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Summary. — The Jost functions for the harmonic oscillator (in one and
three dimensions) are computed explicitly. They are entire analytic
functions in the complex ¥ plane. Its zeros give the well-known bound
states of the system. An integral representation is given for the Jost
functions of the perturbed harmonic oscillator.

1. — Introduction.

It is a well-known fact that the functions introduced by Jost (}) in the
nonrelativistic theory of the scattering of a particle by a spherically sym-
metric potential, when calculated, solve completely the problem. The phase
of such functions f,(k), are the phase shifts d,(k) of the I-partial wave, and it
can be shown that the zeros associated with the bound states are located on
the negative imaginary axis of the k-complex plane. However, these results
are valid only for short-range potentials that have finite first and second
moments with respect to the origin; i.e.,

@

(la) J‘T[V(T)Idf<oo,

(o]

(10) fw|V(r)zdr<oo.

L]

(*) R. Jost: Helr. Phys. Acta, 20, 256 (1947).

86 — Il Nuovo Cimento.
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1354 V. A. ALESSANDRINI and J. J. GIAMBIAGI

Given the importance of these funetions for this kind of problems, it is
of interest to extend the method for potentials that do not verify conditions
(1.a) and (1.b), as, for example, the case of the harmonic oscillator. In Sec-
tion 2 a brief review is given of the most relevant formulas of the theory of
Jost funections, in order to compare them with the following results; in Sec-
tion 3 they are generalized to the case of the three-dimensional isotropic oscil-
lator, and an integral representation of the Jost functions is given for the
perturbed oscillator. Finally, in Section 4 the linear oscillator is discussed.

2. — The Jost funetions.
For a spherically symmetric potential, the radial Schrédinger equation is

dz (+1 omV
R L ] P Y P R

If the potential fulfills condition (1.a), it can be shown (®) that a regular
solution ¢,(k, r) exists around the origin, defined by the boundary condition:

(2-2) lim (pl(k, 7') = pll | 0(1~l+3) .

As this condition does not depend on k, ¢,(k,r) will be an even function
of such variable. Condition (2.h) implies the existence of two irregular solu-
tions at infinity, f(-+ %, r), defined by the boundary condition:

(2.3) lim f,(+k, r) = exp [F ikr]

T—>©

which are linearly independent.
The Jost function is defined as the Wronskian:

d 1 dl
(2.4) fuk) = W[fu(k,7), @ik, 7)]= leq:: _—&];_. Py

and it is independent of # as the Wronskian of two solutions of a differential
equation is a constant different from zero if they arelinearly independent. As
the f,{+k, r) are linearly independent, ¢,(k, ) can be written as a linear com-
bination of them:

(2.5) puk, 7) = au(k) fulk, ) + Bulk) ful— Ky 1)

() R. NEwrox: Journ. Math. Phys., 1, 319 (1960).
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JOST FUNCTIONS FOR THE HARMONIC OSCILLATOR 1355

and it can be easily verified that

_ Wik, 1)y ulky )] i fi(k)
(2.6) Bu(k) = Wrifuk, r), fo(—k,7)] - Witk 7), f{— k, )]’
(2_7) 06;(76) — fz(’“ k)

Wik, ), fio(— k1)

The Wronskian of the denominator can be calculated in r — oo. Using
(2.3), we obtain

W[fl(ka 7')7 ,fl(“ k, 7')] = 2@76
and the (2.5) goes into

1

(2.8) pulk, 1) = g [fB)fil—k, r) — ful— k) falk, 7)] -

Using the asymptotic behavior of this expression, it can be shown that
the scattering matrix §,(k) can be written

Wk
(2.9) Syk) = f;f(%“;g) )

and the unitarity condition implies that
(2.10) fi(— &%) = fu(k) .

Moreover, f,(k)= |f.(k)|exp[id,(k)], where §,(k) is the phase shift of the
I-partial wave; so
Tm f,(k)
Refi(k)

(2.11) tgd,(k) =

It fi(keo) = W[fulkey 7), @ilko, ¥)] =0 in ko= —4K; K> 0; this means that
the two solutions are not linearly independent, i.e.

(2.12) fulko, 1) = Coiky, 7)

We know that gi(ko, 7) is zero at the origin, and that f,(—4K, r) tends to
zero exponentially as r — oo; then both sides of (2.12) are square integrable,
and k; is a discrete eigenvalue of the Schrodinger equation. It is a bound state
of the system.

