 6 and 7 (cf. Theorem 7.1). 
Clearly, then,Res[og/q~q] is a current  with suppor t  in Y n  I4'. 

Let now W be any open set in X, and & ~ (IS', f2]( ,  Y)). Each point  x e if '  
has a ne ighborhood  W~, where & can be represented by og/q~q, as in 5.2, so that 
we can define 

PV[(o]=PV[og/q~q], Res[69]=Res[og/q~q] on W x. 

These local definitions of  PV and Res agree on overlapping ne ighborhoods  
W~,(x ~ 1.7V), by 7.1 and 7.2, and define sheaf maps  Res : f2~(. Y)---* '~2,-p-1,r= 
and 

PV : f2~(. Y)--* '~z ,_p ,x .  (9) 

Moreover ,  Res(69) = 0 when ~ = q~&/q0 is regular on Y, by 7.4. Hence,  there 
is a map  (also denoted  by Res) 

Res : Q~ = f2~:(. Y)/O~: ~ ' ~ 2 , , _  p- 1, r~. (10) 

The const ruct ion of  V, PV and Res is thus finished, and we study now the 
relation of  PV and Res with boundaries .  

In the condit ions of 5.2, let a e Fc(W, g2,-~,- i). By Stokes'  theorem 

I [ W  ( > 5)] (d(o9 ^ a/q~q))= - IEW ( =6)] (09 ^ a/qgq) , 

since d [ W ( > 5 ) ]  = - [ W ( = 5 ) ] .  Let t ing 6---~0, we get 

PV [d(og/q~q)] (a) + ( - 1) p PV [o9/q~ q] (d~t) = - Res [o9/q~ ~] (a) ; 
or 

( - 1)2" - p + 1 b PV [o9/q~q] (ct) - PV [d(o9/goq)] (~t) = Res [o9/q~q] (ct) ; 

that is, the following formula  holds 

b. P V  - P V  d = R e s ,  

for representat ions og/'q~ ~ F(W, 12§(. Y)). 

(11) 
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If we take now any section 6) e F(I~, Dx(* Y)) over an open set 1~, formula 
(I1) applies locally, so that it is also true globally, and we can state the following 
proposition 

5.3. Proposition. 7he sheaf mappinos PV and Res, considered as homo. 
morphisms from fix(* Y) to '~.x, satisfy the relation 

b. PV - PVd = Res. (11) 

This formula, and the fact that Res[co/~oq] has support on Y, imply the 
following 

5.4. Corollary. PV : 12x(, Y)---~'~2,-.,x/'~2.-.,r= = '~z,-.,x/r= is compa- 
tible with boundaries. 

Consider again to/tpqeF(W, t2P(, Y)) and fl~Fc(W, gx2"-P-2). By Stokes' 
theorem 

0 = I [ W ( = ) ]  (d(to ^ fl/qg~)) = I [W(- -  t$)] (d(to/q9 q) ̂  fl + ( -  l)P(a~/~p q) ̂  dfl). 

Letting 6-+0, we have 

Res [d(to/cpq)] (fl) = ( - 1) p + 1 Res [to/tp ~] (dfl) = - ( - 1 )2, - Pb Res [to/tp q] (fl). 

As before, this local formula implies the following 

5.5. Proposition. The sheaf mappin# Res :t2x(* Y) -+ '~2 . - , - , , r=  satisfies 
the relation 

Reso d = b.o Res. 

The induced map f2x(, Y)/f2"x----~'~2,_ 1-.,r= is therefore compatible with 
boundaries. 

5.6. Commutativity of dia#ram (3). The diagram 

vi x (12) 
' ~ ' x ~  ,~r~. xl~ ~ 

commutes obviously, since PV [to] = V[to] for all germs to e fix. In the deduced 
diagram of hypercohomology, one can identify the hypercohomology of the 
bottom complexes, which are fine, with the cohomology of their global sections, 
Hence, commutativity of one square in (3) is obtained. 

To handle the rest of (3), we remark that homomorphisms 

and 
V: 8x--~'~2._.,x,  PV : 8x(* Y)'-~'~2.-.,x/r~ 

Res : sQ" = gx(* Y)/gx-*'~2.-1-,,r® 

03) 
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can be defined, in the same way and with the same properties as the previous 
ones, and which are compatible with the canonical diagram 

O---,12x--~f2x(, Y)--~ Q"---~0 

[ I 1 
0---~ 8x---. 8x(* Y)--~Q'--~O. 

(14) 

So, (3) can be replaced by the hypercohomology diagram of (14), which 
commutes, together with a diagram similar to (3), but with complexes of smooth 
differential forms, which are acyclic. In this case we can replace hypercohomo- 
logy by cohomology of global sections, which is easier to handle for diagram 
chasing.We are reduced, then, to prove commutativity in the diagram 

H~r(x; ex(* Y)) , HPr(x; ~O.') * , HP÷Ir(x;  O~x) 

(15) 

Take a cycle & ~ ZPF(X; ~fx(* Y)); by 5.3, b. PV [&] = Res [&], and b. PV[&] 
~ZF(X, '~r~o) represents the image by 8 of the class of PV[&] in H2,_pF(X, 
'~.x/roo), so that the left square commutes. 

Finally, a cohomology class og'e HPF(X;~Q ") can be represented by a 
section (o~F(X; drxP(. Y)) such that dCoeF(X; 8ff+1). Then Vo3[o2'] is re- 
presented by V[d&], and ioRes[~o'] is represented by Res[&]; by 5.3, V[d&] 
-Res[&] = PV[dcS]- Resl-tS] = b.PV[&], a boundary, and the right square 
also commutes. 

