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Summary. This paper deals with a post-process to obtain a more accurate
approximation of the fluid pressure from a finite element computation of the
vibration modes of a fluid-structure coupled system. The underlying finite
element method, based on a displacement formulation for both media, con-
sists of using Raviart-Thomas elements for the fluid combined with standard
continuous elements for the solid.

An easy to compute post-process of the pressure is derived. The relation
between this post-process and an alternative finite element approximation of
the problem based on discretizing the fluid pressure by enriched Crouzeix-
Raviart elements is studied. Higher order estimates for the L2 norm of the
post-processed pressure are proved by exploiting this relation. As a by-prod-
uct, higher order L2 estimates for the solid displacements obtained with the
original method are also proved.
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1 Introduction

The need of computing fluid-solid interactions arises in many important engi-
neering problems. A large amount of work has been devoted to this subject
during the last years. A general overview can be found in the monographs
[10,19], where numerical methods and further references are also given.

This paper deals with one of these interactions: the elastoacoustic vibra-
tion problem. It concerns with the determination of harmonic vibrations of
an elastic structure interacting with a compressible fluid. In this case, the
displacements are small and then we can suppose a linear response of the
structure. We neglect gravity effects and consider a homogeneous fluid, for
which its reference density is constant. Other usual simplifications for this
kind of problems are that viscous effects are not relevant and that velocities
are small enough for convective effects to be neglected (see, for instance,
[19]).

The problem of determining the vibrations of a fluid is usually treated
by choosing the pressure as primary variable. However, for coupled systems,
such choice leads to non-symmetric eigenvalue problems, whose computa-
tional solution involves considerable complications. To avoid this drawback
the fluid has been described using different variables (see, for instance, [13,
18,19]).

Since the solid is generally described in terms of displacements, to choose
the same variable for the fluid presents several advantages. In particular, this
approach could be in principle applied to the solution of a broad range of prob-
lems [4] and it leads to sparse symmetric matrices. Nevertheless, it is well
known that the displacement formulation for the fluid suffers from the pres-
ence of zero-frequency spurious circulation modes with no physical meaning
[18].After discretization by standard finite elements, these modes are approx-
imated by others with non-zero frequencies interspersed among the physical
ones.

Several approaches have been proposed to circumvent this drawback [17,
4,14]. One particularly successful has been introduced and analyzed in [5,
9]. It consists of using lowest-order Raviart-Thomas elements for the fluid
displacements and standard Courant elements for those of the solid, both
coupled in a weak way across the fluid-solid interface. This method has been
extended to deal with, for instance, three-dimensional problems [8], incom-
pressible fluids [6], dissipative acoustics [7], etc.

The fluid pressure is typically the most relevant variable in acoustic appli-
cations. However, when Raviart-Thomas elements are used on a displacement
formulation, the computed pressure is only piecewise constant and, thus, the
order of this approximation is necessarily low.

In this paper we introduce a post-process to compute a more accurate
approximation of the pressure by means of piecewise linear Crouzeix-Rav-
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iart elements. This post-process requires only explicit local computations
involving the computed approximate solution and element fluid mass matri-
ces from the Raviart-Thomas discretization.

We prove higher order error estimates for the L2 norm of the post-pro-
cessed pressure. To do this, we show the relation between this post-process an
other finite element approximation of the same problem based on discretizing
the pressure by Crouzeix-Raviart elements enriched with element cubic bub-
bles. Let us remark that the solution of this alternative finite element method
is only needed to prove the estimates, but not for the actual computation of
the post-process. As a by-product, we also prove higher order L2 estimates
for the solid displacements computed with the original method.

The outline of the paper is as follows. We recall in Sect. 2 the fluid-
structure vibration problem and the main convergence results when the fluid
displacements are discretized by Raviart-Thomas elements. In Sect. 3 we
introduce the post-process and prove its relation with the enriched Crouzeix-
Raviart elements. We prove in Sect. 4 that this discretization is of higher order
in L2 norm and use this to conclude the same order of approximation for the
post-processed pressure. This section requires of several technical lemmas
whose statements and proofs are postponed to the last section.

2 The fluid-structure vibration problem

We consider the problem of determining the free vibration modes of a linear
elastic structure containing an ideal acoustic (barotropic, inviscid, and com-
pressible) fluid. Our model problem consists of a two-dimensional vessel
completely filled with fluid as that in Fig. 1.
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Fig. 1. Fluid and solid domains
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Let �F and �S denote polygonal domains occupied by fluid and solid,
respectively. Let�I be the interface between both media, and n its unit normal
vector pointing outwards �F . We denote �j , j = 1, . . . , J , the edges of the
polygonal �I (namely, �I = ∪Jj=1�j ). The exterior boundary of the solid is
the union of �D and �N , the structure being fixed along �D and free of stress
along �N ; we assume

∣
∣�D

∣
∣ > 0. Finally, nS denotes the unit outward normal

vector along �N .
Throughout this paper we use standard notation for Sobolev spaces, norms,

and seminorms. We also denote H1
�D
(�S) the closed subspace of functions in

H1(�S) with a vanishing trace on �D, and H (div, �F) := {u ∈ L2(�F)
2 :

div u ∈ L2(�F)}, with its corresponding norm defined by ‖u‖2
div,�F

:=
‖u‖2

0,�F
+ ‖ div u‖2

0,�F
.

We use the following notation for the physical magnitudes; in the fluid:

u: the displacement field,
p: the pressure,
ρF : the density,
c: the acoustic speed,

and in the solid:

w: the displacement field,
ρS : the density,
λS and µS : the Lamé coefficients,

ε(w): the strain tensor defined by εij (w) := 1
2

(
∂wi
∂xj

+ ∂wj

∂xi

)

, i, j = 1, 2,

σ (w): the stress tensor which we assume related to the strain tensor by
Hooke’s law:

σij (w) = λS

2
∑

k=1

εkk(w)δij + 2µSεij (w), i, j = 1, 2.

The classical elastoacoustics approximation for small amplitude motions
yields the following eigenvalue problem for the free vibration modes of the
coupled system and their corresponding frequenciesω (see for instance [19]):

Findω > 0, u ∈ H(div, �F), w ∈ H1(�S)
2 and p ∈ H1(�F), (u,w, p) �=

(0, 0, 0), such that:

∇p − ω2ρF u = 0 in �F ,(2.1)

p + ρFc
2 div u = 0 in �F ,(2.2)

div [σ (w)] + ω2ρSw = 0 in �S,(2.3)

σ (w)n + pn = 0 on �I,(2.4)

u · n − w · n = 0 on �I,(2.5)

σ (w)nS = 0 on �N ,(2.6)

w = 0 on �D .(2.7)
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Two different variables are used in the equations above to describe the
fluid: pressure and displacements. Each of them can be eliminated in terms
of the other to obtain two alternative variational formulations of the problem
above.

By multiplying equations (2.1) and (2.3) by adequate test functions, inte-
grating by parts, and using (2.2) to eliminate the pressure p in terms of the
fluid displacement u, we obtain the following symmetric pure displacement
formulation:

Find λ ∈ R and (u,w) ∈ V , (u,w) �= (0, 0), such that:

∫

�F

ρFc
2 div u div v +

∫

�S

σ (w) : ε(z)(2.8)

= λ

(
∫

�F

ρF u · v +
∫

�S

ρSw · z

)

∀(v, z) ∈ V,

In the problem above, λ = ω2 and V is the space of coupled displacements
satisfying the so-called kinematic constraint (2.5), namely:

V := {(u,w) ∈ X : u · n = w · n on �I

}

,

with

X := H(div, �F)× H1
�D
(�S)

2.

