Math. Ann. 194, 259—294 (1971)
(© by Springer-Verlag 1971

Residues and Principal Values on Complex Spaces

M. HerrERA and D. LIEBERMAN

Let £ and 8 be smooth differential forms with compact support, of dimen-
sions 2n and 2n — 1, respectively, defined on an open set W in €", and let ¢ be
any holomorphic function defined on W. We prove in this paper that the limits

lim § i3 and lim | L (1)
420 pj>5 @ 520 1pj=5 P

exist, where |p| denotes the absolute value of ¢, and relate them to the topology
of the variety ¢ =0 and its complement in W,

The limits exist even when W is an open set in a paracompact and reduced
complex space X of pure dimension n, although in this case the domains
W(lp| > ) and W (|| = ) are only semianalytic, in general, and integration on
them means integration on their regular points, in the sense explained in [2]
and [7]. No assumptions are needed about the singular sets of X or Y.

We prove the existence of these limits in the last two sections of the paper
(Section 6 and 7), supposing first that W is a manifold and ¢ =0 has only normal
crossings, and using then resolution of singularities to handle the general case
{cf. Theorem 7.1).

Suppose now that Y is a closed 1-codimensional subspace of the complex
space X, locally defined by one equation. In Section 5 we use the results just
described to define the residue Res[®] and the principal value PV[@®] of a
meromorphic p-differential form & on X, having its poles on Y: they are
currents on X of dimension 2n—p—1 and 2n — p, respectively, and Res{w]
has support on Y.

We proceed first locally. Consider an open set W in X, on which & is
representable as a quotient w/? (g integer 20), where w is a holomorphic
p-form (in the sense of Grauert-Grothendieck) on W and e I'(W,0y) is a
holomorphic equation for Y in W. Then

Res ](a) = hmI[W( )] (
and 2

](ﬂ)-—hmI[W<>5)](“’ !

w/\oc)

for all smooth forms a and § with compact support defined on W, of dimensions
2n—p—1 and 2n— p, respectively, and where the notations I[W (> d)], etc.,
denote integration on the corresponding semianalytic domain.
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Moreover, Res [-g—)q—} and PV [?:UT do not depend on the particular re-

presentation w/@? of @ on W, so that these local currents can be patched
together to globally defined currents Res{@] and PV [@] of the space X.

In Section 5 we study the relationship of Res and PV with the standard
cohomology and homology sequences associated with the couple (Y, X). To
this purpose, we consider the exact sequence

0—Qy—Qy(*Y)—0x—0,

where Q} and Qy(» Y) are the sheaves’ complexes of holomorphic forms on X
and of meromorphic forms on X with poles on Y, respectively, and Qy is the
quotient complex, and the exact sequence

0>'D.yo—'D.x—'D.xjy=—0,

where ‘9.4 is the sheaves’ complex of currents on X, ‘%.y.. is the subcomplex of
those currents with support on Y and '?.yy- is the quotient complex.
We show that PV and Res define complexes’ homomorphisms

PV: Q’k(* Y)-”@zn_l,’x/yw

and '
Res: Q% —'Dop—p-1,r

which, together with the standard map
Vi —'D g px
constructed by integration, provide a commutative diagram of hypercohomo-
logy
o—— HP(X; Q%) H?(X; Qx(+Y)) H(X; Qx)—
v PV Res (3)

...—-)Hzn_pr(X, /@‘X).—)Hth—pF(X’ !@.X,‘Yﬂ:)—’Hzn_‘p_lr(X, [@.ym)—*"' .

The hyperhomologies of the bottom line have been replaced here by homologies
of global sections; they are isomorphic, since the different sheaves of currents
involved are fine.

The topological meaning of V, PV, and Res is expressed by Theorem 5.1,
which states the existence of a homomorphism from diagram (3) to the com-
mutative topological diagram

<o HP(X ; ©)—— HP(U; ©)—— H{ (X ©)—> -
| | | @
o Hy, (X;€)—H,, J(U;€©)—Hy, (VO

in which the top line is the classical sequence of cohomology with closed sup-
ports (and supports in Y) associated to the couple (Y, X), and where the bottom
line is the exact sequence of Borel-Moore homology (closed supports) associated



Residues and Principal Values on Complex Spaces 261

to (Y, X). The vertical maps are constructed by cap-product with the fundamen-
tal class of X.

In the case that X and Y are manifolds, this homomorphism between (3)
and (4) reduces to an isomorphism (cf. 5.8), from which Leray-Norget’s theory
of residues can be deduced (cf. 5.9). In the general case, only the splitting of the
homomorphism at the V-level can be asserted.

The explicit construction of the homomorphism between diagrams (3) and
(4) is given in the first sections of the paper. Most of the material in these
sections is general, but we find its inclusion necessary for the proofs of com-
mutativity in Section 5.

Some details, however, cannot be found in the literature, as the existence
of a splitting of De Rham homology similar to that described in [2] for co-
homology, and the compatibility of this splitting with cup product.

We want to remark that the local definitions of Res and PV on manifolds
have been first proposed by L. Bungart in 1967. Our proof of their existence is
an improvement of a proof also offerted by Bungart (unpublished). Particular
cases of these results can be found in Dolbeault’s thesis [12], F. Norguet [8]
and L. Schwartz [11].

P. Dolbeault has also constructed recently a canonical current extending
a meromorphic form on a manifold (cf. [13], [14], [15]), which can be shown
to be equal to the principal value defined here. Both treatments rely on Hiro-
naka’s resolution of singularities, but we think they are different enough as to
justify its separate publication. Results of the present work have been exposed
in the Congress of Several Complex Variables at the University of Maryland
{7a].

1. Cup Product and Hypercohomology

All sheaves considered in this section are sheaves of C-vector spaces.
Tensor products are always defined over €, and all double complexes are
considered with their total differentials and graduations.

Let # =(#":q€ Z) be a complex of sheaves on a topological space X,
such that 7 =0 if p <0, and let ¢ be a family of supports in X. The hyper-
cohomology H,(X ; #) of # on X with supports in ¢ is the cohomology of the
complex I',4'(X; #') of global sections. €'(X ; #9) denotes here the canonical
flabby resolution of %7 (cf. [3], IL.2).

To define hypercohomology one can also use, instead of ¥'(X; ), any
functorial exact resolution of sheaves on X by ¢-acyclic sheaves; fi, the
canonical simplicial resolution &f— % (X; /) of Godement (cf. [4], IL.2).

We recall that, if % is a sheaf on another space Y, there is a canonical product

S FX; A)RQF (X; B—>F (X xY; AR B),
and that
FUX; ) =6"(X; ), FX;A)=F"(X;F""(X; A)).

1.1. Consider two complexes of sheaves . and 4/ on the topological
Spaces X and Y, respectively, and such that 7 = 47 =0 if p <0, together with
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augmentations .o/ — %% and #-— 4. The products
(=) >< : FIX; LNVRF(Y; V) FP(X X Y; 1QN%), (grel)

induce a differential homomorphism >< such that the following diagram
commutes

FX; L)RF (VN2 F (XX Y, L RN

| n

FX,AVRF (YV; B)——F (X xY; ®B).
Let ¢ and y be families of supports in X and Y, and apply to (1) the functor
I,><T,. Then one obtains in the cohomology level a commutative diagram
HY(X; ZVYQHYY; N ) -2HI LN X Y, L QN

eXy

| ] o

H(X; o) @ HY(Y; B)—=—HEX(X x V; A Q B) .

QX
1.2, Suppose now that Y is a closed subspace of X, that # and ¥ are
sheaves on X and that ¢ is a family of supports in X. There exists a canonical
homomorphism

ATy (XX Y); URV )T,y (X;URY),

where Y also denotes the family of closed sets in ¥ and ¢|Y the family of closed
sets in Y that belong to ¢. In fact, take a section y in Iy, (X X Y; URYVY;
it is immediate that the function A;(x)=0 if xeX-Y, and 4;(x)
=y(x)e¥.® Y , if xe Y, is continuous, so that A; e I',;((X; Z# Q@ V).

One also obtains a homomorphism

VT XU @T (Y V)=, y(X; U@ Y)
composing 4’ with the canonical map
LX) QT (Y; V)= Tyx (X X Y;UR V).

1.3. Let & and A" be complexes of sheaves on X which are zero in negative
degrees, together with augmentations o/ —.¢" and #—.4". Let Y be closed
in X and ¢ a family of supports in X. The maps 4, U’ and >< give us a com-
mutative diagram of differential homomorphisms

L X; F(LNQTL(Y; F/(A)

v

Lo X XV F(L)QF NN Ty (X F (L)@ F () 0O

l |

TyxoX x Y; (L ®N) LyX; F (L QAN);

in fact, only the bottom arrow needs to be constructed, and this can be done
by induction on F"(X)=%°(X; #" ).
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Passing to cohomology, we get commutative diagrams

Hy(X; Y@ H,(Y; A7)

| \ 4

Hy (X x Y; L @ N )= H,y(X; £ ®N)

and . .
Hy(X; /)® H,(Y; %)

| ™~ )

Hyx o X x Y; o4 @ B)—H,y(X; A4 @B)
which are compatible in an obvious sense.

1.4.1In the situation of 1.1, suppose moreover that X is a complex analytic
space, that Y = X and " = A" = £ is the sheaf of germs of smooth differential
forms on X, with complex coefficients ([2], 3.4), with its augmentation C— &.
We have in this case a product A : &y ® &x— &y« x Which, after followed by
the diagonal map in (2), gives us diagram
H(X: 8;)® HY(X; 83)—>HL L (X 63)

ony

| ! (©)

Hi(X;€) @H(X;C) —~H (X 0).