Evaluating (2.4) at  — oo, and making use of (2.2), one gets

(2.13) fuk) = lim (20 4 1) r* fu(k, 7) .
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3. — The three-dimensional harmonic osecillator.

3'1. The unperturbed oscillator. — Tn this case, we consider the potential
V(r) =3$mw??; 80

(3.1) W)= V) =g, B=

and writing ¢=2mE/fi* the radial Schrodinger eq. (2.1) is

(3.2) d-z‘gfj’”Jr[e (Hl ﬁw]%e, )=0.

As there are no free particle states, we cannot write &= k2
Making the substitution g,(e, r) = r"+'exp[— §6r*] D,(¢, r), it can be shown
that D,(e, r) satisfies

d:9, 20+ 1 d®,
(3.3) W+[‘j ) ] 1 Le—plait 818, =0,
or, with &= pr?,
(3.4) S‘L;g-:—’qﬂ(l%«g)—f]d@%m %%3] b,=0,

which is a confluent hypergeometric equation

d2y dy
(3.5) Zd—zZJr( A~ w="0

of indices a = ((21+3)/4) —¢/4f and c=143; Di(e, fr*) will then be the cor-
responding confluent hypergeometric functions.

The two linearly independent solutions of the confluent hypergeometrie
eq. (3.5) about the origin are (see Morsk and FESHBACH, page 604 and fol-

lowing)

o B & la+mn)2" a a{a-+1) 22
3.6) yi=F(a|c|z)= ‘U;)ngo—(——_c—i-")'%! =1+ cerr Ty ;1—'—

The series being convergent for any finite |z],

Y =2 Fla—c+1|2—c¢|?)
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JOST FUNCTIONS FOR THE HARMONIC OSCILLATOR 1357

and the linearly independent solutions of (3.5) about the irregular point at
infinity are

<

3.7)  yf = Udale|?) —z——a) f exp[— w]uc—o1 (1_2)“_1(1%
L)
© __exp [tma]z—e r . w\ o1

0

which are called confluent hypergeometric functions of third kind.
The Jost function is here defined as before, as

5.9) FE) = Wlie, ), e )], o= mt

where @,(e, r) is the regular solution at the origin, and f,(e, r) is the irregular
solution at infinity, which goes to zero as r — co.

First we analyse the irregular solutions at r — co. The solutions defined
by the boundary conditions at infinity are

(3.10) file, ) = rittexp[—1pr2] U, (212—3 485 ﬂrz)
B et =roespi—ipe 0 (- Sl F ).

Using the integral representations of the U functions gwen in (3.7) and
(3.8) it can be shown that

2143 \
(3:12)  gileyr) =rtexpl+ 16 Ua(E2 4 L1 3] ) =
4 48" 2
= + " fi—e 1) .
So our linearly independent solutions about r — co are fi(e, r) and f,(— &, )
It is necessary to know the asymptotic behavior of these functlons. This

can be obtained by recalling that the asymptotic behavior of Uy(ale|z) is
given by

(3.13) Uy(a|c|z) =, exp[imale, if largz|<m,
so

(3.14) fule, ) p= (eXp [— m]ﬂ)ue/m)—(zwmm) ple2p—1 exp [—iBr] -0,
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and also

(3.15) fil— &, ) ;= (exp[— i) f)-(Crpration ex(p [)(’:2;)?:2]

Next we study the regular solution about the origin. It is given by

3o

If r—0; exp[— 4pr*]~1— Lpr? and, recalling (3.6), it can be easily verified
that @,(e, ) satisfies the boundary condition

316) gl =reol— e (- 2]

(3.17) lim (e, 7) = 71#1 4 0(r+2) .

Its asymptotic behavior as r — oo is obtained recalling that (MoRrRSE and
FrsuBACH, page 607)

(3.18) Flale|?) =, II:((Z; gecer, if argz=0,
and we obtain
B.19)  gileyr)  prompesson  LUED i expl 1 3.