On the other hand, by multiplying equations (2.2) and (2.3) by adequate
test functions, integrating by parts, and using (2.1) to eliminate the displace-
ment u in terms of the pressure p, we obtain the following non-symmetric
pressure/displacement formulation:

Find λ ∈ R and (p,w) ∈ H1(�F) × H1
�D
(�S)

2, (p,w) �= (0, 0), such
that:

∫

�F

1

ρF

∇p · ∇q +
∫

�S

σ (w) : ε(z)−
∫

�I

p z · n(2.9)

= λ

(
∫

�F

1

ρFc
2
pq +
∫

�S

ρSw · z +
∫

�I

w · n q

)

∀(q, z) ∈ H1(�F)× H1
�D
(�S)

2.

Both variational problems attain the same non-zero eigenvalues with cor-
responding eigenfunctions with the same solid displacements, and fluid vari-
ables related by equations (2.1) and (2.2). More precisely, the following
lemma holds:



394 A. Alonso et al.

Lemma 2.1 Let (λ, (u,w)) be an eigenpair of Problem (2.8) with λ �= 0
and let p = −ρFc

2 div u. Then, (λ, (p,w)) is an eigenpair of Problem (2.9).
Conversely, let (λ, (p,w)) be an eigenpair of Problem (2.9) with λ �= 0

and let u = 1
λρF

∇p. Then, (λ, (u,w)) is an eigenpair of Problem (2.8).

Proof. For λ=ω2 �= 0, both problems are equivalent to Problem (2.1)-(2.7).
In fact, as it was mentioned above, the solutions of (2.1)-(2.7) satisfy equa-
tions (2.8) and (2.9). Conversely, by testing each of these two equations with
adequate smooth functions, it is easy to show that, any solution of each of
them, with λ �= 0, also satisfy (2.1)-(2.7). ��

The following spectral characterization was proved in [5]:

Theorem 2.1 Problem (2.8) has two kinds of solutions:

1. λ0 = 0, with corresponding eigenspace

K := {(u, 0) ∈ V : div u = 0 in �F and u · n = 0 on �I};
2. a sequence of finite-multiplicity strictly positive eigenvalues λn, n ∈ N,

converging to +∞, with corresponding eigenfunctions (un,wn) ∈ V ,
satisfying un = ∇ϕn for some ϕn ∈ H1(�F).

By virtue of Lemma 2.1, the theorem above shows that the spectrum of the
non-symmetric problem (2.9) consists of the same non-negative real eigen-
values converging to +∞. The following result concerning further regularity
for the eigenfunctions of Problem (2.8) (and hence of those of (2.9) too) was
proved in [5,21]:

Theorem 2.2 Let (u,w) be an eigenfunction of problem (2.8) associated
with an eigenvalue λ > 0. Let p = −ρFc

2 div u be the corresponding fluid
pressure. Then, there exist constants s ∈ ( 1

2 , 1], t ∈ (0, 1], and C > 0, such
that u ∈ Hs(�F)

2, w ∈ H1+t (�S)
2, p ∈ H1+s(�F), and

‖u‖s,�F
+ ‖w‖1+t,�S

+ ‖p‖1+s,�F
≤ C
(

‖u‖0,�F
+ ‖w‖0,�S

)

.

In this theorem, s is either 1, if �F is convex, or any s < π
θ

, with θ
being the largest reentrant corner, otherwise. On the other hand, t depends
on the reentrant angles of �S , the angles between �D and �N , and the Lamé
coefficients (see [16]).

The pressure/displacement formulation (2.9) was the first one considered
in the literature (see for instance [22]). However, it has not been so widely
used because of the non-symmetric character of the problem. In fact, after
discretization, it leads to a non-symmetric generalized eigenvalue problem,
which hinders the use of most standard eigensolvers.
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Instead, the pure displacement formulation (2.8) leads to a sparse sym-
metric generalized eigenvalue problem. However, a severe drawback of this
approach was early noticed (see [18] and [17]): non-zero frequency spurious
modes pollute the spectrum when standard conforming finite elements are
used to discretize the fluid displacements. Indeed, in such case, divergence
free flows are approximated by nearly divergence free elements only. There-
fore, the splitting described by Theorem 2.1 is spoiled by the discretization.

This is different for Raviart-Thomas elements. Because of this, they have
been used to discretize the fluid displacements in [5,9], where it was shown
that these elements, conveniently coupled with standard conforming elements
for the solid, lead to a spurious-free method. We end this section by recalling
this method and some of its approximation properties which will be used in
the sequel.

Let {Th} be a family of triangulations of �̄F ∪ �̄S , regular in the sense of
a minimum angle condition. The index h denotes, as usual, the mesh size of
Th: h := maxT ∈Th hT , with hT being the diameter of T . We assume that all
the triangles of each mesh are completely contained either in �̄F or in �̄S , and
that the end points of �D coincide with nodes of the triangulation. We denote
by T F

h and T S
h the triangulations induced by Th in �̄F and �̄S , respectively.

Let Eh denote the set of all the edges of triangles T ∈ T F
h . We split

this set as follows: Eh = E I
h ∪ Eo

h , with E I
h := {� ∈ Eh : � ⊂ �I} and

Eo
h := {� ∈ Eh : � �⊂ �I} being the sets of boundary and inner edges, respec-

tively. For each inner edge � ∈ Eo
h , we choose a unit vector normal to �which

we denote n
�
. We also denote

[[ · ]]
�

the jump across � along n
�
.

Let RTh(�F) be the lowest-order Raviart-Thomas space on T F
h (see [20]):

RTh(�F) := {uh ∈ H(div, �F) : uh|T ∈ RT0(T ) ∀T ∈ T F
h

}

,

where

RT0(T ) := {uh ∈ P1(T )
2 : uh(x, y) = (a + bx, c + by), a, b, c ∈ R

}

.

Let
Lh(�S) := {wh ∈ H1(�S) : wh|T ∈ P1(T ) ∀T ∈ T S

h

}

be the standard finite element space of piecewise linear continuous functions,
and Lh�D

(�S) := {wh ∈ Lh(�S) : wh = 0 on �D}. Let

Xh := RTh(�F)× Lh�D
(�S)

2

and

Vh :=
{

(uh,wh) ∈ Xh :
∫

�

(uh · n − wh · n) = 0 ∀� ∈ E I
h

}

.

Thus, the following discrete analogue of the spectral problem (2.8) is ob-
tained:
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Find λh ∈ R and (uh,wh) ∈ Vh, (uh,wh) �= (0, 0), such that:
∫

�F

ρFc
2 div uh div vh +

∫

�S

σ (wh) : ε(zh)(2.10)

= λh

(
∫

�F

ρF uh · vh +
∫

�S

ρSwh · zh

)

∀(vh, zh) ∈ Vh.