L 2ak 4
In the situation of 1.3, a similar argument provides us with a commutative
diagram ' ) )
Hy(X; 6x)@ Hy(Y; 65)——H, (X ; )
I | (7)
Hy(X;C) @H(Y;€) ——H,y(X;C)
that can be factored through the product X x Y. The bottom product, followed

by the restriction H, 1y(X;©)—H, y(Y;T), gives rise to the standard cup
product.

1.5.Let Y be closed in X, U = X — Y and denote by j : U-— X the inclusion.
Consider a flabby resolution #; of € on X and the exact sequence of flabby
sheaves

0— %5, y— F5—2j %50,
where &, = %%|U, and j %, denotes the direct image of % by j.

In the associated exact sequence of sections over X one has I'(X;j %)
=I'(U; %) and I'(X; %% v)=T'y(X; ). Passing to cohomology one obtains
the long exact sequence

v H?(X ; €©)— HP(U; €)— HE 1 (X ;@) — - 8)

There is a product between this sequence and the usual exact sequence with
compact supports

= HYU; C)— H}(X; ©)— H(Y;C)— -, ©)
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by means of cup product and the product defined in 1.3(5), and which s
described in the following commutative diagram:
H’(X) — HPU) — HP'(X) — H""'Y(X)
® @ ® ®
HIU(X) « HIPYU) « HJY) < HU{X) (10)

8 e b -
HPH U{(X)e—HPP Y (U)  HEP§H (X)) HEPT (X)),
1.6. In the conditions of 1.5, suppose that X is locally compact. The Borel-

Moore homology groups H.(X ; €) with closed supports and coefficients in €
are canonically dual to HJ(X; €) {(cf. [3], V.3(2))

H,(X;€)~ Hom(H™(X, T),T). (11)

So, each fixed homology class in H,, ., ;(X; C) allows to replace (10) by a
commutative diagram of pairings (all groups with coefficients in C)
H?(X) — HY(U) —H{™ ' (X)
® ® ®
HI" ' (X)«HI H(U)— HXY) (12)

N

This method defines, in fact, a cap product that makes commutative the
following diagram

c— HX)Q@HY(X) — H(X)®H(U) — H,(X)®H{"'(X) —-

! 1 1 i

...—>Hom(H" ~?(X), €)— Hom(H," ~?(U), C)—Hom(H "7~ 1(Y),C)—-- .

1.7. The case that will be of importance to us is when X is a complex analytic
space of dimension n, Y is a closed 1-codimensional subvariety and we choose
the fundamental homology class [X] € H, (X, €) of X. Then (13) yields, modulo
the isomorphism in (11), the commutative diagram

— HYX;C) — HYU;C) — HY''Y(X;C) —
ln(X) lﬁ(ﬁ) lf\(y)
o Hyy X Q) Hpy (U3 Q= Hyyp (Y3

If X is a manifold (has only simple points), n(X) and ~(U) are both iso-
morphisms (inverse to Poincaré dualities’ isomorphisms, cf. [3], V.10.2), s0
that ~(Y) is also an isomorphism.
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2. De Rham Cohomology of a Complex Space

The purpose of this section is to construct the exact sequence 1(14), in the
condition stated there, by means of analytic differential forms on X with polar
singularities on Y.

2.1. Let X be a complex space of dimension n, Y a closed analytic subspace
of X locally defined by one equation and i : Y — X the inclusion. Let QY be the
complex of sheaves of (Grauert-Grothendieck) analytic differential forms on X
(cf. [2], 3.2), and Qy(* Y) be the complex of analytic differential forms on X with
poles on Y ([5], p. 97). We suppose that U = X — Y is dense in X, and denote by
j:U—X the inclusion.

The complex Q4 {(x Y)is defined as the sheaf on X such that, for any open W
in X, I'(W;Qx(xY)) is the subcomplex of those sections @ in the complex
T'(W — Y; Q) with the property: for any point x € WNY, there exists a neigh-
borhood W,_C W of x and an equation ¢ € ['(W,; 0y) of Y on W, such that
PPOIW, —Y=w|W,-Y for some wel'(W,; ), and some integer p=0.

The couple (¢?, w) will be called a representation of @ on W, and the nota-

tion @ =%— on W, will be frequently used. 25(x*Y) is a subcomplex of the

direct image sheaf j(Qy) of Q= Qx| U.

In a similar way, using the complex & of smooth differential forms on X
{cf. [2], 3.4) in the place of 2}, one defines the complex &y (* Y) of semi-mero-
morphic forms on X with poles on Y; it is a subcomplex of j(£y), and thereisa
canonical homomorphism Q5 (x Y)— &%(x Y).

It is clear that QY is a subcomplex of Qy(* Y); we denote by Qy = Q5 (x Y)/Qy
the quotient complex, and proceed to study the exact sequence

0—-Qy—Qx(+Y)—Qx—0. 1Y)

Consider the complex ¥ of semianalytic cochains of X with coefficients
in €, which is a flabby resolution of € on X ([2], 2.10). Integration on the
semianalytic chains of X and U provides homomorphisms Qy— %y and
JQu)—j(F,), where Fy=F| U (cf. [2], 3.6), so that there is a commutative
diagram of complexes

HK— jSy
I I II *+Y) (2)
Qy——Q(+ Y).

For any family of supports ¢ on X, H (X ; %)~ H,(X,C), since Fy is a
tesolution, and H (X;j ) ~H I (X;j%)~HT, (U;%)=H, u(U;0),
because j &; is flabby. Taking hypercohomology in (2) we obtain a commutative

diagram
Ho(X;€) — H, y(U;0)
Ip I(xY) (3)
H,(X; Qy)—Hy(X; 2x(+Y)).

2 Math, Ann, 194
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We recall that I, is a right inverse to the canonical edge homomorphism
e:H,(X;C)— H,(X; Qy), which gives a splitting of the exact sequence

0— H,(X ; ©)—> H,(X ; Q3)-12> H (X ; ©)—0; @

the homomorphism Qy— &% maps (4) into the similar sequence for &Y, with
compatibility of the splittings ([2], 3.11).

2.2. We now want consider the two exact sequences of hypercohomology
associated to (1), with closed supports and with supports in Y; they are related
by a commutative diagram

= HP (X Q3(+ Y))— HP (X5 Q) —— HP "1 (X5 Q) — -

<

I TZ \W‘_\ii T (5)

= HY(X; Qx(+ Y))— HY(X; Q) —— HY H(X Q50—

by means of which we identify # and —J; é denotes the connexion homo-
morphism.

The complex Qy has support on Y, so that the hypercohomologies of Q'
with closed supports and with supports in Y are isomorphic. Composition with
-8, followed by I, : HE" (X ; Qy)— HE™ (X ; @) (as in (4)), gives us a homo-
morphism g = Iyon= —1Iyod

HE OGO,

" Hy (X Q) ©®

w09~

2.3. Theorem. Let Y be a closed analytic subspace of the complex space X
and suppose that Y is locally defined by one equation, and that U=X —Y is
dense in X. Then there is a commutative diagram

— H(X;0 — H/(U;© —H}'(X;0—

I I II(: Y) I " (7)
— HP(X; Q) HP(X; Q3+ V)~ H?(X; Q) —,

where 1 splits canonically. In the case X is reduced, and U is regular, i also splits
and I(»Y) is an isomorphism.

Proof. Construct the top sequence in (7) with the complex of semianalytic
cochains on X, as in 1.5. The homomorphisms I, I{(* Y) and g have been con-
structed in 2.1 and 2.2.

The left square commutes by (3), for closed supports. Commutativity of the
right square follows from (5) and the commutativity in the canonical diagram
Hy Y(X;€) — HPY (X0

®)
HYU(X; Q) —HP (X ; Q) .
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The commutativity of the middle square involves only diagram chasing
and is left to the reader. I splits canonically by ([2], 3.11).

Suppose now that U is regular. By Grothendieck’s Theorem 2 in [5],
[(+Y): HQx(x Y))— H#(j S) ~ R%(Cy) is an isomorphism, and a standard
spectral sequences argument assures that

H (X; Qx(« )~ H(X;j S)~ H, , y(U; T)

isan isomorphism. In the case ¢ = closed subsets of X, one concludes that I(» Y)
is an isomorphism. In the case ¢ =closed subsets of Y, one deduces that
Hy(X; Qx(x Y))=0. So, the connexion homomorphism for the sequence in (5)
with supports in Y is an isomorphism, and # is an isomorphism. Then py=1I,°n
splits canonically, because Iy does ([2], 3.11).

2.4. Corollary. In the conditions of Theorem 2.3, suppose that X is a manifold
(more generally, that U is regular and Qy is a resolution of Con X). Then I, 1(» Y)
and p in (7) are all isomorphisms.

In fact, I{(x Y) is an isomorphism by Grothendieck’s theorem, and I also is,
since QY is a resolution, so that y is an isomorphism, too.

3. Splitting and Cup Product

We prove now that the splitting of the De Rham cohomology of an analytic
space proved in [2] is compatible with the cup product, and state some lemmas
to be used later. We assume that X is a paracompact analytic space over C,
although the proofs also work for real analytic or semianalytic spaces. &Y is
the complex of smooth of differentiable forms of X, with coefficients in € ([2],
33), and ¥. is the complex of sheaves of semianalytic chains on X, with
coefficients in €.

3.1. For each open U in X, S.(U)=T,(U; &.(U)) denotes the complex of
semianalytic chains in U with compact support {cf. [2], 2). As proved in [2],2.8,
S.: U—S.(U)isatorsion free quasi-coresolution of € on X by flabby cosheaves,
in G. Bredon’s terminology. This implies that

H.(S(U))~H!(U; ), o)
the Borel-Moore homology of U with compact supports.