5.7. Compatibility of diagram (3) and (4). By this we mean that there is a 
canonical homomorphism from (3) to (4). In fact, the homomorphism between 
top sequences in (3) and (4) has been constructed in no. 2, and the homo- 
morphism between bottom sequences in no. 4. Only commutativity of the 
"interior" squares is left to prove. As explained before, it suffices to consider 
the diagram associated to the complexes 

0--, gx---~ gx( * Y)---~ ,Q'---~O . (16) 

(a) Commutativity of 

HPF(X, oa:t) t , HP(X; fig) 

v I 1 '~ (17) 
n 2 ,  _ p r ( x ,  '~.x),,, , , H 2 . _  dX; fig). 

We recall (cf. 4(11)) that z is composition of the dual e* :H2"-pFc(X, 8x) 
~[H2n-p(X;fig)J*~'-H2._~(X;fig) of the edge homomorphism e, with the 
canonical map ~:n2n_pF(X;'~.x)--~[H2n-Pl'c(X,~x)]* in 4(9). Clearly, 
~0 V = / ~ ,  the cap homomorphism defined in diagram 3(11), whose commutati- 
vity assures that of (17). 



280 M. Herrera and D. Lieberman: 

(b) Commutativity of 

H~r(X; #k(* Y)) ' ' HP(U; C) 

Pv~ I n (18) 

H:._~r(x; '~.x/r~) ~ '//2.- p(U; ¢). 

Replace z by e*oY, as in 4(11), so that z o PV = e*o Y o PV = e* o/~, as defined in 
3.8. Then (18) commutes, since the diagram 3.8(13) does. 

(c) Commutativity of 

HvF(X, Q~) ~ , n~ + ~(X; C) 

H2.-p-IF(X,'~O ~ ,H2._p-~(Y;~). 
(19) 

BY(X; ,Q') ® H~(Y; 8x) 

HU~(x ;~05 ® ~)  

,® 1 , Hf+ I (X ' ~'x) ® H~(Y ; 8x) 

"~+~+ ~(x; ~ ® ~i), 
(21) 

where the top map is deduced from the exact sequence (14), and the bottom 
one from the top sequence in the following diagram 

O--~gx ® gx-+O~x(, Y) ® #x--%Q" ® #x- .O 

0 'gx  ' '•x(*Y) 'sQ" ,0. 

The vertical maps of this diagram are exterior products, and induce a homo- 
morphism from the bot tom line in (21) to 

HV+qtX. n'~ ~ l-lv+q+lty.¢~). 
e ly  ~ , s ~  I ~ ~ c 1 ¥  ~ 

By inclusion of supports, we replace this homomorphism by the similar one 

HV+~F¢(X;sQ ") ~ ,Hp+q+IF~(X, gx), (23) 

identifying hypercohomology and cohomology of global sections. 

Considering the definition of z and # (cf. 4(13) and 2.2), (19) can be decomposed 
as follows: 

HvF(X,Q~) " , H~+ t(X; 8x) ' , n,~+ I(X; C) 

"es I ......... "--...~ ~,~' 1 ~' (20) 
H2._._ iF(x, '~O--~ [H 2"-p- ~rgY, e~)]*----~ [H)"-"- ~(Y; C)]*, 

where/~ = ~oRes. The right square commutes here by 3.7, so that only the 
equal i ty /Voq=/~  is left to prove. We observe, to this purpose, that com- 

patibility between cup product and conexion homomorphisms 5 gives a com- 
mutative diagram 
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Suppose now that p + q + 1 = 2n; the construction just described gives a 
commutative diagram 

Hf,( X ; ,Q') ® H~( Y ; d-x) ~® ' ' H~ + l(X; d'x) ® H~(Y ; d-x) 

H2"-  1F~(X ; ~Q') ~ ' H2" r , ( x  ; d-x). 

(24) 

Composition of the right arrow in this diagram with the integration homo- 
morphism ! : H2"F~(X, d-x)--*fE (cf. 3(6)) induces the map/V in (20). 

We define now a homomorphism R :F~(X;~Q2"-*)--.(E as follows: if a 
form ~ e F~(X; d-x 2"- 1(, y)) is representable by ~o/t/on the open set W, where 
~0 is an equation of Y on W, then 

R(a) = ~im I [W(= 3)] (c9/q~"). (25) 

By 7.1 and 7,3, this local definition can be patched into a global map 
R : F~(X, 8x(* Y))---,(E, which is zero on forms bounded on Y (cf. 7.4) and on 
boundaries in F~(X; d-'(. Y)); in fact, I [W( = 3)] (co/q~ ') = 0 if og/t/is a boundary, 
by Stokes' theorem. It follows that homomorphisms: 

r~(x  ; ~Q2.- ,) ~ r~ (x  ; d-J"- ~(, Y)) /r~(x ; d-J"- , ) 4 ¢  
and 

R : H 2n- IFc(X , sQ')--~(l~, (26) 

can be constructed, and one checks easily that R, composed with the left arrow 
in (24), induces the homomorphism R = ~o Res in (20). Finally, we want to see 
that diagram 

H2.-1F~(X; ,Q .) ~ ~n2nFc(X;d-x) 

R ~ ¢  j / ~  " /  (27) 

anticommutes, which can be checked locally. In fact, suppose that the form 
o~/~oqe F~(W; g2,-~(,  y)) represents a cycle in F~(W; ~Q2,- 1); this means that 
d(~o/t/) e F~(W; g2,). By Stokes' theorem and (6), 

- - t [ w ( =  ~)] (~lq,,) = I [ W ( >  ~)] (d(co/¢,~)); 

letting 5---~0 we get -R(co/(p q) = I(d(¢o/¢/)), so that (27) anticommutes. 
As a consequence, the following diagram anticommutes 

H~(X;sQ')  ~ ,  H~+ I(X; 8x) 

[H 2"-°- ~ r , ( Y  ; d-i)]*, 

so that P, = - / V o 6  = sn'oq, and commutativity of (19) is proved. 
21 Math. Ann. 194 
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5.8. Coronary. In the conditions of Theorem 5.1, suppose that U has only 
simple points. Then PV splits canonically. I f  X has only simple points, V is an 
isomorphism and Res (and PV) splits canonically. I f  X and Y have only simple 
points, then V, PV and Res are isomorphisms, and diaoram (3) is canonically 
isomorphic to diagram (4). 