The following spectral characterization of the discrete problem above has
been proved in [5]:

Theorem 2.3 Problem (2.10) has two kinds of solutions:

1. λ0 = 0, with corresponding eigenspace

Kh := {(uh, 0) ∈ Vh : div uh = 0 in �F and uh · n = 0 on �I};
2. a set of positive eigenvalues λh, with corresponding eigenfunctions
(uh,wh) ∈ Vh, such that uh ∈ K⊥

h (where K⊥
h denotes the orthogonal

complement of Kh in Vh).

Non-existence of spurious modes and spectral convergence of the solu-
tions of (2.10) to those of (2.8), with optimal order error estimates, have been
proved in [5,21], including a double order for the eigenvalues. In particular,
the following error estimates hold:

Theorem 2.4 Let (λ, (u,w)) be an eigenpair of Problem (2.8) with λ > 0.
Then, there exist strictly positive constants C and h0 such that, if h ≤ h0,
Problem (2.10) attains an eigenpair (λh, (uh,wh)), with λh > 0, satisfying

‖u − uh‖div,�F
+ ‖w − wh‖1,�S

≤ Chr
(

‖u‖0,�F
+ ‖w‖0,�S

)

and
|λ− λh| ≤ Ch2r ,

where r := min{s, t}, with s and t being the regularity constants in Theorem
2.2.

Here and thereafterC denotes a positive constant independent of the mesh
size h.

Notice that, as a consequence of this theorem, the discrete pressure
−ρFc

2 div uh approximate the pressure p = −ρFc
2 div u also with order

O(hr). Since div uh is only piecewise constant for Raviart-Thomas elements,
this order is optimal. In the following section we introduce a post-process to
compute a more accurate approximation of the pressure by means of piece-
wise linear Crouzeix-Raviart elements.
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3 A post-processed pressure

We consider the family of meshes {Th} and the notation introduced above.
Let

CRh(�F) := {qh ∈ L2(�F) : qh|T ∈ P1(T ) ∀T ∈ T F
h ,

qh continuous at midpoints of all � ∈ Eo
h},

be the space of lowest-order Crouzeix-Raviart elements. Let {ψ� : � ∈ Eh}
be the natural basis of this space consisting of piecewise linear functions
attaining the value 1 at the midpoint of � and vanishing at the midpoints of
all the other edges �′ �= �.

For (λh, (uh,wh)) a solution of Problem (2.10), we define the post-pro-
cessed pressure pL

h by

pL
h :=
∑

�∈Eh

α�ψ�,(3.1)

with

α� := −ρFc
2 div (uh|T )+ λh

|�|
∫

T

ρF uh · φ�,(3.2)

where T ∈ T F
h is a triangle such that � ⊂ ∂T and φ� is the basis function of

the Raviart-Thomas space on T , RT0(T ), associated with � (i.e., the constant
outer normal component of φ� is equal to 1 on � and 0 on the other edges
of T ). We show below that this definition does not depend on the chosen
triangle T with � ⊂ ∂T . On the other hand, let us remark that the integral in
the definition of α� can be easily computed by using the same element fluid
mass matrix used to solve Problem (2.10).

The aim of this paper is to prove that pL
h is a higher order approximation

of the pressure p. To do this, we will show first that pL
h can also be seen as the

linear part of the computed pressure obtained from a particular discretization
of Problem (2.9), based on using Crouzeix-Raviart piecewise linear elements
enriched with local cubic bubbles for the fluid pressure.

It is well known that Crouzeix-Raviart elements are strongly related with
Raviart-Thomas ones when applied to the Laplace equation (see Section 2 of
[2]; in particular Lemma 2.4 therein). In what follows, we show that similar
results hold for the elastoacoustic vibration problem. Let

P : L2(�F) −→ Qh,

P
�

: L2(�) −→ P0(�) ∀� ∈ Eh,
P
�I

: L2(�I) −→ Ch,
�

T
: L2(T )2 −→ RT0(T ) ∀T ∈ T F

h

be the corresponding L2 orthogonal projections, with

Qh := {qh ∈ L2(�F) : qh|T ∈ P0(T ) ∀T ∈ T F
h

}
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and
Ch := {δh ∈ L2(�I) : δh|� ∈ P0(�) ∀� ∈ E I

h}.

Let CRb
h(�F) be the space of piecewise linear Crouzeix-Raviart elements

enriched with local cubic bubbles; namely,

CRb
h(�F) := CRh(�F)⊕ Bh(�F),

with
Bh(�F) := {βh ∈ H1(�F) : βh|T ∈ H1

0(T ) ∩ P3(T )
}

.

Consider the following discretization of Problem (2.9):

Find λh ∈ R and (ph,wh) ∈ CRb
h(�F)× Lh�D

(�S)
2, (ph,wh) �= (0, 0),

such that:

(3.3)
∑

T ∈T F
h

∫

T

1

ρF

�
T
∇ph ·�

T
∇qh +

∫

�S

σ (wh) : ε(zh)−
∫

�I

P
�I
ph zh · n

= λh

(
∫

�F

1

ρFc
2
Pph Pqh +

∫

�S

ρSwh · zh +
∫

�I

wh · nP
�I
qh

)

∀(qh, zh) ∈ CRb
h(�F)× Lh�D

(�S)
2.

For λh �= 0, the eigenvalue problem above is equivalent to Problem (2.10)
in a sense made precise in the following lemma:

Lemma 3.1 Let (λh, (uh,wh)) be an eigenpair of Problem (2.10) with λh �=
0. Then, there exists ph ∈ CRb

h(�F) such that (λh, (ph,wh)) is an eigenpair
of Problem (3.3). Moreover, ph and uh are related by

Pph = −ρFc
2 div uh,(3.4)

and
�

T
∇ph = λhρF uh|T ∀T ∈ T F

h .(3.5)

Conversely, let (λh, (ph,wh)) be an eigenpair of Problem (3.3) with λh �= 0.
Then, there exists uh ∈ RTh(�F) such that (λh, (uh,wh)) is a solution of
Problem (2.10), and (3.4)–(3.5) hold true.

Proof. Let RT d
h (�F) be the space of discontinuous Raviart-Thomas fields

on �F

RT d
h (�F) := {vh ∈ L2(�F)

2 : vh|T ∈ RT0(T ) ∀T ∈ T F
h

}

.
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First, we show that (λh, (uh,wh)) is an eigenpair of Problem (2.10) if and
only if there exists unique

γh ∈ Ch and γ ′
h ∈ C ′

h :=
{

δh ∈∏�∈Eo
h

L2(�) : δh|� ∈ P0(�)
}

,

such that

(3.6)
∫

�F

ρFc
2 div uh div vh +

∫

�S

σ (wh) : ε(zh)+
∫

�I

γh (vh · n − zh · n)

+
∑

�∈Eo
h

∫

�

γ ′
h

[[

vh · n
�

]]

�
= λh

(
∫

�F

ρF uh · vh +
∫

�S

ρSwh · zh

)

∀(vh, zh) ∈ RT d
h (�F)× Lh�D

(�S)
2,

∫

�I

(uh · n − wh · n)δh = 0 ∀δh ∈ Ch,(3.7)

∑

�∈Eo
h

∫

�

[[

uh · n
�

]]

�
δ′
h = 0 ∀δ′

h ∈ C ′
h.(3.8)

Clearly, any solution of this problem provides a solution of Problem
(2.10). Indeed, uh ∈ RTh(�F) because of (3.8), whereas

∫

�
(uh·n−wh·n) = 0

∀� ∈ E I
h because of (3.7). Hence (uh,wh) ∈ Vh, and (3.6) implies (2.10).