Define now the complex of sheaves F.x on X x X as the one generated
by the presheaves

Srox:UxV— Y Hom(Sp(U)§Sq(V), a:), meZ,
ptq=m
where U and V are open in X, and the coboundaries are constructed as usual
from the boundaries in S.. One deduces from (1) and the algebraic Kiinneth
formula applied to the complex £S.(U)® S(V), that . is a flabby resolution
of Con X x X.

20
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We have also canonical homomorphisms of resolutions
S5 ® Fi— Fyox—Fixx> @

where the right complex is that of the semianalytic cochains of X x X, and the
right arrow is induced by the products

S.(U)®S.(U)y—-S(UxU) (U open in X),
defined in [2], 2.9.
3.2. Proposition. The following diagram commutes
H,(X; €)@ H(X; &x)—H, ., ,(X; %)
I®Il I
H,(X;C) ® H/(X;C) —H,,,X;C).
Proof. Cartesian product and integration give a commutative diagram
H,(X; 6)QH(X; x)—H,(X; K H(X; F)
x x
H,, (X xX; & &) H, (X x X; K8 5F) ,
which we follow by the diagram of hypercohomologies that corresponds to the
canonical diagram
Ex® Ex—"—> Exxx
5 ® Sy —— FKox+—xxx-

The three complexes of the bottom line are flabby resolutions of € on X x X;
hence, the hypercohomology homomorphisms that they induce are iso-
morphisms. Finally, the diagonal map X— X x X provides a commutative
diagram

Hy, (X xX; Exxx)—=Hyx (X X X;F5xx)

H, [(X; &%)

which, joined to the others, gives the proposition.
We omit the proof of the following proposition, which is similar to 3.2

H, . (X;%),

3.3. Proposition. Let Y be a closed analytic subspace of X, and ¢ a family
of supports in X. Integration and cup product (as defined in 1.3 and 1.4) give @
commutative diagram

Hy(X; Ex)QH(Y; 83— Hy(X;O)Q Hy(Y; T)

Hy y(X; &y) ——— H,4(X; D).
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3.4, Proposition. In the conditions of Proposition 3.3, suppose that X has
dimension n. Then there exists a commutative diagram of canonical pairings

BXGO@H (Y, ©)— HY(X; 8)® HZ"P(Y; &3)— HY(X; €)@ H2"*(Y;C)—0

1 /
C
Proof. One gets sequence (3) by tensoring over € the exact sequence
0— H{(X; ©)— HY(X; &x)— HY(X; ©)—0 4
with the similar one for &4 on Y; both sequences split canonically, since the
proof of the splitting for &% in [2], 3.11, applies also for &x|Y on Y. Hence,

(I1® I)o(e ® ¢) in (3) an isomorphism, and the sequence splits. To construct the
pairings and prove commutativity, we consider the following diagram

HX; Q@ HI"(Y; O—HY(X; 8x)@ HZ" (Y &) — HYX; ©) @ HI"*(Y; ©)

W o W

H3Y(X;©)

H2Y(X; 6;) ———— HA(X; D).
The left square commutes by 1.4(7), and the right one by 3.3. Inclusion of
supports maps the bottom sequence homomorphically into
0— H2"(X; ©)—=H}"(X; &)~ H"(X;C)—0, &)
where we can identify H2"(X; &)~ H*"(I (X, &), since & is c-fine. Finally,

integration of the terms in (5) over the fundamental class of X gives a diagram

0—HMX; €)= H"I(X; &x)—H"(X;©)—0

l (6)

C

whose commutativity follows from next lemma.

3.5. Lemma. Integration defines a commutative diagram of canonical
pairings (qe Z)

H(X;:Q)® HI(X; O)— H(X; ©) @ H(I (X, 6)— H,(X;C)® HY(X; T)

C

Proof. Consider the sheaves & . and & of semianalytic chains and cochains
on X, with coefficients in €, and denotes §(X)=I.(X, &). There is a pairing

v: £ (X)® SUX)—CT ™

&)



270 M. Herrera and D. Licberman:

defined as follows: choose s € &,(X) and fe $%(X), and let K be the (compact)
support of f; choose a relatively compact open set UD K, and call ¥V =X — K.
The sheaf 7, is soft, so that we can write s = sy + sy, with support (s} C U and
support {sy)C V. Then the definition v(s® f) = f(s;) doesn’t depend on the
elections, and is compatible with differentials. It induces a perfect pairing

v H(X; Q)@ H{(X; C)—-C ®)
and an isomorphism

H(X;C)~ Hom(H{(X ; T), C) 9

that coincides with that given by formula (2) in [3], V.3. Moreover, integration
defines a pairing
1: £ X)®T (X, &)—C, (10)

that is compatible with the pairing in (7) and the integration homomorphism
I: &— . Passing to cohomology we obtain commutativity in the right side
of the diagram in 3.5.

Consider finally a®be H(X;C)® HA(X;C); v(a@b)=v(a® Ie(b)), be-
cause e is a canonical isomorphism, and v{a® Ie(h))=1(a® e(b)) by what
we proved first. This finishes the lemma, and the proof of 3.4.

The proof of the following proposition is similar to that of 3.4:

3.6. Proposition. Suppose the analytic space X has dimension n.Then there is
a commutative diagram of canonical pairings

0— H?(X ;Q)® H?"~?(X;€)—H?(X; EY) @ H? "~ #(X ; £)— HA(X ;€)@ H "~ P (X ;€)-

|

C

where the top sequence is exact and splits canonically.

3.7. Corollary. Let Y be a closed analytic subspace of the analytic space X ;
suppose that X has dimension n. Then the diagrams

HPI(X, &) ——L— HP(X;T)

.| B (1)
[Hln—p[’c(X’ &}'()]*L[chn_p(X;C)]* s

HY(X, &) L H(X;T)
ns l n’ (12)
[H*" I (Y, &) ——[H}" "(X; O
are commutative, where [-1* ~ Hom(,, ©), and the vertical homomorphisms are

deduced from the pairings in 3.6 and 3.4 (hypercohomology is replaced by co-
homology, when possible, and both e* are dual to canonical edge’s homomor phisms,

of 2.1 4).
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Proof. Consider for instance diagram (11). Take we H?I'(X, &%) and
we H?" ?(X,T); then noI(w) sends « into the evaluation on [X] of I{w)ua,
and e*o N (w) sends « into the evaluation on [X7] of wwe(a), which is equal to
the evaluation on [X] of I{wue(a), by 3.5; finally, I{wue(a)=Iwule(x)
=Jwua, by 3.2.

3.8. Corollary. In the situation of 3.7, suppose that Y is locally defined by one
equation; then there is a commutative diagram

HPI(X, & Y))—L— HYU;C)

s ln (13)
[H2""PT(U, &)1*——~[H>""?(U; O)]*.

Proof. Consider the restriction H? I'(X, &x(* Y))— H?I"(U, &), and apply
{11) to the space of U, in the place of X.

4. De Rham Homology of a Semianalytic Space

4.1. We suppose in this section that X and Y are closed semianalytic sets
in a paracompact real analytic space, that Y CX,U=X —Y,and thati: Y- X
and j: U— X are the inclusions. X will be considered together with its complex
&y of smooth C-valued differential forms ({2], 3.3) and Y together with the
complex &. = &x|Y. There are epimorphisms

Ex—ibyw, Eyo— 8y, 1)
and the kernel of the first one is denoted by &y y; clearly
(X, 8x )= T (U, &).

The semianalytic chains in Y are mapped inyectively by i into the chains
in X. This defines an epimorphism %;—i%y between the complexes of semi-
analytic cochains, and its kernel is denoted by % ;.

We use the standard notations €y = i(C| Y) and €, =j(€|U), where C is the
constant sheaf over X. Define complexes €, €y and €y by €C°=C and €7 =0
if p%0, and similarly for Cy and C;,.

There is a commutative diagram of complexes (2), where the

06— Cy —»C — €y —0

Lol

0= & y— Ex—ibye—0 2)

Lol

0> 5 y— FHi—i(F)—0

horizontal sequences are exact, the bottom vertical arrows are obtained by
Integration and the top vertical arrows are augmentations (in degree 0). Com-
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position of the vertical arrows, in degree zero, gives the augmentations C— %,
Cy—i¥y and Cy— F5 y; the first two of these complexes are resolutions
([2], 2.11), so that the last one also is.

Consider now the diagram of hypercohomology with compact supports
associated to (2). After convenient identifications, taking into account that
&y y, 6y and &y are c-acyclic, one obtains the commutative diagram (3) of exact
sequences, where the compositions of the vertical arrows are canonical iso-
morphisms.

i HP(U; ©)—— HP? (X ; ©) —— HX(Y ; ©) — - -
o HP (U, &)— HP (X, &)— HPT(Y, &)— -+ 3

= HPL(U, $)— HPT(X, $3) > HP (Y, Fy)— .

4.2. Currents on semianalytic sets. Let M be a closed semianalytic subset
of the open set V in IR". By definition of the complex &, there is an exact
sequence ([2], 3.3)

0T (V; 6y =TV &)= TV; 6y)—0,

where &y y =ker(&y— &y).

Consider the space I,(V, &) with its usual locally convex inductive topology.
This is the topology of convergence of the coefficients of forms in I (V, &),
together with their derivatives, on the compact subsets of V. The projection
IV, &)—TI.(M, &,) has closed kernel, which allow us to define on I'.(M, &)
the quotient Hausdorff topology.

In the case of our semianalytic space X, we define on I,(X, &%) the unique
locally convex inductive topology that induces on the spaces I.(M, &y),
associated to the local models (M, V) of X, the topology just described.

Define the space '9@,(X) of g-currents on X as the topological dual of
I (X, &%), and the border homomorphism

by B X)—'D,-(X) (qeZ)

by b,T (@)=(—)** T(do), for Te'P(X) and ae I (X, 4 '). The complex of
sheaves 'D. of germs of currents on X is constructed accordmgly, 'P,=0if
g<0org>dimX.