Proof Replace 8x(.  Y) by f2x(* Y) in diagram (18); if U has only simple 
points, I is an isomorphism, by Grothendieck's theorem (cf. [5]), and c~ : H~(U; 
C)--+H2,_p(U; C) is an isomorphism by Poincar6 duality, so that zo PV is an 
isomorphism, which gives the splitting of PV. 

If X is a manifold, then I, c~ and z in (17) are all isomorphisms, so that V 
also is (a direct proof is easy to give). Moreover, in diagram (19)/~ and n '  are 
isomorphisms, the first by 2.4 and the second by Poincar6 duality; we deduce 
that z is a right inverse to Res, what gives the splitting. 

If X and Y are manifolds, then Res (and V) is an isomorphism, since in (19) 
z will also be an isomorphism (cf. no. 4). We deduce that PV is an isomorphism, 
as desired. 

5.9. Relation with the classical notion of residue. Suppose that X is a complex 
Stein manifold of dimension n, and that Y is a l-codimensional submanifold. 
If we compose the maps 

H P ( X -  y);~)---~H~+'(X;IE) and Hf+'(X;IE)---~H2,_p_I(Y;~) 

of diagram (4) with the Poincar6 duality isomorphism H2, -~- , (Y;¢)  
---~HP-I(Y;C), we obtain the homomorphism 

Re"--~ : HP(X - Y; C)---* H p- l (y ;  II~), (28) 

which has been realized by J. Leray (cf. [6] and [8]) as follows: Represent 
a class [69] e HP(X - Y; ~) by a closed form & ~ F(X, 8~(, Y)) that has only 
first order poles on Y ([6], Theorem 1). Locally, 69 has the expression 

69 = ~p r, --ds + 0 ,  (29) 
s 

where s is a local equation for Y ([6], no. 2) and ~o and 0 are holomorphic 
forms on X, locally defined. 

The restrictions to Y of these local forms ~p define a closed global form 
res [69] ~ F(Y; gPr-1), whose cohomology class is R-e-s [69], as denoted in (28). 

Using (29) one proves immediately, that 

Res [69] = 2rcil[Y] ^ res [69], (30) 

where the left current has been defined in 5.2, and the right one is the current 
oe--*l[Y] (res[&] ^ ~). I [Y]  denotes here integration on the canonically 
oriented manifold Y. 

Equality (30) relates the residue current Res[69], as defined in this paper, 
and the residue form res [69] of Leray-Norguett  theory. In fact, (30) is als0 
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true on spaces, for forms that have local expressions like (29), where s is any 
holomorphic function, not necessarily a coordinate. The proof  of this result 
will be given in another place. 

5.10. Remark. Diagram (19) answers a question posed by P. Dolbeault 
in [14], 3.7, namely that of the relationship between the local cohomology class 
and the homology class defined by a meromorphic form on X. 

6. Residue and Principal Value in the Normal Crossing's Case 

The purpose of this section is to prove the local existence of the residue and 
the principal value of meromorphic forms, defined on manifolds, whose polar 
set has only normal crossings. The general problem will be reduced to this 
case in no. 7. 

The following notations and conventions will be used throughout this 
section, often without reference. 

6.1. Notations. As before, Z and Z+ denote the sets of integers and natural 
numbers respectively, and Z" and Z~_ their n-Cartesian products. Let ~ = (~1 . . . . .  
~,) e Z", z = ( z ,  ..., z,) • tE", and choose an integer j, 1 < j  < n. Then Izjl denotes 
the absolute value of zj = xj + iy) • IE, 

z '= l - I ( z~ ' : s=l  . . . .  ,n),  Iz~t = H(I~-I : s = 1 . . . .  ,n) 

and 

zq)  = (z l  . . . . .  z j _  1, z j+  ~ . . . . .  z , )  e ¢ " -  1, ~ q )  = (~1, . . . ,  ~ j -  ~, ~ j+  1 . . . . .  ~ . )  • Z " -  1 ; 

in this case, we abbreviate Zq)'~J)= [I(Z~ ~ :1 _< s _< n, s 4:j) by Z(]) ", so that 
z~ = ~ 7  z q ) ' .  

We also denote Itzll = max(lzjl : j  = 1 . . . . .  n), and 

B--(zeCE": tlzll < 1), Bq)=(z( j ) •Cy- l : l l zq) l f  < 1). 

For a fixed J > 0, o~ • Z~ and j = 1 . . . .  , n, we use the notations 

B ] = ( z • B : 6 < l z ' [ < l ) ,  S ] = ( z • B : l z ' l = 6 )  
(1) 

JB~ = (z  • ¢:" : IIz(/)ll < 1, Izjl = 1, ,~ < Izq)~l < 1) ,  
and 

B~(]) = ([Jz(j)H < 1, 6 < [z(j)'[ < 1), S](j) --- ([[z(j)H < 1, [z(j)'[ = 6). 