The converse is also true. In fact, let λh and (uh,wh) be an eigenpair of
Problem (2.10). Equations (3.7) and (3.8) are satisfied since (uh,wh) ∈ Vh,
whereas equation (3.6) is true for (vh, zh) ∈ Vh, independently of the partic-
ular values of γh ∈ Ch and γ ′

h ∈ Ch. Now, for each edge � ∈ Eh, let T ∈ T F
h

be one triangle such that � ⊂ ∂T (if � ∈ E I
h, there is only one such triangle; if

� ∈ Eo
h , we choose T such that n

�
is the outer normal to ∂T ). Let φ� denote

the nodal basis functions of RT0(T ) associated with � as in (3.2), extended
by zero to the rest of �F . Then RT d

h (�F) × Lh�D
(�S)

2 = Vh ⊕ 〈{(φ�, 0) :
� ∈ Eh}〉. Thus, it is enough to prove that there exist unique γh ∈ Ch and
γ ′
h ∈ C ′

h such that (3.6) holds for (vh, zh) = (φ�, 0) ∀� ∈ Eh. To prove this,
let {χ� : � ∈ Eh} denote the canonical basis of Ch ⊕ C ′

h (i.e., χ�|� ≡ 1 and
χ�|�′ ≡ 0 ∀�′ ∈ Eh, �′ �= �). Then, by writing in this basis γh =∑�∈E I

h
c�χ�

and γ ′
h = ∑�∈Eo

h
c′�χ�, it is clear that it is enough to verify that there are

unique coefficients c� and c′� such that (3.6) holds true for (vh, zh) = (φ�, 0)
∀� ∈ Eh; that is

|�|c� =
∑

�′∈E I
h

(∫

�

χ�′φ� · n
�

)

c�′

= λh

∫

�F

ρF uh · φ� −
∫

�F

ρFc
2 div uh div φ� ∀� ∈ E I

h.
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|�|c′� =
∑

�′∈Eo
h

(∫

�

χ�′φ� · n
�

)

c′�′

= λh

∫

�F

ρF uh · φ� −
∫

�F

ρFc
2 div uh div φ� ∀� ∈ Eo

h.

Since these equations are clearly uniquely solvable, we conclude that there
exists unique γh ∈ Ch and γ ′

h ∈ C ′
h such that (3.6)-(3.8) hold true.

Then, the arguments in [2] can be readily adapted to prove the lemma,
with ph ∈ CRb

h(�F) being defined by

P
�
ph =
{

γh|� if � ∈ E I
h,

γ ′
h|� if � ∈ Eo

h,
(3.9)

Pph = −ρFc
2 div uh.(3.10)

��
Remark 3.1 According to (3.9) in the proof of the previous lemma, P

�I
ph =

γh. This function γh ∈ Ch coincides with the Lagrange multiplier introduced
in [6,8] to impose the kinematic constraint on fluid and solid displacements,
which is an approximation of the interface pressure p|�I

.

Remark 3.2 As a by-product of this lemma and Theorem 2.3, we have proved
that the eigenvalues of the non-symmetric generalized eigenvalue problem
(3.3) are real and non-negative.

The following lemma shows that the pressure ph computed from Prob-
lem (3.3) equals the post-processed pressure pL

h plus bubble functions, and
an estimate is given for the latter:

Lemma 3.2 For (λh, (uh,wh)) and (λh, (ph,wh)) as in the previous lemma,
let pL

h be defined by (3.1)-(3.2). Then

ph − pL
h ∈ Bh(�F)

and
∥
∥ph − pL

h

∥
∥

0,�F
≤ Ch2‖ph‖0,�F

.

Proof. Since ph ∈ CRb
h(�F), we write

ph =
∑

�∈Eh

α′
�ψ� + βh,

with βh ∈ Bh(�F). Because of (3.9), for each edge � ∈ Eo
h ,

γ ′
h|� = P

�
ph = 1

|�|
∫

�




∑

�′∈Eh

α′
�′ψ�′ + βh



 = α′
�.
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On the other hand, by testing (3.6) with (φ�, 0), we obtain

γ ′
h|� = −ρFc

2 div (uh|T )+ λh

|�|
∫

T

ρF uh · φ� = α�.

Since the same two equalities also hold true for γh|�, � ∈ E I
h, then

ph − pL
h = βh ∈ Bh(�F).

Finally, by testing (3.3) with (βh,T , 0), where βh,T ∈ Bh(�F) is a bubble
function supported in T ∈ T F

h , we have
∫

T

1

ρF

�
T
∇ph ·�

T
∇βh,T = λh

∫

T

1

ρFc
2
Pph Pβh,T .

Then, the arguments in the proof of Lemma 2.1 in [12] can be easily adapted
to our case to show that

‖βh‖0,�F
≤ Ch2‖ph‖0,�F

. ��

Remark 3.3 As a by-product of this lemma, sincepL
h coincides with the Crou-

zeix-Raviart part of ph ∈ CRb
h(�F), we have that pL

h is uniquely defined,
independently of the triangle T chosen in (3.2) to compute α�.

Remark 3.4 The pressure approximation ph in Problem (3.3) can also be
computed directly from the displacement approximation uh in Problem (2.10).
Indeed, because of the previous lemma we can write

ph = pL
h +
∑

T ∈T F
h

α
T
b
T
,

with b
T

being the bubble function attaining the value 1 at the barycenter of
T . Then, as a consequence of (3.10), α

T
can be explicitly computed from

α
T

9

20
= Pβh|T = Pph|T − PpL

h |T = −ρFc
2 div (uh|T )+ 1

3

∑

�⊂∂T
α�.

Thus, ph can be seen as an alternative post-processed pressure. However, this
lemma shows that ph does not approximate the pressure with a higher order
than pL

h (see Theorem 4.3 below).

In the following section we will study the non-conforming method (3.3).
In particular, we will prove higher order error estimates in L2 norm for ph,
which, combined with the previous lemma, will allow us to show that the
post-processed pressure pL

h provides an accurate approximation of the pres-
sure.
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4 Analysis of the enriched Crouzeix-Raviart approximation

First, as a direct consequence of Lemma 3.1, we show that the discrete eigen-
value problem (3.3) provides approximations of the solutions of Problem
(2.1)–(2.7) with the same order as those of Problem (2.10) in H1-like norms:

Theorem 4.1 Let (λ, (p,w)) be an eigenpair of Problem (2.9). Then, there
exist strictly positive constants C and h0 such that, if h ≤ h0, Problem (3.3)
attains an eigenpair (λh, (ph,wh)), with λh > 0, satisfying




∑

T ∈T F
h

‖p − ph‖2
1,T





1
2

+ ‖w − wh‖1,�S
≤ Chr

(

‖∇p‖0,�F
+ ‖w‖0,�S

)

and

|λ− λh| ≤ Ch2r ,

where r := min{s, t}, as in Theorem 2.4.