Denote by '9.y. the subcomplex of ‘.5 of the currents on X with support
on Y, and by 'D.xye='9.x/'P.y~ the quotient complex. We have then an
exact sequence

0—'D.yo—'D.xy—'D.xjy0—0 @
of c-fine sheaves.

Denote also by 'y =X(%,x:q € Z) the complex of sheaves of germs of
semianalytic chains in X, with the modified boundary 6, =(— )16 Sx
— ,-1,x- The complex '¥ .y of semianalytic chains in Y is deﬁned in the same
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way; it is clear that i'%.y is a subcomplex of "% 4. Define ' . 5y as the quotient
complex, so that there is an exact sequence

0_’529311_"“)(-’!“){/1( —0 &)

of soft sheaves.

Integration of forms in I'(X, &) on the chains in "¥., defines a homo-
morphism '¥.y—'9P.y and, in fact, a homomorphism from (5) to (4). Taking
cohomology of the global sections we deduce a commutative diagram of long
exact sequences

—H,(I'(Y,"%y)) = H([(X, Sy) — H(T(X," S x5)—

)

= H(I'(Y,"D.y=) > H([(X, D))= H(T(X, Dy y))—
On this point we should note that H,I'(X,"¥.y) ~ H,(X; C) and H,I(Y,"%.y)
~H,(Y;C) (by [2], 2.8), and that H,I'(X,'¥.y;y) ~H,(U;'¥.y) ~ H,(U; Q).
The last isomorphism is obtained here by the canonical (restriction) map

Fxy—'S .y, and the five lemma. In fact, this method realizes the exact
sequence of Borel-Moore homology (complex coefficients)

= Hy(X)—H,(U)—H,_,(Y)— Q)

by means of semianalytic chains.
We now want to define a canonical homomorphism from diagram (6) into
the dual of the bottom diagram of (3):

—=[HPI (Y, $))* = [H T(X, $)]*— [H*T(U, $)]*—
I* ll“ l!"‘ (8)
—[HPL(Y, 6)J* - [HP T (X, &)1*—[HPT(U, 83)1*—,

where [-]* ~ Hom(-, €).
First, we observe that there is a commutative diagram

Hpr(X’ ’yX)__l“’[Hp[;:(Xa yx)]*

r )
H,I'(X, 'D.x)——[HT (X, &)]*,
where the top arrow is the isomorphism 3(9) and the bottom one is deduced
from the injection I'(X.’P.x)— Hom (I(X, &), €).
If we follow 7 by the transposed homomorphism e*:[H’I.(X, &)]*
—[HP(X,C)]* to the one in (3), we obtain a sequence of homomorphisms

H,I'X,"¥ x)—H,I(X,'D.x)—[H)X;C)]* (10)

Whose composition is an isomorphism, since it can be factored as e*oI*ov,
and both v’ and (e-I)* are isomorphisms. Moreover, the end terms of (10) are
canonically identified with H,(X, €), the first by [2], 2.8 and the second by 3(9).
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We have so obtained a canonically splifting exact sequence
0—-H,(X;C)—H,I'(X,'?.x)— H,(X;C)—0. (11)
The same method can be applied to the other terms in (6).

One constructs a right inverse © to H,I'(X ;' .yy)— H, (X, 'D.xy=) by
applying first ¥: H,['(X,'D.y)y=)— [H? I (U, 6x)1*, which is deduced from
the map

I'(X,'Dpxy=) =T (X, D)/ T (X, D pye)— [I(U, EP)1*,
and then following with the edge homomorphism’s dual
e* [H'IT(U; 6)I*—[HNU; O)* 2 H,(U; ©). (12)

Similarly, a right inverse 7 to H,(Y;C)— H,I'(Y,’?.y.) is constructed as
shown in the following diagram,

H,I(Y,'D.y)—5mmms [H(Y; ©)]* = H,(Y; ©)

N A w

LHPI(Y, &x)1*

where e* is dual to e (cf. (3)) and ¥ is deduced from the canonical homomorphism
'Y, 'D.y=)—> LY, 61 .

It is easy to check that the maps so constructed are compatible, as expressed
in the following

4.3. Theorem. Let Y CX be closed semianalytic sets in a paracompact
real analytic space. With the notations in 4.2, there is a commutative diagram (14),
in which compositions of vertical homomorphisms are natural identifications.

oo H (Y ; €)—— H(X; ©)— H,(U; €)— -
o HyT(Y; ' D.ye) > H,T(X ' D)= Hy(X 3Dy y)— (14)

o H(Y; @) —— H(X; ) —— H,(U; €) — -,

4.4, Remark. In particular, we have obtained a natural splitting of the
“De Rham homology” H,I'(X;’@.y) of X, in which one factor is the Borel-
Moore homology H,(X ; €). Examples where the two homologies are different
can be constructed, using examples where Poincaré lemma fails for & (cf. [2],
3.7.

Also, Theorem 4.3 holds if one replaces the complex ‘P.y. by the more
natural one '92.,. However, from the point of view of residues, it seems that one
has to work with 'D.4..
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4.5. Corollary. In the conditions of Theorem 4.3, suppose that X and Y are
manifolds, and let i : Y — X denote the inclusion. Then all vertical homomorphisms
in diagram (14} are isomorphisms.

Proof. If X is a manifold of dimension m, the sheaf map '¥.x— 9., induces
an isomorphism #('F.y) =~ #(2D.x) in the homology level. In fact, #,(2.)
~Cif p=m,and #,('%.x) ~0, otherwise (cf. [ 10], § 19); consequently, #.(2D. )
is isomorphic with the homology sheaf #.('%.,) of X.

Moreover, the sheaf map i'¥#.;—'%.y. also induces isomorphism in the
homology level. In fact, this map is composition of i'#.;—%+i'D.;, —*+'D .y,
where Iy is obtained by integration, and ey is a canonical inclusion. As shown
above, Iy induces an isomorphism in the homology level. To see that ey also
does, it suffices to consider R =R°@R™* as a local model, s=dim Y, and
the homotopy formulas associated to the retraction u,(u, v)=(u,tv) (teR)
(cf. [10], § 14 and 19). With a standard notation, we have

o—us()=dM*o+ M*doa (xe I (R™ Exm), 15)

where M* transforms p-forms into (p — 1)-forms. A current T in I'ps(R™; P .gm)
can be applied to both members in (15), when o has compact support, because
in this case R* and the support of M*a have compact intersection. Moreover,
there is a well defined current Te I'(IR®,'P.g.) such that i T'(a) = T (u%(«)). This
fact, together with (15), imply that the maps

ey H(i'D.y)—> H(D.y0)

are isomorphisms.

As a consequence, we have isomorphisms in hyperhomology H,(X; ¥ .y)
—H,(X;'D.y)and H,(X;i"¥.y)—> H (X ;'%.y=); the first one can be identified
with the wanted isomorphism H,(X; €)~H,I'(X; '¥.y)—H,I'(X;'9.x) because
'¥.x and 'D.  are acyclic (¥ .y is soft and ‘9.4 is fine); by the same reasons, the
second isomorphism identifies with the mapping H,I'(X;i'¥.y)—H,I'(X;
'9.y=), o1, what is the same, with H(Y;C)~H,I'(Y;'%.,)>H,I'(Y;'D.y=),
considering that the sheaves involved have supports on Y. This in turn implies
that the homomorphisms H,(U;C)—H,I'(X;'D.xyy=) in (14) are also iso-
morphisms.

5. Residues on Analytic Spaces

5.1, Theorem. Let X be a paracompact reduced complex analytic space
of pure dimension n and Y a 1-codimensional closed analytic subspace locally
defined by one equation.

Consider the associated exact sequences of complexes of forms and currents
onX (cf.no.2and 4):

0—-Qy—Q(* Y)—Q —0 (1
and
O_‘),@-yw'—’,@.x'—*’@-xvyw—)o. (2)
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There are canonical homomorphisms

V: Q.X’-—”92ﬁ‘“',x’ PV: Q‘X(* Y)"*’@2n__-,x/yw
and
Res: Q""‘*'gzn_ 1o, ¥

that induce a commutative diagram

o HP (X ; ) HY (X Qy(+Y)) —— HY(X; Q) ——>

v PV Res {3)
= Hy, (XD x)— Hy, JT(X; /‘@‘XfY)“)HZn—p— T(X5 D y)— e
which is compatible with the topological diagram
s HP(X; ©) —— HY(X ~ Y3 €)— Hp ™ (X €)—> -
)
oy, (XO)—-Hy, (X - Y;Q)—H,, (V)
obtained by cap product with the fundamental class of X (cf. 1(14)).

Proof. For each open set W in X, define V:I'(W, Q%)—T'(W,'D,,_, ¥\
w— ¥V [w], by the formula

Viwl(@=I[X](wAa) (xel(W,&E3"7P), 8]

where I[X] is the integration current over X, oriented by its fundamental
class [X] e H, (X ; €)(cf. [2], 3.4). V is a sheaf map, and V [w] is a (0-continuous,
of. [7], 11.A2) current. If o e I,(W; &3*~ 7~ 1), Stokes’ theorem ([7], 11.B,2.9)
implies that I[X](d(w A a)=I[X]({dw A o)+ (—1PI[X](w A da)=0, from
what we deduce

Vido] (@ =(-1""V[o] do)=(-1)*""""V[w] do)=b.V[w] (@),

so that ¥ is compatible with boundaries.
We now give local definitions of PV and Res.

5.2. Definition. Consider an open subspace W of X, and a holomorphic
equation pe '(W,0y) of Y in W. For any form we I'(W, Q%) and qe Z ., the
principal value PV[w/p?] and the residue Res{w/@] of the meromorphic form
w/@?e F(W, QF(x Y)) are the currents

PV[w/(pq] (a) = §%1£W(> 5)] ((D A d/{pq) . (a € I"C(W’ g§n~p))

Res[oo/¢] () = Um ILW (=0)] (£ Blg"). (BeT.(W:63~rY).