The domain B] is always considered with its canonical complex orientation, 
and S] is given the opposite orientation to the one induced by B~. This is 
equivalent to define the semianalytic chains (of. [2], 2) B ] =  [B], e(>6)]  
~Sa2n(B,l~ ) and S~=[S],e(=O)]eSP2n_t(B;ff~), where e(>6)eH2n(B~;C ) is 
the canonical fundamental class of  B~, and e( = 6) = - de( > 6) e/- /2,-  1 (S]; IE), 
Where O is the boundary in the exact sequence of Borel-Moore homology 

H e . ( B ~ ; ¢ ) - ~ H 2 . _ I ( S ~ ; C )  : , H 2 . _ 1 ( ~ ; C ) .  
21' 
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With these conventions, we have the formula 

OB~ = - S ~  + Z ( ' B ~  : s = 1 . . . . .  n ) ,  (2) 

in the space 5£.(B; C) of semianalytic chains in B =  (tlzll < 1), where the chains 
'B~ are given appropriate orientations. 

We also use the notations lal = =1 + " "  + a., for ~ ~ Z~_, and 

Ol~,I f o f , I f  

D~'J f = --~J f D - i f = O ,  a~,  ' 

(3) 

for a smooth function f e  g°(C"), f = f ( z ,  z-). Ocasionally, we write f = f(z(])) 
to emphasize that f does not depend on the variables zj and ~. 

Finally, we write 
dz ^ d ~ =  H ( d z  s ^ d~ s : s = 1 . . . . .  n) , 

dz(j) A d~(j) = I I (dz  s ^ d~ s : s = 1 . . . . .  n, s =t=j) , (4) 

dz(i , j )  ^ d~(i,j) = l'I(dz~ ^ d ~  : s = 1 . . . . .  n, s 4 = i, s 4=j). 

6.2. Lemma. Let  k = k(z, z-') be a smooth complex valued function defined in 
IE", and a = (oq, . . . ,  ~,) ~ Z"+. There exists  a decomposition 

k(z, z-) = ~ (Z~ .  ~g~.~(z(j), ~q)): r + s < aj) + K(z ,  z-), 
j = l  

K(z, z-) = Z ( : .  ~ .  K~,~(z, z-): p + ~ = ~), 
such that: 

a) 9J,~ and Ka,~ are smooth functions, 

1 ~ + s k  zl=o b) 91r,s(Z(j),~(j))= r!s !  Oz]O~ , r + s < ~ l ,  and 

c) K depends continuously on k, with respect to the seminorms max([DVDUfl : 
Ivl + I~1 < l), for all compacts C in C" and I e Z +. 

Proo f  The case a = 0 is trivial, so that we can always suppose that aj =~ 0 
for all j ~ k, for some k > 0, and that ~: = 0 if j > k. By Taylor's formula, we 
have that 

k(z, z-) = Z(~  ~ g,~ ~(z(1), ~(1)) : r + s < a~) (5) 

+ z ( ~  ~ KL(z ,  z-): r + s = ~ ) ,  

where O,~, and K,~, are smooth functions and K~.,(r+ s = at) depend con- 
tinuously on k, in the sense described in (c); this follows from the integral 
expression of the rest in Taylor's formula. 

We now apply Taylor's formula to each function K~,.,(z, z-), in a similar way, 
with respect ofz 2 and £2, and up to the degree a2. The second line in (5) can then 
be written as Z(6~zO~,,(z(2), ~(2)) : r + s < =2) 

+ Z ( ~ K ~ . , . , , , ~ ( z , z - )  : r + s = o q ,  u + v==2)  , 
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2 where the functions K,.,,u, . depend cont inuously  on  K 1 hence on  k. It is r ,  S, 

clear that  i terat ion of  the me thod  gives the wanted decomposi t ion,  and that  
a) and c) are satisfied. As for b), it is obvious  from (5). 

6.3. Lemma.  Let  0 e g°(C") be independent o f  zj = xj  + iyj, and a ~ Z"+. Then 

(a) ~ ~ z -  ~ odz  ^ d~ = 0 

(b) S z~z~z-'odz ^ dz(j) ^ d~(j) = 0  
s~ 

for all r, s ~ Z+ such that r + s < aj, and each 6 > O, and 

(c) ~ ~ z - ' g d z j  ^ dz(j) A dF.(j) = 0 
s~ 

for all r, s ~ Z + such that r + s < ~j, s>O,  and each 6 > 0 .  

Proof  F o r  each zQ)~ B~(j), define 

B(zO, ~)=(zj ~C;  ~/iz(O:l < Iz~4 < 1). 

The partial  integrals 
1 2n 

l(zfj),6)= ~ ~-<"~dzsAd~j= ~ O'-<<,+:+'do ~ ei°<'-'s-'OdO 
B ( z ( j ) ,  ~) <~llz(J)~'l o 

are zero for all z(j)6 B~(j), because r -  s < r + s < a~. Then  the integral in (a) 
is zero, since it is equal to 

l(z(j), 6).z(j)-=gdz(j)  ^ d~q). 
B a  • 

e (J) 

To compute  (c), one integrates over BIb(j) the differential form z(j)- ' .  0 dz(j) 
^ d~(j) times the integrals 

(~-"~dz,:lz3,1 =,VIzO<'l), zq) ~ B<I(#), 

which are all zero if s > 0, since in such case r - aj - s + 1 < r - a s + s + 1 < 0. 
We deduce that  the integral in (c) is zero, and a similar argument  shows 

that the integral in (b) is also zero,  for all r + s < ~j. 

6.4. Lemma. 
lim j" bdz j  ^ dz(j) ^ d~q) = 0  
~ 0  S$ 

and (6) 
lim S bdz i  ^ dz(/) ^ d~(j) = 0  
6-+0 S~ 

for any inteorable bounded function b defined in C", and any a ~ Z"+. 