Proof. For (λ, (p,w)) being an eigenpair of Problem (2.9), let (λ, (u,w))
be an eigenpair of Problem (2.8) as in Lemma 2.1, (λh, (uh,wh)) an eigen-
pair of Problem (2.10) as in Theorem 2.4, and (λh, (ph,wh)) an eigenpair of
Problem (3.3) as in Lemma 3.1. By virtue of these lemmas and theorem, it

only remains to prove that
(
∑

T ∈T F
h

‖p − ph‖2
1,T

)1/2
≤ Chr . Now, because

of (2.2), (3.4), (2.1), and (3.5), we have




∑

T ∈T F
h

‖p − ph‖2
1,T





1
2

≤ ‖p − ph‖0,�F
+



∑

T ∈T F
h

‖∇p − ∇ph‖2
0,T





1
2

≤ ∥∥ρFc
2 div (u − uh)

∥
∥

0,�F

+‖Pph − ph‖0,�F
+ |λ− λh|

∥
∥ρF u
∥
∥

0,�F

+ ∥∥λhρF(u − uh)
∥
∥

0,�F

+



∑

T ∈T F
h

∥
∥�

T
∇ph − ∇ph

∥
∥

2
0,T





1
2

.
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The first, third, and fourth terms in the right hand side are appropriately
bounded by means of Theorem 2.4. Regarding the second one we have

‖Pph − ph‖0,�F
≤ Ch




∑

T ∈T F
h

‖∇ph‖2
0,T





1
2

≤ Ch









∑

T ∈T F
h

∥
∥�

T
∇ph
∥
∥

2
0,T





1
2

+



∑

T ∈T F
h

∥
∥∇ph −�

T
∇ph
∥
∥

2
0,T





1
2






= Chλh
∥
∥ρF uh
∥
∥

0,�F

+Ch



∑

T ∈T F
h

∥
∥�

T
∇ph − ∇ph

∥
∥

2
0,T





1
2

,

where we have used (3.5) for the last equality. The last term in the inequality
above isCh times the last one in the previous inequality. Finally, we estimate
this as follows:




∑

T ∈T F
h

∥
∥�

T
∇ph − ∇ph

∥
∥

2
0,T





1
2

≤ Ch




∑

T ∈T F
h

|∇ph|21,T





1
2

≤ ChλhρF‖ div uh‖0,�F
,

where the last inequality is obtained by repeating the arguments in the proof
of Theorem 3.1 in [1] (see in particular the estimate previous to (3.21) in this
reference). Thus, since u = 1

λρF
∇p because of Lemma 3.1, we conclude the

proof from Theorems 2.2 and 2.4. ��
Our next goal is to obtain higher order error estimates in L2 norms. We do this
by using the abstract spectral approximation theory (see, for instance, [3])
in four steps. First, in Section 4.1, we put our problem in this framework by
defining adequate continuous and discrete operators, T and Th, respectively,
on a same space, with spectra and eigenfunctions coinciding with those of
Problems (2.9) and (3.3), respectively. Then, in Section 4.2, we prove that
the discrete operators Th converge in norm to T. In Section 4.3, by means
of a duality argument, we prove a higher order estimate for the norm of the
restriction of (Th− T) to an eigenspace. Finally, in Section 4.4, we conclude
the spectral approximation result, and we use it combined with Lemma 3.2
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to prove the main result of the paper: a higher order error estimate for the
post-processed pressure pL

h .

4.1 Functional framework

We introduce the following spaces (recall that �I = ∪Jj=1�j ):

Y := H1
�D
(�S)

2 ×
J
∏

j=1

H
1
2 (�j )× H1(�F),

W := {(w, ξ, p) ∈ Y : ξ = w · n on �I

}

,

endowed with their corresponding norms defined by

‖(w, ξ, p)‖2
Y := ‖w‖2

1,�S
+

J
∑

j=1

‖ξ‖2
1
2 ,�j

+ ‖p‖2
1,�F

,

‖(w, ξ, p)‖2
W := ‖w‖2

1,�S
+ ‖p‖2

1,�F
.

In view of these definitions, it is clear that W is a closed subspace of Y
and that the W-norm is equivalent to the Y-norm on W . We also introduce,
∀ε ≥ 0, the space

Hε := L2(�S)
2 ×

J
∏

j=1

Hε(�j )× L2(�F),

endowed with its corresponding product norm defined by

‖(w, ξ, p)‖2
Hε

:= ‖w‖2
0,�S

+
J
∑

j=1

‖ξ‖2
ε,�j

+ ‖p‖2
0,�F

.

Since, for ε ∈ [0, 1
2 ),
∏J
j=1 Hε(�j ) ≡ Hε(�I), we will not distinguish in this

case between these spaces.
Let a be the bilinear and continuous form defined on W × W by

a ((w, ξ, p), (z, ζ, q)) :=
∫

�S

σ (w) : ε(z)+
∫

�S

ρSw · z +
∫

�F

1

ρF

∇p · ∇q

+
∫

�F

1

ρFc
2
pq +
∫

�I

ξq −
∫

�I

pζ.

Notice that a is W-elliptic. Let b be the bilinear and continuous form defined
on H0 × W by

b ((f, η, g), (z, ζ, q)) :=
∫

�S

ρSf · z +
∫

�I

ηq +
∫

�F

1

ρFc
2
gq.
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Since a is elliptic, b is continuous, and W ↪→ Hε∀ε ∈ [0, 1
2 ), then Lax-Mil-

gram Lemma allows us to define the bounded linear operator

T : Hε −→ Hε,

given by T(f, η, g) = (w̃, ξ̃ , p̃) ∈ W such that

a
(

(w̃, ξ̃ , p̃), (z, ζ, q)
)

= b ((f, η, g), (z, ζ, q)) ∀(z, ζ, q) ∈ W .

(4.1)

Then,
∥
∥
∥(w̃, ξ̃ , p̃)

∥
∥
∥

W
≤ C‖(f, η, g)‖H0

≤ C‖(f, η, g)‖Hε
.(4.2)

Clearly, the eigenvalue problem for T is equivalent to the spectral Prob-
lem (2.9) in the sense that (µ, (w,w · n, p)) is an eigenpair of T with µ > 0,
if and only if (λ, (p,w)) is a solution of (2.9) and λ = 1

µ
− 1.

From now on, let µ be a fixed eigenvalue of the operator T and S its
corresponding associated eigenspace.

The following lemma gives an a-priori estimate for the solutions of Prob-
lem (4.1) and the eigenfunctions of the operator T:

Lemma 4.1 Let s ∈ ( 1
2 , 1] and t ∈ (0, 1] be as in Theorem 2.2. For each ε ∈

(0, s− 1
2 ), if (f, η, g) ∈ Hε and (w̃, ξ̃ , p̃) = T(f, η, g), then w̃ ∈ H1+t (�S)

2

with
‖w̃‖1+t,�S

≤ C‖(f, η, g)‖Hε
,

whereC is a strictly positive constant independent of ε, whereas p̃∈H
3
2 +ε(�F)

with
‖p̃‖ 3

2 +ε,�F
≤ Cε‖(f, η, g)‖Hε

.

Furthermore, if (f, η, g) ∈ S , then p̃ ∈ H1+s(�F) and

‖p̃‖1+s,�F
≤ C‖(f, η, g)‖Hε

,

with C independent of ε.