For any 6>0, W(>0) and W(=240) denote here the semianalytic chains in
W (cf. [2], no. 2):
[W(>]=[W(>9), e(>d)]e S, (W;T),
[W(=9)]=[W(=9), e(=0)]e &,-,(W;T),
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where W(>8)=(xe W :|pix)|>3), W(=0)=(xe W :|p%x)|=38), e(>)
€ Hy(W(>0); €) is the fundamental homology class of the space W (>9), and
e(=0)= —0de(>d)e H,,_(W(=0); ) is equal to minus the boundary of e(> )
in the exact sequence of Borel-Moore homology

= Hy((W(>6); ©)— Hyp -y (W(=06); €©)— Hpp - (W (20); ©) > -

We have, in fact, that [ W (> d)] = — [W(=46)], according to definitions in
[2],n.2.

The integrations in 5.2 are defined, since the forms w A a/@? and w A B/¢?
are regular and their supports have compact intersection with W(>48) and
W(=29), respectively. The existence of the limits in 5.2., and their continuous
dependence of « and B, will be proved in sections 6 and 7 (cf. Theorem 7.1).
Clearly, then, Res[w/¢%] is a current with support in Y nW.

Let now W be any open set in X, and & e (W, &(x Y)). Each point xe W
has a neighborhood W, where & can be represented by w/¢% as in 5.2, so that
we can define

PV[&]=PV[w/p?], Res[®]=Res[w/p?] on W,.

These local definitions of PV and Res agree on overlapping neighborhoods
W.(xe W), by 7.1 and 7.2, and define sheaf maps Res: Q4 (*Y)—'D,,_,_ y=
and

PV: Q8+ Y)—'D 0, x- o)

Moreover, Res(®) =0 when @ = p@®/¢ is regular on Y, by 7.4. Hence, there
is a map (also denoted by Res)

Res: Q= Q5+ V)R —'D 20— p1,y=- (10)

The construction of V, PV and Res is thus finished, and we study now the
relation of PV and Res with boundaries.
In the conditions of 5.2, let « € I',(W, £2"~?~1). By Stokes’ theorem

ITW(>0)] (d(w A a/ph))= — I[W (=] (® A a/p9),
since S[W(>8)] = — [W(=4)]. Letting §—0, we get

PVId(w/e%] (@) +(— 1Y PV [w/¢7] (do) = — Res[w/¢] (@) ;
or

(= 1" ** b PV [w/9] (2) — PV [d(w/9%)] (o) = Res[w/0] (@) ;
that is, the following formula holds

b.PV —PVd=Res, (1)
for representations w/pe I' (W, Q%(+Y)).
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If we take now any section @ e I'(W, Qy(* Y)) over an open set W, formula
(11) applies locally, so that it is also true globally, and we can state the following
proposition

5.3. Proposition. The sheaf mappings PV and Res, considered as homo-
morphisms from Qx(x Y) to 'D.y, satisfy the relation
b.PV—PVd=Res. (11

This formula, and the fact that Res[w/¢?] has support on Y, imply the
following

5.4. Corollal'y. PV : Q.X(* Y)—‘" ’@2"__ . X/’@zn_ s Y® = ’92,‘_ XY iS Compa-
tible with boundaries.

Consider again w/g%e I'(W, Q°(»Y)) and Be I (W, £2"P~%). By Stokes
theorem

0=1I[W(=)]({d(w A B/oM)=I[W(=8)](d(w/¢") A B+ (= 1Y (/@) A dp).
Letting 6—0, we have
Res[d(w/@?)] (B)=(~ 1)’ Res[w/p] (dB) = — (—1)*""?bRes[w/¢"] (B).

As before, this local formula implies the following

5.5. Proposition. The sheaf mapping Res: Qy(x Y)—'D,,_; .y~ satisfies
the relation
Resed =b.oRes .

The induced map Qx(* Y)/Qx—'D,,_1-. vy~ is therefore compatible with
boundaries.

5.6. Commutativity of diagram (3). The diagram

Qy —2%(*Y)

v PV (12)
'D.x—'D xjy

commutes obviously, since PV[w] = V[w] for all germs we Q2. In the deduced
diagram of hypercohomology, one can identify the hypercohomology of the
bottom complexes, which are fine, with the cohomology of their global sections.
Hence, commutativity of one square in (3) is obtained.

To handle the rest of (3), we remark that homomorphisms

Vi€y—>'Dyy . x, PV:i&(*Y)>'Dyy . yiye (13)
and
Res: Q' =&x(*Y)/8x—'D2p-1- .y~
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can be defined, in the same way and with the same properties as the previous
ones, and which are compatible with the canonical diagram

0—Qy—Q3(xY)— @ —0

]

0— & — Ex(x Y)— 0 —0.

So, (3) can be replaced by the hypercohomology diagram of (14), which
commutes, together with a diagram similar to (3), but with complexes of smooth
differential forms, which are acyclic. In this case we can replace hypercohomo-
logy by cohomology of global sections, which is easier to handle for diagram
chasing.We are reduced, then, to prove commutativity in the diagram

H'T(X; 8x(+ Y)) ———— H'I'(X; Q) ——2— H"* ' T(X; &)

Pvl lkes IV (15)
HZn-pF(X; ’@'Xil"m)‘_a—’HZn—p-— IF(X7 ,Q'Y”)_L’H2n~p—1F(X; /-@'X) .

Take a cycle @€ ZPT'(X ; &x(* Y)); by 5.3,b.PV[] = Res[&], and b.PV[&]
€ ZI'(X, 'PDy-) represents the image by 9 of the class of PV[®] in H,,_,I'(X,
'D.x/y=)» SO that the left square commutes.

Finally, a cohomology class w’'e H?T'(X;°Q") can be represented by a
section @€ I'(X; €4(»Y)) such that dée I'(X; £¢*'). Then V-6[w'] is re-
presented by V[d®], and i-Res[w'] is represented by Res[@]; by 5.3, V[d®]
—Res[@] = PV[d®] — Res[@®] = b.PV[@], a boundary, and the right square
also commutes.

5.7. Compatibility of diagram (3) and (4). By this we mean that there is a
canonical homomorphism from (3) to (4). In fact, the homomorphism between
top sequences in (3) and (4) has been constructed in no. 2, and the homo-
morphism between bottom sequences in no. 4. Only commutativity of the
“interior” squares is left to prove. As explained before, it suffices to consider
the diagram associated to the complexes

0 By Ex(* Y)— 0 0. (16)
(a) Commutativity of
HT'(X, &) —L1— H?(X;C)
Vl 1" 17
H,, ,I'(X, '@-x)“T’qu—p(X;C) .

We recall (cf. 4(11)) that 7 is composition of the dual e* : H*""?[,(X, &;)
=[H*?P(X;C))*~H,,. HAX;C) of the edge homomorphism e, with the
canonical map ¥:H,,_,[(X;'D.x)—[H*" I (X, &)]* in 49). Clearly,
7oV =, the cap homomorphism defined in diagram 3(11), whose commutati-
vity assures that of (17).
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(b) Commutativity of
HPT(X; & (* Y))—L— H?(U;T)
| |- (18)
Hypo yT(X "Dy py)—— Hy— (U ©).

Replace t by e*o¥, as in 4(11), so that 1o PV =e*#- PV = ¢*o ., as defined in
3.8. Then (18) commutes, since the diagram 3.8(13) does.
(c) Commutativity of

H I (X, Q) —+— H}" 1(X;©)
Resi l”' (19)
Hypyop i T'X,' DY)~ Hy o 1 (Y; D).
Considering the definition of T and u (cf. 4(13) and 2.2), (19) can be decomposed
as follows:
HI'(X, Q) Hy ™ H(X; &%) HP Y (X;©)
R

Res j h *u.\\\* l,n’ 1 A’ (20)
Hype o T (X, ' Dy)—— [H*" P T(Y, E) I — [H" P~ HY; O,

where R =VoRes. The right square commutes here by 3.7, so that only the

equality,~'on =R is left to prove. We observe, to this purpose, that com-
patibility between cup product and conexion homomorphisms 6 gives a com-
mutative diagram

H(X;,0)®@ HUY; &) 25 Hp (X, &) @ HUY ; &)

/| o
H}{ (X ;.0 ® &) HIF 9P (X; 85 ®@ &),

where the top map is deduced from the exact sequence {(14), and the bottom
one from the top sequence in the following diagram

0—&;® &;— Ey(+ Y)® 83— Q' ® E3—0
(22)
0—— &y By(x Y)——— Q' ——0.

The vertical maps of this diagram are exterior products, and induce a homo-
morphism from the bottom line in (21) to

HE (X Q) HE X 6
By inclusion of supports, we replace this homomorphism by the similar on¢
HP T(X; Q)2 HP Y T (X, &), @)
identifying hypercohomology and cohomology of global sections.
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Suppose now that p+ g+ 1=2n; the construction just described gives a
commutative diagram
HY(X; ,0) @ HA(Y; 8;)—"21> Hp* (X 8,) @ HA(Y; &)
(24)
H*" '[(X; Q)———5—— H?"T(X;&).

Composition of the right arrow in this diagram with the integration homo-
morphism 1: H*"I' (X, &x)—C (cf. 3(6)) induces the map,~’ in (20).