T'((2+3)/4 — (e/4B))

We can now use (3.9) to find the Jost function. Using (3.14) and (3.19)
we compute the Wronskian in r — oo.
We obtain

(D F(l+%) &
(3.20)  fu(E) = 2p-a+ @ 3 wip) P [m (z+ 45)]

As before, the zeros of f,(E) are the bound states of the system. Then only
zeros of f,(E) are given by the poles of the I'((21-+8)/4— (¢/4f)) of the de-
nominator; and recalling that all the singularities of I'(z) are poles when
Z =0, —n; n integer, the bound states will be located at

213 ¢ .

T—Z"B:‘—k, k:O,l,Z,...,
(3.21) or be:

B ,

= 25— R, B = @k+1+3)-h,
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JOST FUNCTIONS FOR THE HARMONIC OSCILLATOR 1359

which are the correct energy levels for the three-dimensional harmonie oscil-
lator.

Next we can verify that the usual relation

(3.22) fi(#) = lim (20 + 1)r'fi(e, 7)

is also valid in our problem. This can be done directly, taking power series
expansions of f,(¢, r) around the origin. Using the relation

(3.23) Uylale|r) = F—(l;%;—_f_—)l) explina)F(a|c|2) 4
4 LoD o limaleie Fla — o+ 1]2—o]2)

I'(a)

and recalling the power series expansion (3.6) of F(a|c¢|z), we obtain

3.24) T, (%l’ii)—fﬁ H_g: ﬁﬂ):
~ I(—i—1) (243 e 2
T L@l —(e/4p)+1) P [”’(T “@)J taprt i+
ri-+4)

+

(23 € (143 (2041 10
I{@0+3)/4 — (c4p)) P [”’“(T*zﬁ)]ﬂ B {l 4 alfre g,

where we have written

_a_ (214 3)/4 — (e/4h) _a—et1
(325) OC—C—— l—f—% ; OC—'—ZT_-—C—.

Replacing (3.24) and (3.25) in (3.10) and omitting the powers of r of higher
order, we obtain

- I't+3) b (2143 e\
G260 ey = 1y ey O O [zn(T—IE)Jr .

The limit (3.22) is then

(3.27)  fu(l) = lim 21+ 1) r* fi(e,7) =

@A NTO+Y o [ 3 e
(@1 3)/4 — (e/4ﬁ))ﬁ P exp [’” (Z + 5_479)] .

Using I'(z+1) =21'(2); (21+1)I'(1+3})=2I'(1+3), it is evident that (3.27)
agrees with (3.20).
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Let us write again
(3.28) i(g, 7) = o, (B) fuley ) + Bu(E) fo(— &, 7).

We get as before

Witie, ), arle, )] FB)
.29 (B = - =
329 BB = e, edey i) Wie 1)y i & )]
(3.30) dl(E) — W[fl(— 87 ?:7'), (pl<87 7')]

T Wi, ), fil—e, )]

The Wronskian of the denominator can be computed in r — co; using the
agymptotic formulas (3.14) and (3.15) we obtain

(3-31) Wifile, 7), fol— e, ir)] = 20-PHH=0+D explin(l + §)] -

Next we compute W[f,(— e, ir), p.(e, r)] at the origin. Using ¢,(g, r) ~r**
and

. T+ (3 2 ] pab iyt
fi(—¢&, ir) _F((2l+3)/4 - (3/4/3)) exp [m (l —+ 5)} exp [—F mZBJ i ()=t

‘We find

W[fz(_ & 11), @, )] =

@)+ 3 exp [in( 21+ 3) /4 + E40)] o n i
B T{(21+ 3)/4 + (¢/4B)) B+ (—a) o —B)

80 @i(e, r) can be written
(3.32)  gile, 7) = }ie28+D exp{—in(l + §)] [(E) fil— e, i) — (— Y ful— B) fule, 1)]-

3'2. The perturbed oscillator. — We now perturb the harmonic oscillator
with a potential »(r), such that

In this way, the asymptotic behavior of the solutions of the new Schro-
dinger equation
d2y,(e, 7) (1+1)

(3.33) —g T [s-ﬁzw— pe ]«pz(e, 7) = v(r) (e, 7)

is just the same as the asymptotic behavior of the already known solutions
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JOST TUNCTIONS FOR THE HARMONIC OSCILLATOR 1361

of the unperturbed equation, i.e., that corresponding to the harmonic oscil-
lator.