Proof. By testing (4.1) with adequate smooth functions we obtain:

− div
[

σ (w̃)
]+ ρSw̃ = ρSf in �S,(4.3)

σ (w̃)n + p̃n = 0 on �I,(4.4)

σ (w̃)nS = 0 on �N ,(4.5)

w̃ = 0 on �D,(4.6)

−c2�p̃ + p̃ = g in �F ,(4.7)
∂p̃

∂n
+ ρF w̃ · n = ρFη on �I .(4.8)
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Equations (4.3)–(4.6) define a problem of linear elastostatics with a pre-
scribed traction −p̃n on �I . Since p̃ ∈ H1(�F), from the trace theorem
and the standard a priori estimate for this problem (see [16]), we have that
w̃ ∈ H1+t (�S)

2 and

‖w̃‖1+t,�S
≤ C
(

‖f‖0,�S
+ ‖p̃‖1,�F

)

.

On the other hand, equations (4.7) and (4.8) define a Neumann problem
with boundary condition −ρF w̃ ·n+ρFη. Since w̃ ∈ H1(�S)

2 and η ∈ Hε(�I)

with ε < s − 1
2 , then we have that p̃ ∈ H

3
2 +ε(�F) and

‖p̃‖ 3
2 +ε,�F

≤ Cε

(

‖g‖0,�F
+ ‖w̃‖1,�S

+ ‖η‖ε,�I

)

,

because of the a priori estimate for this problem (see [11]). Thus, from the
previous inequalities and (4.2), we conclude the proof for any (f, η, g) ∈ Hε .

For (f, η, g) ∈ S , the lemma follows from Lemma 2.1 and Theorem
2.2. Anyway, we include its proof for the sake of completeness. In this case,
η = f · n = µw̃ · n, and w̃ ∈ H1(�S)

2. Then, the standard error estimate for
the Neumann problem (4.7)–(4.8) (see [16]) yields p̃ ∈ H1+s(�F) and

‖p̃‖1+s,�F
≤ C
(

‖g‖0,�F
+ ‖w̃‖1,�S

)

≤ ‖(f, η, g)‖Hε
.

Thus, we conclude the lemma. ��

Now we introduce the non-conforming finite element space

Yh := Lh�D
(�S)

2 × Lh(�I)× CRb
h(�F),

where

Lh(�I) := {ξh ∈ H1(�I) : ξh|� ∈ P1(�) ∀� ∈ E I
h

}

.

Then, the discrete analogue of W is

Wh := {(wh, ξh, ph) ∈ Yh : ξh = wh · n on �I

}

,

with its norm defined by

‖(wh, ξh, ph)‖2
Wh

:= ‖wh‖2
1,�S

+
∑

T ∈T F
h

‖ph‖2
1,T .

Notice that‖·‖Wh
is also well defined onW and‖(w, ξ, p)‖Wh

=‖(w, ξ, p)‖W
∀(w, ξ, p) ∈ W .
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Let ah be the bilinear and continuous form defined on (W +Wh)× (W +
Wh) by

ah ((w, ξ, p), (z, ζ, q)) :=
∫

�S

σ (w) : ε(z)+
∫

�S

ρSw · z

+
∑

T ∈T F
h

∫

T

1

ρF

�
T
∇p ·�

T
∇q

+
∫

�F

1

ρFc
2
Pp Pq +

∫

�I

ξ P
�I
q −
∫

�I

ζ P
�I
p.

This bilinear form is Wh-elliptic, uniformly on h, as shown in Lemma 5.1
(to make the presentation clearer, we postpone the proof of this and other
technical results to Section 5 below).

Let bh be the bilinear and continuous form defined on H0 × Wh by

bh ((f, η, g), (z, ζ, q)) :=
∫

�S

ρSf · z +
∫

�I

η P
�I
q +
∫

�F

1

ρFc
2
g Pq.

Notice that both bilinear forms, ah and bh, are continuous, but not necessarily
uniformly continuous on h for general regular meshes, because of the terms
involving integrals on �I .

Now we are in order to define the discrete analogue of T. For ε ∈ [0, 1
2 ),

since Wh ↪→ Hε , let
Th : Hε −→ Hε,

be defined by Th(f, η, g) = (w̃h, ξ̃h, p̃h) ∈ Wh such that

ah

(

(w̃h, ξ̃h, p̃h), (zh, ζh, qh)
)

= bh ((f, η, g), (zh, ζh, qh))(4.9)

∀(zh, ζh, qh) ∈ Wh.

Once more, the eigenvalue problem for Th is equivalent to the spectral
Problem (3.3) in the sense that (µh, (wh,wh·n, ph)) is an eigenpair of Th with
µh > 0, if and only if (λh, (ph,wh)) is a solution of (3.3) and λh = 1

µh
− 1.

4.2 Convergence

From now on let ε ∈ (0, s − 1
2 ), with s ∈ ( 1

2 , 1] as in Theorem 2.2, be an
arbitrarily small number. Throughout the rest of the paper, for (f, η, g) ∈ Hε ,
we denote

(w̃, w̃ ·n, p̃) := T(f, η, g) ∈ W, (w̃h, w̃h ·n, p̃h) := Th(f, η, g) ∈ Wh,

and

ew̃ := w̃ − w̃h, ew̃·n := w̃ · n − w̃h · n = ew̃ · n, ep̃ := p̃ − p̃h,
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the corresponding error terms. As a first step we will estimate
∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

Wh
.

Let w̃I and p̃I be the conforming piecewise linear Lagrange interpolants
of w̃ and p̃, respectively. Notice that (w̃I, w̃I · n, p̃I) ∈ W ∩ Wh. Because
of Lemma 4.1, w̃ ∈ H1+t (�S)

2 and p̃ ∈ H
3
2 +ε(�F). Then, the standard error

estimates for the Lagrange interpolant yield:
∥
∥w̃ − w̃I

∥
∥

1,�S
≤ Cht‖w̃‖1+t,�S

≤ Cht‖(f, η, g)‖Hε
,

∥
∥p̃ − p̃I

∥
∥

1,�F
≤ Ch

1
2 +ε‖p̃‖ 3

2 +ε,�F
≤ Cεh

1
2 +ε‖(f, η, g)‖Hε

.

Consequently,
∥
∥
(

w̃ − w̃I, (w̃ − w̃I) · n, p̃ − p̃I)
∥
∥

Wh
≤ Cεh

rε‖(f, η, g)‖Hε
,(4.10)

with rε := min{ 1
2 +ε, t}. When the source term is an eigenfunction, the order

of the approximation is larger. Indeed, if (f, η, g) ∈ S , using again Lemma
4.1 we have that p̃ ∈ H1+s(�F) and

∥
∥p̃ − p̃I

∥
∥

1,�F
≤ Chs‖(f, η, g)‖Hε

. Thus,

we have in this case
∥
∥
(

w̃ − w̃I, (w̃ − w̃I) · n, p̃ − p̃I)
∥
∥

Wh
≤ Chr‖(f, η, g)‖Hε

,(4.11)

with r := min{s, t} as in Theorem 2.4.
The following lemma provides similar estimates for

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

Wh
:

Lemma 4.2 Let r := min{s, t} be as in Theorem 2.4. Then, there exists a
strictly positive constant Cε such that

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

Wh
≤ Cεh

rε‖(f, η, g)‖Hε
,

with rε := min{ 1
2 + ε, t}. Furthermore, if (f, η, g) ∈ S , then
∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

Wh
≤ Chr‖(f, η, g)‖Hε

,

with C independent of ε.