We define now a homomorphism R:I(X;,0*" !)—C as follows: if a
form ae I,(X; &" 1(+ Y)) is representable by w/¢? on the open set W, where
pis an equation of Y on W, then

R(e) = im ITW(=9)] (w/@%). (25)

By 7.1 and 7.3, this local definition can be patched into a global map
R:T.(X, &x(*Y))—C, which is zero on forms bounded on Y (cf. 7.4) and on
boundariesin I (X ; &(* Y)); in fact, I[W(=0)] (w/e% = 0 if w/¢? is a boundary,
by Stokes’ theorem. It follows that homomorphisms:

F(X;,0*" N =T(X; 63" '+ V) IX; 63" H)—>C
and
R:H*" 'I(X; 0)-C (26)

can be constructed, and one checks easily that R, composed with the left arrow
in (24), induces the homomorphism R = ¥oRes in (20). Finally, we want to see
that diagram

H*™ 'T(X; 0)—2— H*"I(X; &)
S ” 27
\ ) /

anticommutes, which can be checked locally. In fact, suppose that the form
w/@'e I(W; 85" *(xY)) represents a cycle in I'.(W; ,0*"~!); this means that
do/pY e I(W; &2". By Stokes’ theorem and (6),
—I[W(=0)](w/¢%) =I[W (> 5)] (d(w/9?);

letting 5—0 we get —R(w/@%) = I{d(w/pY), so that (27) anticommutes.

As a consequence, the following diagram anticommutes

Hy(X; ,0)—2—Hp (X &)
N
[H*> P T(Y; 61,

sothat R= — od= sMVon, and commutativity of (19) is proved.

2 Math, Ann, 194
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5.8. Corollary. In the conditions of Theorem 5.1, suppose that U has only
simple points. Then PV splits canonically. If X has only simple points, V is an
isomorphism and Res (and PV) splits canonically. If X and Y have only simple
points, then V, PV and Res are isomorphisms, and diagram (3) is canonically
isomorphic to diagram (4).

Proof. Replace &x(*Y) by Qy(xY) in diagram (18); if U has only simple
points, I is an isomorphism, by Grothendieck’s theorem (cf. [5]), and n: HY(U;
€)—H,,_,(U;C) is an isomorphism by Poincaré duality, so that 7PV is an
isomorphism, which gives the splitting of PV.

If X is a manifold, then I, » and 7 in (17) are all isomorphisms, so that V
also is (a direct proof is easy to give). Moreover, in diagram (19) u and n' are
isomorphisms, the first by 2.4 and the second by Poincaré duality; we deduce
that 7 is a right inverse to Res, what gives the splitting.

If X and Y are manifolds, then Res (and V) is an isomorphism, since in (19)
1 will also be an isomorphism (cf. no. 4). We deduce that PV is an isomorphism,
as desired.

5.9. Relation with the classical notion of residue. Suppose that X is a complex
Stein manifold of dimension s, and that Y is a {-codimensional submanifold.
If we compose the maps

HY(X - Y);©—Hp* (X;C) and HP'(X;Q)—Hy,o (Y5 0)

of diagram (4) with the Poincaré duality isomorphism H,,_,_,(Y;0)
— HP~Y(Y;T), we obtain the homomorphism

Res: HY(X — Y;C)— H?~Y(Y; ), (28

which has been realized by J. Leray (cf. [6] and [8]) as follows: Represent
a class [@] e H?(X — Y;€) by a closed form & e I'(X, £(x Y)) that has only
first order poles on Y ([6], Theorem 1). Locally, & has the expression

ar_—w/\—d;—»f»o, 29)

where s is a local equation for Y ([6], no. 2) and y and @ are holomorphic
forms on X, locally defined.
The restrictions to Y of these local forms y define a closed global form
res [@] € I'(Y; 85~ 1), whose cohomology class is Res[@], as denoted in (28)
Using (29) one proves immediately, that

Res[@] =2nril[Y] A tes [@], (30)

where the left current has been defined in 5.2, and the right one is the current
a—I[Y] (res[@] A «). I[Y] denotes here integration on the canonically
oriented manifold Y.

Equality (30) relates the residue current Res[®], as defined in this paper
and the residue form res [@] of Leray-Norguett theory. In fact, (30) is also
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true on spaces, for forms that have local expressions like (29), where s is any
holomorphic function, not necessarily a coordinate. The proof of this result
will be given in another place.

5.10. Remark. Diagram (19) answers a question posed by P. Dolbeault
in [14], 3.7, namely that of the relationship between the local cohomology class
and the homology class defined by a meromorphic form on X.

6. Residue and Principal Value in the Normal Crossing’s Case

The purpose of this section is to prove the local existence of the residue and
the principal value of meromorphic forms, defined on manifolds, whose polar
set has only normal crossings. The general problem will be reduced to this
case in no. 7.

The following notations and conventions will be used throughout this

section, often without reference.
6.1. Notations. As before, Z and Z, denote the sets of integers and natural

numbers respectively, and Z" and Z7 their n-Cartesian products. Let a = (a,. ...,
)€ 2", z=(zy, ..., z,) € C", and choose an integer j, | <j<n. Then |z;| denotes
the absolute value of z;=x; +iy;e C,
=M :s=1,...,n), |[2=TI(z%:5=1,...,n)

and
20)=(20s s Zj 1525115 s Z) ECTTL, A() = (0, .oy 0y, Uy g, - ) EZ7T L
in this case, we abbreviate Z(j)*? =II(Z%:1<s<n s+j) by Z(j)% so that
2= z3 z(j)".

We also denote |z =max(|z}}:j=1,...,n), and

B=(zeC": |zl <1), B{)=((eC ':|z()l<1).
For a fixed >0, a€ Z" and j=1, ..., n, we use the notations

Bi=(zeB:5<|z%<l), Si=(zeB:|z%=0) )
By=(ze@: |z()) <1,iz)=1,0 <|z()"| < 1),

and
Bi()=(lz0 <1, 6<iz()I<1), S5()=(lz( <L |z() = 9).

The domain Bj is always considered with its canonical complex orientation,
and S3 is given the opposite orientation to the one induced by B% This is
equivalent to define the semianalytic chains (cf. [2], 2) B%=[B% e(>d)]
€5,4(B,C) and S3=[S} e(=0)] € S, .(B; ), where e(>8)e H, (B%; C) is
the canonical fundamental class of B%, and e(=8)= —de(>d)€ H,,_,(5%; C),
where 0 is the boundary in the exact sequence of Borel-Moore homology

H,,(B}; ©)~~H,,_,(S3; ©)—H,,_,(B}; ©).

2+
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With these conventions, we have the formuia
0By=—-S5+2(Bi:s=1,...,n), @

in the space & (B; C) of semianalytic chains in B =(||z|| < 1), where the chains
B% are given appropriate orientations.
We also use the notations |o| =a, + -~ +a,, for a€ 2", and

; ot f = ol £
Df= 0z%...02% ° b*s= 0z% ... 07 o
LT aajf -1 £
D f—' az;j £ D f—o,

for a smooth function fe &°(C"), f = f(z, 2). Ocasionally, we write f = f(z(j)
to emphasize that f does not depend on the variables z; and z,.
Finally, we write

dzadi=I(dz,ndZ;:5=1,...,n),
dz() A dZ()=TI{dz,ndZ,:s=1,....n,5%])), “
dzi, )y ndz(i, ) =TIdz, A dZ;:s=1,...,n,5%i,5 %))

6.2. Lemma. Let k = k(z, z) be a smooth complex valued function defined in
€, and a=({a,, ..., a,) € Z", . There exists a decomposition

k(z, 2) = i (225 Zgl (20), 2()):r +s<a))+ K(z, 2),

j=1
K(z,5)=Z(*.2.K; (2,2): B+y=0),
such that:
a) gl . and K, , are smooth functions,
L s s 1 otk
b) gr,.(z(), 2(j)) = , r+s<ay, and

ris! 07,07 |y 0
¢) K depends continuously on k, with respect to the seminorms max(|D*D* f|:
W+l D, for all compacts Cin@€" and le Z .

Proof. The case o.=0 is trivial, so that we can always suppose that «;=+0
for all j<k, for some k>0, and that a;=0 if j > k. By Taylor’s formula, we

have that
e Kz, ) = B(2 R g (21, ED): 7+ <)
+E(Z’1281K:.s(z’§):r+s=al)’

where g!, and K}, are smooth functions and K ,(r+s=a,) depend con-
tinuously on k, in the sense described in (c); this follows from the integral
expression of the rest in Taylor’s formula.

We now apply Taylor’s formula to each function K} ,(z, £), in a similar way,
with respect of z, and 7,, and up to the degree a,. The second line in (5) can then

be written as
(257597 ,(z(2), ZQ)): T + s < ay)
+E(ARAGKE (2D r+s=a,utv=0,),

&)
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where the functions K2, , depend continuously on K}, hence on k. It is

clear that iteration of the method gives the wanted decomposition, and that
a) and c) are satisfied. As for b), it is obvious from (5).

6.3. Lemma. Let g € £°(C") be independent of z;=x;+iy;, and a € Z",. Then
(@) | 25Z55z2"%gdz AdZ=0
B3

(b) | 22327%9dz A dz(j) A dZ(j)=0
53

forallr,se Z, such that r +s <y, and each >0, and
{c) f 25727 "gdz; A dz() A dZ(j) =0
s5

forallr,se Z, such that r+s<a; s>0, and each 6>0.
Proof. For each z(j) € B3(j), define

B(z(j), ) =(z;€ C; 6/}2(i)| < |2 < 1).

The partial integrals

1 2n
I(Z(f), 5)= 5 Z;‘“djzﬂ;dzj A d.f’?j= 5 Qf’1j+s+ldg 3‘ eia(r—aj—s)de
B(z(j), 8) LE 0

are zero for all z(j)e Bj(j), because r —s <r+s<a; Then the integral in (a)
is zero, since it is equal to

BJ; X 1(z(j), 8).2())"*gdz(j) A dZ(j).