We call then @,(e,7) the solution of (3.33) which satisfies the boundary
eondition

(3.34) Lm @ (g, r) ~ pr+1

r—>0

and Fy(e, r) the solution which tends to zero as r - co. Next we define as
usual, the Jost functions as

(3.35) F(E) = W[Fiz, 1), Pule, 7)]

and here again it is evident that the roots of Fy(F)=0 will be the energy
levels of the system.

Integral equations can be obtained for the functions @y(e,r), Fife, 7). In
the Appendix I of BorTiNo, LoNGONI and REGGE (%) it is shown how fo get
the integral equations corresponding to equations of the kind of (3.33) with
the inclusion of boundary conditions. We recall that the linearly independent
solutions of the homogeneous equations are:

about r =0

pullye,7) = @ule,7),  given Dby (3.16)
pally &,7) = yule, 7) =

= rtexp{— e (< 2R = (14 ) )

and about » — oo
l fill, &, 7) = fule, 1),

fo(ly &y 1) = fi(— &, i) .

The integral equation for @ e, r) is

Die, 1) = pile, ) + mf[(pl(e, ) (e, 1) — @ule, ) e, Yo Y Do(s, r') dv’

or, computing the Wronskian,

(3.36) Dy(e,7) = @ile, 7) +

5( Hh
(21+1

+ f[(pl (&, 7) xu(ey ') — @i{e, 77) yule, v} ]o(tr’y Dife, v') A7,

(3) A. Bortivno, A. M. LoxgoNi and T. REGGE: Nuovoe Cimento, 23, 954 (1962).
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and for Fy(e,r)

8.37)  Fye,7) = file,7) +
1 , .
+ mf[fz(&r Vfi(—&, ir) —filey ) fi(—e, ir')]u(r') Fy(e,r")dr'.

It is evident that in this perturbed case the Jost functions will also be
given by
(3.38) FyE) = lim 214 1)r' Fi(e, 1) .

7—>0

Replacing (3.37) in (3.38) we find

Fy(B) = bim (214 1) rifife, 7) + wrrp—= Hm 21 1) 7t

W[f f]

f e, 7 (g i) — Fale, 7)ol e, i) J00") Fife, ")

and recalling (3.22) for the Jost function f,(E) of the nnperturbed oscillator,
this expression becomes

FI(E) = ft(E) +
4 W[T‘ITJ f [0 sl— B fule, ) — 1 B) ful— e, ir'Y]o(r") Fife, )
and finally, using (3.32)

(3.39) = —f gy 7 YF(g,r)dr .

This integral representation of the Jost function can be used for practieal
evaluations, combined with the integral eq. (3.37).

4, — The linear oscillator.

In this case, the potential is V() =}mw??; and the one-dimensional
Schridinger equation is

dz
(4.1) d;’; +(e—praty =0,

where, as usual, e=2mE/h2, f = mo/f and 2= 2mV [A2.
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With &=x4/2f, eq. (4.1) goes into

d2y e 1.\
(4.2) d—§2+(§[—3_éz§)y)_0'

This is the Weber equation, whose solutions are y=D,(zv/28), where
D,(&) are the Weber functions, and

e 1 F 1

28 2 w27

The Weber functions are (see MorsE and FESHBACH, page 1565)

z?
;)

They are not defined for Rez<0 because U, has a branch line along the
real negative axis; and 22 would cross that singularity. The Weber equation
satisfied by D,(z)

(4.4) : d2€:2(z) + [(m + %) — i zz] Dy(z) =0,

(4.3) D(2) = 24 exp [—i 2+ %1"] U, (—g l %

is also satisfied by D,(— #) and D_,_,(iz); and among the three solutions it
exists the relation

27

(45)  Du(e) = expl—iam]Dn(—2) + s

exp [—im (m + 1)] D_,,,(i2) .

It can be shown (KEMBLE: Quantum Mechanics, Appendix C), that for a
given value of the energy it exists one and only one solution that goes to zero
as « —— oo, and diverges exponentially as x -> -+ oo; and one and only one
solution that goes to zero as @ — -+ co and diverges as # - — oco. We call
,(H, z) the solution that satisfies the first boundary condition and y,(E, x)
that which satisfies the second.

We define in this case a «Jost function » as

(4.6) F(E) = W[y, (B, z), v, (B, x)].

As in general y,, vy, are linearly independent, this expression will be a
constant different from zero; F(F) will be zero only for the eigenvalues of the
system, because then y, (=ecy,) will be integrable square.