Proof  If ~j = 0, the integrals themselves are zero, considering the definition 
of S~. Suppose then ~j 4= 0, and rearrange ~ so that  j = 1 and ~s = 0 if s > k, for 
some k > t, and ~, ~ 0 if s < k. By means of  the following parametr iza t ion of  ~ :  

/ /  k \ l iar  \ e'",.:.)) 
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where z~ = o~e ~°~ (s = 1 . . . . .  n), one verifies that the integrals in (6) are bounded, 
up to a constant, by 

E,~ s = 2  s = 2  

Induction on k proves that the limit of this expression, as 6---~0, is zero. 

6.5. Proposition. For any ct ~ Z"+ and k ~ 8°(flY), the limits 

tim ~ z-~kdz~ ^ dz(j) ^ d~(j) (j = 1, ..., n) (7) 
~--,0 S~ 

and 
lim ~ z - ~ . k d z  ^ d~ (8) 
~-,0 a~ 

exist, and are continuous on go(~,),  i f  this space is considered with the seminorms 
max(ID~kl : lvl < l), l ~ Z +. 

B 

Moreover, 
lira ~ z - ' k d L  ^ dz(j) ^ d~(j) = 0  (9) 
~--,0 S,~ s 

and 

lim ~ z - ~ . k d z j  ^ dz(j) ^ d~(j) 
~ 0  S~ (lo) 

2~i  
= lim ~ z(j)-'(D~J-lk),~=odz(]) ^ d£tj). 

~-,o ( ~ -  1)! B. 

Proof. We can always suppose that 0~j = 0 for all j > k > 0, and that ~j # 0 
i f j  < k, since the case a = 0 is trivial. Consider the decomposition of k given in 
Lemma 6.2; by 6.3(a), terms like ~ g ( z ( j ) )  times z -~ give no contribution when 
integrated over B], so that the limit in (8) reduces to 

lim ~ z - * K d z  ^ d~= S z - ~ K d z  ^ d~, (11) 
~ 0  ~ B 

since z -~ .K is bounded on B. 
As for the limit in (7), only the case j < k needs to be analyzed, since the 

integral itself is zero when j > k. Then, if one considers the decomposition of k 
in 6.2, terms like z~g ( z ( i ) ,  £(i)) with i~ej do not contribute to the integral 
over S~. In fact, 

z -~zT~gdz j  A dz(j) ^ d£(j) = ~ ~ - ~ ' ~  J~(Izil)dzi ^ d£i, 
S~ ~<lz,~,l< a 

where J~(Izil) is the integral of z(i)-~g(z(i), ~(i)).dzj ^ dz(i,j) ^ d~(i,j) over the 
domain (tlz(0tl < 1, Iz(i)~t =~/Iz~'l) and depends only on the absolute value 
Q = Iz~l o f  z~ = Qe ~°. Consequently, the last integral is equal to 

1 2n 

b l /~  0 

since r -  s < r  + s < ~i. 
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In the case i=j ,  the contribution to the integral over S] of terms like 
z~g,,s(z(j), ~(j)), with s >0,  is zero (6.3(c)); in the case s =0,  it is equal to 

n$(j) Izj ~, I = a/Iz(J)~ I 

which is zero if r - ~j :I: - 1, and is equal to 

2rci S z(J)- 'g, j - l ,odz(j)  ^ dz(J), (12) 

i f  r - ~ j  = - 1 .  

Then, the integral in (7) reduces to (12), plus the integral over S~ due to the 
term K in the decomposition of k. The limit of this last integral is zero by 6.4, 
so that the limit in (7) is equal to 

lira 2rri S z(J)-~ g~j - 1,o(z(j), z(j)) dz(j) ^ d~(j), (13) 
¢~+0 B~(j) 

which exists by the first part of this proof. 
Equality (10) is trivial if % = 0, in which case both integrals are zero, for 

fixed values of 3. If ctj # O, permuting coordinates we reduce the problem to the 
case j = l ,  ~1#0 ,  and g~l_l,o(Z(1),~(1))=(oq-1)!-l(D~l-~k)~=o, by 6.2(b). 

The proof  of(9) is similar to that of the existence of(7). Finally, the continuity 
of the limit in (8) with respect to the given seminorms is clear by (11), since K 
depends continuously of k (cf. lemma 6.2), and the continuity of the limit in (7) 
follows from (10). 

6.6. Proposition. Let f be a never vanishing holomorphic function on B C IE", 
and choose ~ ~ Z"+. Denote 

S~( f )  = (z ~ B : lz" f (z)l = 6 ) ,  

B ~ ( f )  = (z ~ B : lz" f (z)l > 3) .  

Consider B~(f) with its canonical complex orientation and S~(f) with the orienta- 
tion such that OB~(f)= - S ] ( f ) ,  as in 6.1 (2). 

There exists an open neighborhood B C B of the origin 0 ~tE ~ such that, if 
S~ = S~(f)c~B and B~ = B~(f) c~B, then 

lim [ z - ' k d z l  ^ dz(1) ^ dr(l)  lira S z -~kdz l  ^ dz(1) ^ dg(1) = a-.o~ 
~ o  ~ 

and 
lim S z - ~ k d f l  ^ dz(1) ^ dr(l)  = 0  (15) 
6~0 S,~ 

for all k ~ o~°(B), and 

lim S z - ' b d z  ^ d f =  lim ( z - ' b d z  ^ d~ (16) 
~-~o a; ~ o  k~ 

for all b ~ F~(/~; go). 