To compute (c), one integrates over Bj(j) the differential form z(j)~%g dz(j)
A dz{j) times the integrals

(& Zdz; 0129 = 8/1z00),  2() e B3(),
which are all zero if s> 0, since in such case r—o;—s+1l<r—o;+s+1=0.
We deduce that the integral in (c) is zero, and a similar argument shows
that the integral in (b) is also zero, for all r +s<a "
6.4. Lemma,
lim { bdz; A dz(j) A dZ(j) =0
=0 5%
and (6)
§in§ { bdz; A dz(j) A dZ(j)=0
- sg

for any integrable bounded function b defined in C", and any a € Z"..

Proof. If a; =0, the integrals themselves are zero, considering the definition
of §3. Suppose then ;% 0, and rearrange « so that j=1 and a, =0 if s>k, for
some k > 1, and o, + 0 if s < k. By means of the following parametrization of $3:

k 1jay
02 20)=((8/TL ax] " o200
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where z, = g,'% (s=1, ..., n), one verifies that the integrals in (6) are bounded,
up to a constant, by

S/, j‘ H 0! —a,/audQ , E,,—(5< l’] Qs<1)

Egs= s=2
Induction on k proves that the limit of this expression, as §—0, is zero.

6.5. Proposition. For any a € Z", and k e £%(C"), the limits

(lsmg f z7%dz; Adz() AdZG) G=1,...,7) )
and
lim | z7*.kdz A dZ ®)
30 g

exist, and are continuous on §°(C"), if this space is considered with the seminorms
max(|D*k|: | ), le Z,.
B

Moreover,
}in}) f z7%kdz; Adz(j) A dZ(j)=0 9
- s;
and

lim {z7%.kdz; A dz(j) A dZ(j)

-0 s%
omi (10)

= hm-.--_"—’—T [ 2()"*(D% 1K), = odz() A dZ() .

-0 (a 1). B3

Proof. We can always suppose that ;=0 for all j>k =0, and that «;+0
if j S k, since the case o =0 is trivial. Consider the decomposition of k given in
Lemma 6.2; by 6.3(a), terms like 2} Z3 g(z(])) times z~* give no contribution when
integrated over Bj, so that the hmlt in (8) reduces to

lim | z7*KdzAdZ=[z"*Kdz A dZ, 1y
920 pg B

since z7%.K is bounded on B.

As for the limit in (7), only the case j <k needs to be analyzed, since the
integral itself is zero when j > k. Then, if one considers the decomposition of k
in 6.2, terms like z{Zig(z(i), Z(i)) with i+j do not contribute to the integral
over S. In fact,

[z ZBgdz AdzG) AdZG)= [ 2B T(zdz A dE,
5§ s<lzm]<1
where J,(lz) is the integral of z(i)~*g(z(i), £(i)).dz; A dz(i, j) A dZ(, j) over the
domam (lz®l <1 jz())" == 6/|z%]) and depends only on the absolute value
=|z,| of z;=ge". Consequently, the last integral is equal to
1

j‘ J(,(Q)Q"“‘”*‘ldg j‘ eiG(r—"ai—s)d9=0’
0

i/

since r—ssr+s<a;
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In the case i=j, the contribution to the integral over S} of terms like
7 ?jg,ys(z(j), Z(j)), with s> 0, is zero (6.3(c)); in the case s =0, it is equal to

[ 20)g,0dz()AdZ() | Z7%dz,

B3G) Iz 1 =8/1z (=]
which is zero if r —a; + — 1, and is equal to
2ni | 20)7"9a,-1,0d2() A dZG), 12
B3()

ifr—a;=—1

Then, the integral in (7) reduces to (12), plus the integral over $5 due to the
term K in the decomposition of k. The limit of this last integral is zero by 6.4,
so that the limit in (7) is equal to

lim 2mi | 2()""9a,-1,0(2(), Z()) d2() A dZ(), (13)

B3())
which exists by the first part of this proof.

Equality (10) is trivial if «;=0, in which case both integrals are zero, for
fixed values of 6. If «; # 0, permuting coordinates we reduce the problem to the
case j=1, a; #0, and g, 1 o(2(1), Z(1)) = (or; — )! " (D** " *k),, o, by 6.2(b).

The proofof (9)is similar to that of the existence of (7). Finally, the continuity
of the limit in (8) with respect to the given seminorms is clear by (11), since K
depends continuously of k (cf. lemma 6.2), and the continuity of the limit in (7)
follows from (10).

6.6. Proposition. Let f be a never vanishing holomorphic function on B CC",
and choose o€ Z" . Denote
3(f)=(zeB:|z"f(2)|=9),
Bi(f)=(zeB:|z*f(2)|> ).
Consider B3( f) with its canonical complex orientation and S2( ) with the orienta-
tion such that 0B3(f)= —S3(f), as in 6.1(2).

_ There exists an_open neighborhood BCB of the origin 0e €" such that, if
§3=S4f)B and B%=B%(f)nB, then

lim f 27%dz, Adz(}) A dZ(1) = hm j z7%dz, ndz(1) AdZE(1)

é—’O
and
lim { z*kdZ, A dz(1) A dZ(1)=0 (15)
- S:
for all ke &°(B), and
(lsmé {z7*bdzndz= hm 5 z7%hdz A dZ (16)
— Ba
for all be I(B; &°).

Proof of (14). If o, =0, we can choose B = B and both integrals in (14) will
zero, for values of 5. We suppose, then, that &, 0, and can always assume
that |f|>1 on B.
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Choose an holomorphic function k such that i = f on B, and consider the
mapping €C"(z)—C"({) defined by the functions {,:z,h(z) and {;=z; (j=2,
..., n). This mapping defines an isomorphism on some neighborhood W of
0 e ", and after a suitable change of z-coordinates we can suppose that BC W;
denote

B=(zeB:|z;h(z)| < 1), (17)

so that our mapping defines an isomorphism A from B to the unit ball B(() in
C"({). According to notations in 6.1 and above,

MBY=B3(\)=(eC": |{ <1 and [{%>9),
ASH=S50=(eC:[{|<1 and |{*|=9).
The isomorphism A has an inverse u: B({)— B given by functions z, = {, g(0),

z;={;(j=2,...,n), where g is holomor_ghic never vanishes on B({).
Consider now any function k € £°(B). By Taylor’s formula

KeD= Y AZg,MI0)+ ¥ 256D,
r+s<ay r+s=ay

where all functions g, ; and G, ; are smooth. Applying the change of coordinates
z= p{{), we deduce

[ 27%Z, 5 G, (2. 2) dz; A dz(1) A dZ(1)
53

= | {T*H, (D de Adl) Adl(L), r+5=104)
850

where H, ({,0)=010d “FG, (uB)- (g +{4 —gg—) Now r+s=q, implies
1

that (D* " 'H, ({,0));,=0 =0, so that according to 6.5(10) the limit of the last
expression, as 60, is zero.

By the same argument one proves that the contribution to the left limit
in (14) of terms like 2 7 g, 4(2(1), Z(1)), with s> 0, is zero. Consequently, the
left limit in (14) reduces to

im [ Y z%zg, o(z(1), 2(1) dzy Adz(1) A dZ(1) (18)

60 5 r<a

Moreover, it is clear from the definition of B (17) that, with the notation of 6.1,

Sz =(2(1) € Bi(1): |22 £ (2] = 6/lz(1)),
so that the integral in (18) is equal to
Y[ 2(1)7%g,0(z(1), Z0) dz() AdZ(1) | ZTmdz, (19)

r<az; BE(L Ci,2(1)
where C(6,z(1))=(z, €C: |25 f(zy, 2(1)| =8-|2(1)"%). For any z(1)e Bj(l)
the second integral is equal to 2=zi if r—a; = —1 and is zero otherwise. The
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limit in (18) reduces then to
lim2ni | z(1)7%g,, _ ;. o(z(1), Z(1)) dz(1) A dZ(1),
=0 By
which is equal to the right limit in (14), as shown by 6.5(13).
The proof of (15) is simpler, since we can apply directly 6.4, after changing
to {-coordinates by z = u({). .
Proof of (16). Choose be I.(B, £°), and a smooth function b* such that

*
g}; = —bon B;ify=2z"%b*dz, ndz(1) A dZ(1), we have
1

dy=z"%bdzAdZ.
By Stokes’ theorem
fz7%bdz AdZ= | y=(f - f)v, (20)
B3 283 185 53
considering that .
Bi=(z by <Lz <1, |2 f] > 9)
and

oB:=1B3— S5+ Y B3, (21)
=2
where equality is understood in the sense of semianalytic chains in B, and
where

B =(lz,hl =1, |zl < L,|2* 1> 8) = (12, hi =1, | z(D)]| <1, ]z(1)"| > 0)
and
‘Bi=(zhl<1,|z| =1, |20 < 1,z f1>8), (=2 ....n)
are given appropriate orientation; it is clear that the integral of y on ‘B2 (1% 1)

is zero.
Define now

Us=(zeB:|z;h| > 1, |z(1)% > §),
and its boundary

j=1

in the sense of semianalytic chains, where !B is oriented as in (21), and the
chains
jUé =(HZ(I)E{ < 19 lzj{ = 1’ %z(j)at > 5’ Izlkl > 1) s (]= 19 xry n)
Us;=(zeB:|z(1)"| =6, |z,h > 1)

are given convenient orientations.

The integral of y over U; and /U, with j=2, ..., n, is zero, and it is clear that
W, =1B2=(|z(1)] <1,)z,] =1, |z(1)* > ), since |hj>1 on B, and that the
orientations of this chain in (21) and (22) are the same. The integral of z~*bdz
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A dZ over Uy is also zero, since b has support in B C B — U,. By Stokes’ theorem,

0= | v=(£ - f)v
oUs 18% 1p%
and we deduce that

fim J y=lim v

1B} (23)
=lim | z()7*dz()AdZ(1) | zy*b*(z, 2)dz,,
90 g1 lzsl=1
where the last limit exists by 6.5(8).
Moreover,
lim ngv = lim ng Y (24)

by the first part of this proposition, so that taking limit in (20) we have, by (23)
and (24), that
lim ggz bdz Adz=lim (”{g— ng) 7.
Finally, Stokes’ theorem applied to the chain in 6.1(2) implies that the second
limit is equal to
lim | z7%bdz A dE,
30 B2

which proves (16).