We must study the asymptotic behavior of D,(£) in order to identify
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v.(H, x) and v, (H,r). Using (3.13) it follows that

1 imm] (22\ " exp[—wmm/[2]e™
5 2) hezﬁ-}—m exp [ 9 ](-) = _______2%_7”_ ’

m|1
(4.7) U, (—§|§ -

and the agymptotic behavior of D, (2), as Rea — + oo, 18
(4.8) D,u(2) gy o0 " €XP[— 2% — 0.

In order to study the behavior of D,(z) as Rez—— co we must use the
relation (4.5) (see WITTAKER and WaATsoN: Modern Analysis, page 348) to find

Vor exp[+ £2°]

(4.9) D(2)peiz oo F(—m) (—am

Finally, we obtain, for & real

Emexp[—1£2] -0, as & — -+ oo,
(4.10) D.(&) =) Vom exp[+ }é&
T (_[§)m4r1] oo, as £ ——oo.
It is evident that D,,(£) verifies the boundary conditions imposed on y,(E, x),
then
o E 1
(4.11) valB, x) = D,(aV2p), "= 2
As D, (— &) is also a solution of (4.1}, it follows that
(4.12) v, (B, @) = Du(—2v2) ,
with the asymptotic behavior
(—Hrexp[—&] >0,  as £—>—oo,
4.13 E — Dm —¢& % £
(4.13) VB @) = Dul—6) ) Vam eLHAE) e
]-,_(___ m) fm 1

We can now calculate the «Jost function » F(E), by evaluating the Wron-
skian (4.6) at x — + co. Using (4.10) and (13.ab), the result is

2V2n
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the zeros being located at the poles of the ['(}— (E/mw))

1 E
G = n=0,1,2,.. 80 E= (n+}§)h,

which is the well-known result.

5. — Discussion.

We see that the Jost functions for the harmonic oscillator

o onash I+ 3) 3 _ k]
(5.1) fuB) = 24~ F((2l—}—3)/4— (E/2hv)) exp [m (l + 2)] exp [ 2th

are analytic entire functions in the complex I[-plane.

The unitarity condition (2.10), valid for potentials satisfying (1.a) and (1.0),
when expressed in terms of the energy complex variable by means of the
transformation ¥ =k? is

(5.2) fi(B) = f(B¥).

The Jost functions that we obtained (5.1) clearly do not satisfyes (5.2).
This is consistent with the fact that a unitary S-matrix can not be defined
for this kind of problems because of the absence of dispersion phenomena.

The Regge trajectories will be given by the zeros of f,(F). Looking at
this expression we notice that these trajectories are given by

21+3 B B 3
(5.3) —ap = ks k=012, or 1= —2k—7,

80 there are an infinite number of Regge poles, and, when the energy E goes
from — oo to + oo this poles move along the real axis of the I-complex plane
from — oo to -+ co.

Writing

the Jost function (5.1) can be written

exp [—inz]

, . (21—1
fide) = A, Ta—2 3 Ay =269+ 3) exp[—in(l+ 3)] exp[—m (-—4-)],

[
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and recalling the identity

I l1—2) =",
sinmz
we obtain
A4, . .
(6.4) fi(z) = — exp [— imz] ['(2) sinmz .

The asymptotic behavior of I'(z) for |z|— oo, |argz|<z is given by
I'(z) = V2aztexplz].

Using this property, we can analyse the asymptotic behavior of fi(2) as
|#] = oo, |argz|<<z and we find that fi(2) tends to zero in the left half-plane
of the z complex plane, except on the negative real axis; but becomes strongly

divergent on the right hali-plane, as I'(z) is.
We conclude that our Jost function does not satisty dispersion relations

of the usual type.
* ok K

One of the authors (J.J.G.) is indebted to Prof. T. REGGE for suggesting
the present work and for useful discussions and suggestions on the subject.

RIASSUNTO (%)

Si computano esplicitamente le funzioni di Jost per I’oscillatore armonico (in una
e tre dimensioni). Esse sono funzioni analitiche intere nel piano E complesso. I loro
zeri danno i ben noti stati legati del sistema. Si dA una rappresentazione integrale delle
funzioni di Jost dell’oscillatore armonico perturbato.

(*) Traduzione a cura della Redazione.
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