Proof of(14). Ife~ =0 ,  we can c h o o s e / I = B  and both integrals in (14) will 
be zero, for values of 3. We suppose, then, that cq :I: 0, and can always assume 
that Ifl > 1 on B. 
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Choose an holomorphic function h such that h ~' = f on B, and consider the 
mapping ~"(z)-+C"(0 defined by the functions {l:Z~h(z) and ~ = z~ (j=2, 
.... n). This mapping defines an isomorphism on some neighborhood W of 
0 s I~", and after a suitable change of z-coordinates we can suppose that B C W; 
denote 

= (z ~ B : Iz~h(z)l < 1), (17) 

so that our mapping defines an isomorphism 2 from/} to the unit ball B(0 in 
I~"(0. According to notations in 6.1 and above, 

2( /~])=B~(0=(~el l ;" : [ l~[[<l  and t~'t>6), 

~(S~)= S ; ( 0 = ( ~ 7 :  II~ll <1  and 1~'1=6). 

The isomorphism 2 has an inverse/~ : B(~)----~/~ given by functions z 1 = fflg(0, 
zj = ~.i (J = 2, ..., n), where g is holomorphic never vanishes on B(0. 

Consider now any function k e ~0(~). By Taylor's formula 

k(z,z')= ~. z]~g..~(z(1),f(1))+ ~ ~ G . , ~ ( z , z - ) ,  
r+$<~l r+s=~l  

where all functions g,.~ and G,,~ are smooth. Applying the change of coordinates 
z = #(0, we deduce 

z - ' z ]  z =] G~.s(z, z-) dz 1 A dz(1) A dff(1) 
g$ 

= ~ (- 'H, .s(~,( )d~l  ^d~(1)Ad~(1) , ( r+s=~l )  
S~(O 

whereHrs ( { , { )=¢ i { ,9  r , s~ ,# - ) ' , 9+{ ,OC, , .  Now implies 

that (D ~' - t  H,.~({, ~))~ =o = 0, so that according to 6.5(10) the limit of the last 
expression, as 6--*0, is zero. 

By the same argument one proves that the contribution to the left limit 
in (14) of terms like z] ~ g,.~(z(1), ~(1)), with s > 0, is zero. Consequently, the 
left limit in (14) reduces to 

lim ~ ~ z-~g~,o(Z(1).~(1))dz~ Adz(1)Ad~(1) (18) 
a-*o t~ r<a~ 

Moreover, it is clear from the definition of/~ (17) that, with the notation of 6.t, 

S~ = (z(1) e B;(1) :1~ ~ f(z)t =,VIz(lYl), 

so that the integral in (18) is equal to 

~'. I z(1)-'gr, o(z(l),~(1)) dz(1)^d~(1) I z~-"dZl , (19) 
r<~l B~(t) C(di, z(1)) 

where C(6, z(1)) = (zl e IE : Iz~ 1 f ( z  1, z(1))l = 6- Iz(1)-~l), For any z(1) e B~(t), 
the second integral is equal to 2hi if r - 0q = - 1 and is zero otherwise. The 
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limit in (18) reduces then to 

l im2n i  ~ z(1)-~'g,,,_~.o(Z(1),~(1))dz(1)^dY(1), 
~ 0  B~(1) 

which is equal  to the right limit in (14), as shown by 6.5(13). 
The p roof  of  (15) is simpler, since we can apply directly 6.4, after changing 

to ~-coordinates by z = #(~). 
Proof of (16). Choose  b ~ F,(/~, 8°), and a smooth  function b* such that 

Ob* - b  on B; if 7 = z-~'b*dzt ^ dz(1) ^ d~(t), we have 

d7 = z-~bdz ^ dS. 

By Stokes" theorem 

considering that 

and 

~,~ e~,~ ~ ~ s~ / 

/ ~  = (Iz, hll < 1, tlz(1)ll < 1, Iz~'fl > ,5) 

0/~  = t/~] - S] + ~ '/3], (21) 
/=2 

where equali ty is unders tood  in the sense of  semianalytic chains in B, and 
where 

*/~] = ([z~ht = 1, Ilz(1)ll < 1, Iz~'ft > `5) = (Jz,hl = 1, IIz(1)ll < 1, Iz(1)~l > `5) 
and 

t/i~ = (Iz~hl < 1, Iztl = 1, l[z(/)ll < 1, l z ' f l  >`5), (l = 2 , . . . ,  n) 

are given appropr ia te  orientat ion;  it is clear that the integral of  7 on z/~] (l 4= 1) 
is zero. 

Define now 

Un = (z e B : Izlhl > 1, lz(1)~l > `5), 

and its bounda ry  

OUa= - 1,Ba + U~ + ~ JU a (22) 
j = l  

in the sense of semianalytic chains, where 1/~ is oriented as in (21), and the 
chains 

JU~=(ttz(/)tl < l,  lzjl = l ,  tz(ff't > `5, t z lh t  > l ) ,  ( j = l  . . . . .  n) 

U; = (z ~ n : Iz(1)~l = `5, Izlhl > I) 

are given convenient  orientations.  
The integral of  7 over  Uj and ~U~, wi th j  = 2 , . . . ,  n, is zero, and it is clear that 

1U~=IB~=(tlz(1)ll<l, lz t l=l,  tz(1)~l>`5), since l h l > l  on B, and that the 
orientations of  this chain in (21) and (22) are the same. The integral of  z- 'bdz  
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^ d~over Ua is also zero, since b has support in/~ C B -  U0. By Stokes' theorem, 

and we deduce that 

lim ! 7=~im ° ~),  
O~O t-  XB, ~ 

= lira ~ z(1)-~dz(1) ̂  d~(1) 
0~O B,~(1) 

where the last limit exists by 6.5(8). 
Moreover, 

l im~ 7 = ~im o S7 

z-l"  b*(z, z-)dzi , 
I~d=l 

(23) 

by the first part of this proposition, so that taking limit in (20) we have, by (23) 
and (24), that 

l i m S z - ~ b d z A d ~ = l i m ( ! - - ! i ) 7 .  
, ~ 0  f~$ 6 -~0  l 

Finally, Stokes' theorem applied to the chain in 6.1(2) implies that the second 
limit is equal to 

lim S z - ' b d z  A d~, 
O~O B~ 

which proves (16). 