Proof. Let (zh, ζh, qh) := (w̃I − w̃h, (w̃I − w̃h) · n, p̃I − p̃h). Clearly,
∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

Wh
≤ ∥∥(w̃ − w̃I, (w̃ − w̃I) · n, p̃ − p̃I)

∥
∥

Wh
(4.12)

+‖(zh, ζh, qh)‖Wh
.

The first term on the right hand side above is bounded by (4.10). For the
second one we use that ah is Wh-elliptic uniformly on h (see Lemma 5.1
below) and we obtain

α‖(zh, ζh, qh)‖2
Wh

(4.13)

≤ ah
(

(w̃I − w̃, (w̃I − w̃) · n, p̃I − p̃), (zh, ζh, qh)
)

+ah
(

(ew̃, ew̃·n, ep̃), (zh, ζh, qh)
)

.
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In spite of the fact that in general ah is not uniformly continuous on h, we
prove in Lemma 5.3 (see Section 5 below) that

ah
(

(w̃I − w̃, (w̃I − w̃) · n, p̃I − p̃), (zh, ζh, qh)
)

(4.14)

≤
{

Cεh
rε‖(f, η, g)‖Hε

‖(zh, ζh, qh)‖Wh
for (f, η, g) ∈ Hε,

Chr‖(f, η, g)‖Hε
‖(zh, ζh, qh)‖Wh

for (f, η, g) ∈ S.

On the other hand, for the second term in the right hand side of (4.13) we
write

ah
(

(ew̃, ew̃·n, ep̃), (zh, ζh, qh)
) = ah

(

(ew̃, ew̃·n, ep̃), (zh, ζh, 0)
)

+ah
(

(ew̃, ew̃·n, ep̃), (0, 0, qh)
)

.

Then, taking into account that (zh, ζh, 0) ∈ W ∩ Wh, (4.1), and (4.9), we
have

ah
(

(ew̃, ew̃·n, ep̃), (zh, ζh, 0)
)

= a ((w̃, w̃ · n, p̃), (zh, ζh, 0))− ah ((w̃h, w̃h · n, p̃h), (zh, ζh, 0))

−
∫

�I

P
�I
p̃ zh · n +

∫

�I

p̃ zh · n

=
∫

�I

(p̃ − P
�I
p̃) zh · n =

∫

�I

(p̃ − P
�I
p̃)(zh · n − P

�I
zh · n)

≤ Ch‖p̃‖1,�F
‖zh‖1,�S

,

where the last inequality follows from the standard error estimates for P
�I

.
Therefore, from (4.2) we obtain

ah
(

(ew̃, ew̃·n, ep̃), (zh, ζh, 0)
) ≤ Ch‖(f, η, g)‖Hε

‖(zh, ζh, qh)‖Wh
.(4.15)

Now, for (0, 0, qh) ∈ Wh, from the definitions of ew̃, ew̃·n, and ep̃, and
(4.9), we have

ah
(

(ew̃, ew̃·n, ep̃), (0, 0, qh)
)

=
∑

T ∈T F
h

∫

T

1

ρF

∇p̃ · ∇qh +
∫

�F

1

ρFc
2
p̃qh +

∫

�I

w̃ · nP
�I
qh

−
∑

T ∈T F
h

∫

T

1

ρF

∇p̃ · [∇qh −�
T
∇qh
]

−
∫

�F

1

ρFc
2
p̃(qh − Pqh)−

∫

�I

η P
�I
qh −
∫

�F

1

ρFc
2
gPqh.
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Then, by integrating by parts and using that p̃ ∈ H
3
2 +ε(�F), (4.7), and (4.8),

we obtain

ah
(

(ew̃, ew̃·n, ep̃), (0, 0, qh)
)

= 1

ρF

∑

�∈Eo
h

∫

�

∂p̃

∂n
�

[[

qh
]]

�
− 1

ρF

∑

T ∈T F
h

∫

T

(∇p̃ −�
T
∇p̃) · ∇qh

− 1

ρFc
2

∫

�F

p̃ (qh − Pqh)−
∫

�I

w̃ · n
(

qh − P
�I
qh

)

+ 1

ρFc
2

∫

�F

g (qh − Pqh)+
∫

�I

η
(

qh − P
�I
qh

)

.

All the terms on the right hand side above are bounded by using Lemmas
5.4–5.8 (see Section 5 below). Hence, we obtain

ah
(

(ew̃, ew̃·n, ep̃), (0, 0, qh)
)

(4.16)

≤
{

Cεh
1
2 +ε‖(f, η, g)‖Hε

‖(zh, ζh, qh)‖Wh
for (f, η, g) ∈ Hε,

Chs‖(f, η, g)‖Hε
‖(zh, ζh, qh)‖Wh

for (f, η, g) ∈ S.

Therefore, (4.13), (4.14), (4.15), and (4.16) yield

‖(zh, ζh, qh)‖Wh
≤
{

Cεh
rε‖(f, η, g)‖Hε

for (f, η, g) ∈ Hε,

Chr‖(f, η, g)‖Hε
for (f, η, g) ∈ S.

Finally, combining these with estimates (4.12), (4.10), and (4.11), we con-
clude the lemma. ��

The following lemma shows that the operators Th converge to T in norm as
h goes to 0:

Lemma 4.3 There holds

‖Th − T‖L(Hε ,Hε )
→ 0 as h → 0.

Proof. It is a direct consequence of Lemma 4.2, since W + Wh ↪→ Hε

uniformly on h. ��

Remark 4.1 In spite of the fact that the operators T and Th are well defined
for ε = 0, the technique used to prove this lemma requires ε > 0. In fact, we
have used that p̃ ∈ H

3
2 +ε(�F) for ε > 0 in the proof of Lemma 4.2 to give a

meaning to the integrals
∫

�

∂p̃

∂n
�

[[

qh
]]

�
on each edge �.
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4.3 Duality arguments

Our next goal is to prove a higher order estimate for
∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

Hε
when

(f, η, g) ∈ S . To do this we use a duality argument based on the following
auxiliary problem:

− div [σ (w∗)] + ρSw∗ = ρSew̃ in �S,(4.17)

−σ (w∗)n + p∗n = ew̃·nn on �I,(4.18)

σ (w∗)nS = 0 on �N ,(4.19)

w∗ = 0 on �D,(4.20)

−c2�p∗ + p∗ = ep̃ in �F ,(4.21)
∂p∗
∂n

− ρF w∗ · n = 0 on �I .(4.22)

The following is an equivalent variational formulation of the problem
above:

Find (w∗, ξ∗, p∗) ∈ W such that

a ((z, ζ, q), (w∗, ξ∗, p∗)) =
∫

�S

ρSew̃ · z +
∫

�I

ew̃·nζ(4.23)

+
∫

�F

1

ρFc
2
ep̃q ∀(z, ζ, q) ∈ W .

Since a is W-elliptic, because of Lax-Milgram Lemma, this problem
attains a unique solution satisfying

‖(w∗, ξ∗, p∗)‖W ≤ C
∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
.(4.24)

Throughout the rest of the paper, (w∗, ξ∗, p∗) will denote the solution of
Problem (4.23).