6.7. Proposition. Let « and fe Z”,. Then
lim | z7%kdz, Adz(l) AdZ(l)=lim | z7%kdz; Adz(1) AdZ(1) (25)
-0 Sg*ﬁ 50 5%
and
lim | z %kdzadz=lim | z7%kdz AdZ (26)
30 st s 50 gx

for all ke &°(C").

Proof. We proceed by induction on n. The assertions are clear for n=1,
since in this case $2*# = S and B3*# = BS. for some §'. In the general case, the
left limit in (25) is equal to

lim | z7*7#(Pkydz, Adz(1) A dZ(1)

420 g5+ p

2ni
=lim—— e z(1y (DM AP 1Pk, odz(1) AdZ(1),
s=0 (a; + B, — 1! Bg*jﬂu) ) 1= ) (

by 6.5(10), and this limit reduces to
2ni

3 ol ryey—~ 1 _ > 7
?_{r(l) yrRs— ngﬁ(l)z(l) (D™ k), - odz(1) A dZ(1), 27

a1+ﬁi—1

since (D +P1=12P), _o=B,! ( 5 )Z(l)ﬂ (D* " 'k),, =o- By the inductive
1
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hypothesis, this last limit is equal to

2mi
lim ——— z(1)" D™ ~1k), _odz(1) A dZ(1),
lim -5, 2070 R, oda(1) A d2()
which is equal to the right limit in (25), according to 6.5(10).
To prove (26), choose a form y=z*k*dz, A dZ(1) Adz(1) such that
dy=2""kdz A dZ. By Stokes’ theorem (cf. 6.1(2)),
[ z7*kd /\d."z'm( - )y, (28)
Bg+ﬁ lBu+ﬁ su+ﬁ
and
foy= [ z)™%dz()adz(l) [ zik*dz,;

BB BErA(L) lzal=1
by inductive hypothesis, the limit of this integral, as §—0, is equal to
hm j z()"*dz()adz(l) | zy™k*dz, —~hm j 7.
jzil=1

This fact, together with (25) and Stokes’ theorem, applied to 6.1(2), imply that

1 “fadz Adz=1i —

agrésaj+ﬁz adz A dz=lim (lL s{ﬂ)y
=lim { z7%adz A dZ,

50 pe

as wanted.

7. Existence of Residue and Principal Value in the General Case

Let W be a paracompact reduced complex space of (pure) dimension n
and structural sheaf @y, and let Y be a 1-codimensional subspace defined by
one global holomorphic equation. We endow the space of smooth forms with
compact support I,(W; &) with the topology defined in 4.2, The semianalytic
chains [W(>0)]=[l¢%>06] and [W(=08)]=[l¢l=05] of the following
theorem are defined as in 5.2, and the intersection of these chains with an open
subset G of W will be denoted by G(> 6) and G(=4).

7.1. Theorem. Let e T (W; 85, 0T (W; &% 1), and consider the semi-
meromorphic forms &= &/p? and 0 =6/¢% in I, (W Ew(xY)), for some function
@€ I'(W, Ow) which is an equation of Y, and some qe Z .

The limits
P(/o% = gig I[|o% > 0] (¢/0%) 1)
R(0/¢") = lim I{|¢"| = 5] (6/9%) ()

exist, are independent of the particular representations &/ and 0/¢® of & and 0
in terms of the chosen equation of Y, and define continuous functionals on I'(W,
&), j=2n,2n—1.

Proof. Take a point x € Y and a function g € I'(W,, Oy) on some neighbor-
hood W_c W of x such that W, — Y, has only simple pomts and is dense in W,
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where Y, =(we W, :¢%.¢=0). By Hironaka’s resolution of singularities 9],
W, can be chosen so small that a proper holomorphic map n: W' — W, exists
with the following properties: W’ is a manifold, Y, =n"'(Y,) is a subspace
of W' with only normal crossings and = induces an isomorphism of U' =W
—Yyonto U=W_ - Y,.

To prove the theorem, it will be enough to consider forms & and 8 with
support contained in W,. In this case, the integrals in (1) and (2) are equal to
ITW (> 8)— Y] (/0T and I[W, (=0)— Y,] (6/9% respectively, since the real
codimension of Y, is one in W, (=4), and is two in W(>3§). Moreover, these
last two integrals are also equal to

ITW'(>8)— Y1 (x*&) and I[W'(=0)— Y] n*h),

because 7 is an isomorphism outside Y§; we denote here W'(>6)= W'(l¢'| > d),
W'(=8)=(¢’|=0) and ¢ =¢% n. The chain [W'(>8)] is oriented by the
fundamental class of W', and [W'(=6)] = —8[W’(>5)]. The same codimen-
sion argument, applied to these integrals, gives

IIW (>0 (&) =I[W'(>5)] (n*d) (3)
and

IV, (=8)1(0) = I[W'(=3)] (n*6). @

To prove the existence of the limits of the right integrals, we can proceed
locally, since n* £ = n* &/’ and n* 6 = n*0/¢’ have compact support. By Lemma
7.3, there is a neighborhood @ of a given point in Y, and a coordinate system
wo=(w,,....w,) on @, such that ¢'¢(w)=w" on Q, for ¢'=g-n and some
aeZ". Then ¢'=wf f and ¢'=w? f ! on Q, for f and y in Z" such that
B +y=ua, and for some holomorphic function f %0 on Q. 3

By 6.6(14), (15) and (16), and 6.5(7) and (8), there is a neighborhood Q CQ
such that the limits

lim I[Q (1’ f1> )1 (¢'/e f) G
and _
lim 1701’ f| = 8)] (8'/o” ) ©

exist, for all forms ¢ and @ with support contained in §; this fact implies the
existence of P(¢/¢% and R(8/¢?) in (1) and (2).
Moreover, the limits in (5) and (6) are respectively equal, according to 6.6, to

}g{l) ITQ(|0f| > 8)] &'/ f)
and

lim I[Q(a| = 8)] €'/ f)

which depend continuously of ¢ and @', by 6.5. We deduce that the limits in 3
and (4) are continuous functions of n*& and n*8, hence of ¢ and 6.

Finally, the following proposition implies the asserted independence of
P(&/p% and R(6/¢% with respect of the equation ¢ of Y.
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7.2. Proposition. In the conditions of Theorem 7.1, let v be a holomorphic
function on W which is not identically zero on any irreducible component of W.
Then

Pyl/pe®) = P(E/e%) (7
and
R(y0/peY)=R(0/¢% . )
Proof. The left members of these equalities are limits of the integrals
ITW(lwe'|> )1 (/9% and I[W(pe=03)(6/p?). )

As before, given a point x € (pp?=0), we can choose a neighborhood W,
a function ge I'(W,, Uy) such that W (¢ +0) has only simple points and is
dense in W, and a resolution n: W —W_of T =W {gpe?=0).

We restrict ourselves to consider forms with support in W,. In such case,
reasoning as above we deduce that the integrals in (9) are equal to

W (W' o' > 0] (n*Efe) and I[W'(y'¢'|=0)](=*b/¢),  (10)

where v’ =y, and ¢’ = @ n. By 7.3, there is a coordinate system @ = (0w, ...,
w,) on some neighborhood Q of a point in T’ = n~!(T), such that g'y'¢’ = w*
onQ,whereg' =gonanda e Z% . Itfollows that o’ = o? f, v =w’gand ¢’ = w'h,
where B,y and v belong to Z7, and f + y + v =0, and where f, g and h are never
vanishing functions in I'(Q, Oy) such that f. g.h=1.

We have now to study the limits of the integrals in (10) when 6— 0. By 6.6(16),
there is a neighborhood @ C Q such that

im ITW'(ly'¢'| > 8)] (£'/9") = lim 11Q(l0* 7> 8)] (£'/9")
for all forms ¢ with support in §. The last limit is equal to ?_{I(l) 1TQ(jo*|

>6)])(¢'/¢’) by 6.7(26), which is in turn equal to }siil;l) ITO(¢'| > &) (¢ /")

for forms with support in a possibly smaller 0, by 6.6(16). This local result
implies that, globally,

PwE/pe?) = lim ITW (v'¢'| > 8)] (*¢/gp)
= lim I[W'(9'| > 6)] (*¢/gp)

which is equal to P(¢/¢9, as explained before.
In a similar way, using 6.6(14), (15) and 6.7(25), on€¢ proves that

R(w0/pe?) = im ITW'(jy'¢'| = 9)] (n*6/¢")

= Lim I[W'(l¢'| = 6)] (x*0/¢")= R(0/9") ,

4§ wanted.
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7.3. Lemma. Let ¢ be a holomorphic function on some neighborhood of
the origin 0" such that (y =0) has only normal crossings at Q. Then there
exists a coordinate system w=/{w,, ..., w,) on a neighborhood Q of 0 such that
wl(w)=w* on Q for some 0.€ Z%, .

Proof. We can always write y(z)=z"-g(z), for some aeZ” and some
holomorphic g with g(0) +0. Suppose that «, +0, and find a function h such
that h** =g around 0. Then w,=2z,h(2), w;=2z;(j>1) define a coordinate
system on some neighborhood of 0, and is clear that yp(w)= w*

7.4. Remark. The limit R(£)= R(p&/@) of a form & regular on Y is zero, as
follows from the proof of 7.1 and from 6.4.
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