6.7. Proposition. Let ~ and f le  Z"+. 7hen 

lira ~ z - ' k d z  1 A dz(1) A d~(1) = lira ~ z -~kdz l  A dz(1) A d~(1) (25) 
0~0 S~+a 0~Os,  ~ 

and 
lim ~ z -~kdz  A d~= l im  ~ z -~kdz  A d~ (26) 
0~0 B~+ ~ 0~O B,~ 

for all k e 8°(C"). 

Proof. We proceed by induction on n, The assertions are clear for n = 1, 
since in this case S] +a - " - So, and B~ + ~ = B~, for some 62 In the general case, the 
left limit in (25) is equal to 

lim ~ z-~-~(z~k) dz 1 A dz(1) A d~(1) 

2rci 
= lim ~ z(1)-~-a(D ~ +a'-  lzak)~, = odz(1) A d~(1), 

by 6.5(t0), and this limit reduces to 

2r~i 
lim ~ z(t)-~(D~t-~k)z~=odz(1)Ad~(1), (27) 

since (D ~+a~- lza)~, = o =/~1'. (~l + ~l/~l - 1)z(1) a (D~_ 1 k)~=o. By the inductive 

(24) 



Residues and Principal Values on Complex Spaces 291 

hypothesis, this last limit is equal to 

2rci 
lim ~ z(1)-~(D~'-lk)zl=odz(1) ^d~(1), 

which is equal to the right limit in (25), according to 6.5(10). 
To prove (26), choose a form y=z-~'k*dzl ^d~(1)Adz(1) such that 

dy = z-~'kdz ^ d~. By Stokes' theorem (cf. 6.1(2)), 

s !),, 
ag +# ~B +# S~' # 

and 

'B~+P B~+P(1) I~11=1 

by inductive hypothesis, the limit of this integral, as 6--*0, is equal to 

lim ~ z(1)-~'dz(1)Ad£(1) ~ z?"'k*dz~=~im ° ~ ~. 
~-~o Bg tzd = 1 lag 

This fact, together with (25) and Stokes' theorem, applied to 6.1(2), imply that 

lim ~ z - ~ a d z A d f = l i m ( ~ - ~ ) 7  
6 ~ 0  B~+# 6 ~ 0  1 

= lim ~ z-~'adz ^ d~, 
6~0 B~ 

as wanted. 

7. Existence of Residue and Principal Value in the General Case 

Let W be a paracompact reduced complex space of (pure) dimension n 
and structural sheaf ¢w, and let Y be a 1-codimensional subspace defined by 
one global holomorphic equation. We endow the space of smooth forms with 
compact support Fc(W; 8"w) with the topology defined in 4.2. The semianalytic 
chains [ W ( >  6)] = [k0~l > 6] and [ W ( =  6)] = [Itfl = 6] of the following 
theorem are defined as in 5.2, and the intersection of these chains with an open 
subset G of W will be denoted by G(> 6) and G(= 6). 

7.1. Theorem. Let ¢ e F~(W; ~2n) ,  0 ~ Fc(W; ~2n-- ~W 1), and consider the semi- 
meromorphic forms ~ =¢/tp q and 0 = O/q~ ~ in F~(W; 8k,(* Y)), for some function 
~o ~ F(W, (gw) which is an equation of Y, and some q e Z +. 

The limits 
P(~/q~q) = ~im ° Xl~l~ql > ,:sl (~/~")  (1) 

.R.(O/#q = ~ X [Iq,'/I = ,:S] (0/~ ~) (2) 

exist, are independent of  the particular representations ¢/q)q and O/q9 q of ~ and 
in terms of the chosen equation of  Y, and define continuous functionals on Fc(W, 
¢~w),j = 2n, 2 n -  1. 

Proof. Take a point x e Y and a function Q e F(W x, d2w) on some neighbor- 
hood W x C W ofx  such that W x - Yo has only simple points and is dense in Wx, 
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where Yo = (o~ e Wx : ~0 ~. q = 0). By Hironaka's resolution of singularities [9], 
Wx can be chosen so small that a proper holomorphic map n : W'---~ Wx exists 
with the following properties: W' is a manifold, Y~ = rc-l(Yo) is a subspace 
of W' with only normal crossings and rc induces an isomorphism of U'= W' 
- Y~ o n t o  U=W,,-ro. 

To prove the theorem, it will be enough to consider forms ~ and 0 with 
support contained in W~. In this case, the integrals in (1) and (2) are equal to 
I [ W x ( > b ) -  Yo] (¢/q~) and I[W:,(=fi)-  Iio] (0A o~) respectively, since the real 
codimension of Yo is one in Wx(= 6), and is two in W(> 6). Moreover, these 
last two integrals are also equal to 

I [ W ' ( > 6 ) -  Y~] (~*~) and I [ W ' ( = 5 ) -  Y~] 7r*0), 

because n is an isomorphism outside Y~; we denote here W'(> b) = W'(Iq~'l > ~), 
W'(=b)=([q¢ I =6) and q¢=q~qo lr. The chain [W'(>6)] is oriented by the 
fundamental class of W', and [W'(= 6)] = - a[W'(> 6)]. The same codimen- 
sion argument, applied to these integrals, gives 

I [  Wx ( > 6)] (~) = I [ W'( > 6)] (n* ~) (3) 
and 

I[Wx(=b)] (0)= I[W'(=6)] (re*0). (4) 

To prove the existence of the limits of the right integrals, we can proceed 
locally, since n* ~ = n* ¢/q¢ and 7r* 0 = u* 0/q¢ have compact support. By Lemma 
7.3, there is a neighborhood Q of a given point in Y~, and a coordinate system 
~o=(a~l,...,oJ,) on Q, such that q~'((og)=e9" on Q, for q'=Qor~ andsome 
a e Z~. Then rp'= ~oOf and O'= og~f-1 on Q, for fl and ? in Z~_ such that 
fl + 7 = ~, and for some holomorphic function f 4:0 on Q. 

By 6.6(t4), (15) and (16), and 6.5(7) and (8), there is a neighborhood Q ~ Q 
such that the limits 

lim I [ (~(IJ  f l  > 6)] (~'/J f )  (5) 
6~0 

and 
lim I [ 0 ( t J  f[  = 6)] ( 0 ' / J  f )  (6) 
~ O  

exist, for all forms {' and O' with support contained in Q; this fact implies the 
existence of P(~/q~*) and R(O/q~ q) in (1) and (2). 

Moreover, the limits in (5) and (6) are respectively equal, according to 6.6, to 

lira I[Q(I¢o~[ > 6)] (~ ' / J  f )  

and 
lim I [Q(IJI  = b)] (O'/olf) 
~ O  

which depend continuously of ~' and 0', by 6.5. We deduce that the limits in (3) 
and'(4) are continuous functions of n*~ and n*0, hence of ~ and 0. 

Finally, the following proposition implies the asserted independence of 
P(~/q~*) and R(O/~p ~) with respect of the equation q~ of Y. 
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7.2. Proposition. In the conditions of  Theorem 7.t, let ~p be a holomorphic 
function on W which is not identically zero on any irreducible component of  W. 
?hen 

POp~/tpq~ ~) = P(~/q~q) (7) 

and 
R ( ~ O / ~ : )  = R(O/~o~) . (8) 

Proof. The left members of these equalities are limits of the integrals 

I[W(l~pq~l > 6)] (~/q~) and I[W(lq,~0 ~] = 6) (0/q~q). (9) 

As before, given a point x ~ (~p~oq = 0), we can choose a neighborhood Wx, 
a function 0 ~ F(Wx, (-gw) such that Wx(0 4:0) has only simple points and is 
dense in Wx, and a resolution n:  W'--~Wx of T = Wx(0tpq~ =0). 

We restrict ourselves to consider forms with support in W~. In such case, 
reasoning as above we deduce that the integrals in (9) are equal to 

l[W'(l~p'q~'f>~5)](n*~/(o') and I[W'(Wqyl=6)](rr*O/qY),  (10) 

where ~p' = tp0n and q¢ = q~qorr. By 7.3, there is a coordinate system o~ = (co t, ..., 
~0,) on some neighborhood Q of a point in T' = n -  t(T), such that 0'Ip'q¢ = co" 
on Q, where 0' = 0 ° n and a ~ Z~_. It follows that q¢ = ~ f ,  ~' =corO and 0' = o~h, 
where fl, 7 and v belong to Z% and fl + ? + v = a, and where f ,  9 and h are never 
vanishing functions in F(Q, (gw) such that f . 9 .h = 1. 

We have now to study the limits of the integrals in (10) when 6 ~ 0. By 6.6(16), 
there is a neighborhood Q c Q such that 

lim t[W'(I~' ,p'I  > 6)]  (¢'/q,') = ] ~  I [ Q ( I J  + vl > 6)] (¢'/~o') 
6~0 

for all forms 4' with support in (~. The last limit is equal to Jim ° I [ Q ( I J  I 

>6)] (¢'/qy) by 6.7(26), which is in turn equal to liml[Q(Iq¢]>6)] (¢'/qY) 
6~0 

for forms with support in a possibly smaller Q, by 6.6(16). This local result 
implies that, globally, 

POp~I~Pq:) = ~im o/[W'(lu,',p'l > 6)] 0r*¢/q¢) 

= l im t[W'(lq,'t > 6)] (~*¢/q,'), 

which is equal to P(~/q~q), as explained before. 
In a similar way, using 6.6(14), (15) and 6.7(25), one proves that 

R(qJOl~Jq/9 = ~ I [W'(Wq, ' I  = 6)] (~*OlqJ') 

as wanted. 

= lim l[W'(lqCJ = 6)] (n*O/~') = R(O/q~*), 
8~0 
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7.3.  L e m m a .  Let ~ be a holomorphic function on some neighborhood o] 
the origin 0 e ~" such that (~p = O) has only normal crossings at O. Then there 
exists a coordinate system o9 = (o91, .+., COn) on a neighborhood Q of O such that 
lp(co) = co~ on Q for some o: ~ Z"+. 

Proof. W e  can  a lways  wr i t e  ~p(z)= z ~. g(z), for  s o m e  ~ e Z~. a n d  some 

h o l o m o r p h i c  g wi th  g (0 ) :k0 .  S u p p o s e  t h a t  0t I ~:0, a n d  find a func t i on  h such 

tha t  h ~ ' = g  a r o u n d  0. T h e n  cot=zlh(z) ,  c o j = z j ( j >  1) def ine  a coordinate  

sys t em on  s o m e  n e i g h b o r h o o d  o f  0, a n d  is c l ea r  t ha t  ~p(co)= cot  

7.4,  Remark. T h e  l imi t  R(~) = R(~o¢/qg) of  a f o r m  ~ r e g u l a r  on  Y is zero,  as 

fo l lows  f r o m  the  p r o o f  o f  7 . t  a n d  f r o m  6.4. 
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