The following lemma gives a regularity result for (w∗, ξ∗, p∗):

Lemma 4.4 Let s ∈ ( 1
2 , 1] and t ∈ (0, 1] be as in Theorem 2.2. Then,

there exists a strictly positive constant C such that w∗ ∈ H1+r ′(�S)
2, p∗ ∈

H1+s(�F), and

‖w∗‖1+r ′,�S
+ ‖p∗‖1+s,�F

≤ C
∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
,

with r ′ := min{ 1
2 , t}.

Proof. By using suitable test functions in (4.23) it is simple to show that
(w∗, ξ∗, p∗) satisfies (4.17)–(4.22). Equations (4.21) and (4.22) define a clas-
sical Neumann problem with boundary condition ρF w∗ · n. Since w∗ ∈
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H1(�S)
2, from the trace theorem and the usual a priori estimate for this

problem (see [16]) we have that p∗ ∈ H1+s(�F) and

‖p∗‖1+s,�F
≤ C
(∥
∥ep̃
∥
∥

0,�F
+ ‖w∗‖1,�S

)

≤ C
∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
,

the latter because of (4.24). On the other hand, equations (4.17)–(4.20) define
a linear elastostatics problem with prescribed traction (p∗−ew̃·n)n ∈ L2(�I).
(Indeed, this prescribed traction is more regular, but we are seeking an esti-
mate involving ‖ew̃·n‖L2(�I )

.) Thus, w∗ ∈ H1+r ′(�S)
2 for r ′ = min{ 1

2 , t} (see
[16]) and

‖w∗‖1+r ′,�S
≤ C
∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
. ��

Now we are able to prove a higher order estimate for
∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
when (f, η, g) ∈ S:

Lemma 4.5 For (f, η, g) ∈ S , the following estimate holds

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
≤ Chr+r

′‖(f, η, g)‖Hε
,

where C is a constant independent of ε, r := min{s, t} as in Theorem 2.4
and r ′ := min{ 1

2 , t} as in the previous lemma.

Proof. For (f, η, g) ∈ S , by using equations (4.17), (4.18), and (4.21), we
have
∫

�S

ρS |ew̃|2 +
∫

�I

|ew̃·n|2 +
∫

�F

1

ρFc
2

∣
∣ep̃
∣
∣
2

=
∫

�S

ew̃ · {− div [σ (w∗)] + ρSw∗
}+
∫

�I

ew̃ · [−σ (w∗)n + p∗n]

+
∫

�F

ep̃

(

− 1

ρF

�p∗ + 1

ρFc
2
p∗

)

=
∫

�S

ε(ew̃) : σ (w∗)+
∫

�S

ρSew̃ · w∗ +
∫

�I

ew̃·np∗

+
∑

T ∈T F
h

∫

T

1

ρF

∇ep̃ · ∇p∗ −
∑

�∈Eo
h

∫

�

1

ρF

[[

ep̃
]]

�

∂p∗
∂n

�

−
∫

�I

ep̃w∗ · n

+
∫

�F

1

ρFc
2
ep̃p∗,

where we have used integration by parts and equations (4.19) and (4.22) for
the second equality.
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Let wI
∗ and pI

∗ be the piecewise linear Lagrange interpolants of w∗ and
p∗, respectively. Since (wI

∗,wI
∗ · n, pI

∗) ∈ W ∩ Wh, we can use it as a test
function in (4.1) and (4.9). Thus, we obtain the following residual equation:
∫

�S

σ (ew̃) : ε(wI
∗)+
∫

�S

ρSew̃ · wI
∗ +
∫

�F

1

ρF

∇ep̃ · ∇pI
∗

+
∫

�F

1

ρFc
2
ep̃p

I
∗ +
∫

�F

1

ρFc
2
p̃h
(

pI
∗ − PpI

∗
)+
∫

�I

ew̃·npI
∗

+
∫

�I

w̃h · n
(

pI
∗ − P

�I
pI

∗
)

−
∫

�I

ep̃wI
∗ · n −

∫

�I

(

p̃h − P
�I
p̃h

)

wI
∗ · n

=
∫

�F

1

ρFc
2
(g − Pg)pI

∗ +
∫

�I

η
(

pI
∗ − P

�I
pI

∗
)

.

Therefore, subtracting the last two equations we obtain
∫

�S

ρS |ew̃|2 +
∫

�I

|ew̃·n|2 +
∫

�F

1

ρFc
2

∣
∣ep̃
∣
∣
2

=
∫

�S

σ (ew̃) : ε
(

w∗ − wI
∗
)+
∫

�S

ρSew̃ · (w∗ − wI
∗
)

+
∫

�I

ew̃·n
(

p∗ − pI
∗
)+ 1

ρF

∑

T ∈T F
h

∫

T

∇ep̃ · ∇ (p∗ − pI
∗
)

+ 1

ρFc
2

∫

�F

ep̃
(

p∗ − pI
∗
)−
∫

�I

ep̃
(

w∗ − wI
∗
) · n

− 1

ρF

∑

�∈Eo
h

∫

�

[[

ep̃
]]

�

∂p∗
∂n

�

− 1

ρFc
2

∫

�F

p̃h
(

pI
∗ − PpI

∗
)

−
∫

�I

w̃h · n
(

pI
∗ − P

�I
pI

∗
)

+
∫

�I

(

p̃h − P
�I
p̃h

)

wI
∗ · n

+ 1

ρFc
2

∫

�F

(g − Pg)pI
∗ +
∫

�I

η
(

pI
∗ − P

�I
pI

∗
)

.

All the terms on the right hand side above are bounded by using Lemmas
5.9–5.18 (see Section 5 below). Hence, we obtain

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

2
H0

≤ C

(
∫

�S

ρS |ew̃|2 +
∫

�I

|ew̃·n|2 +
∫

�F

1

ρFc
2

∣
∣ep̃
∣
∣
2

)

≤ Chr+r
′‖(f, η, g)‖Hε

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
,

which allows us to conclude the proof. ��
Now we are able to prove the claimed higher order estimate in Hε :
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Lemma 4.6 The following estimate holds:
∥
∥(T − Th) |S

∥
∥

L(Hε ,Hε )
≤ Chr+r

′
ε ,

where C is a constant independent of ε and r ′
ε := (1 − 2ε)r ′, with r and r ′

as in Lemma 4.5.

Proof. For (f, η, g) ∈ S , from Lemma 4.2 we have
∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H1/2
≤ ∥∥(ew̃, ew̃·n, ep̃)

∥
∥

Wh
≤ Chr‖(f, η, g)‖Hε

and, because of Lemma 4.5,
∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
≤ Chr+r

′‖(f, η, g)‖Hε
.

Thus, the lemma follows from the Interpolation Theorem of Lions and Peetre
(see, for instance, Theorem 1.4 in [15]). ��

4.4 Spectral approximation results and higher order estimate for the
post-processed pressure

Now we are in order to apply the standard abstract spectral approximation the-
ory (see, for instance, [3]). Letmdenote the multiplicity of the eigenvalueµ >
0 of T and S the corresponding eigenspace as above. Since ‖T − Th‖Hε

→ 0
as h → 0, then there exist m eigenvalues of Th, µ(1)h , . . . , µ

(m)
h (repeated

accordingly to their respective multiplicities) converging to µ (see [3]). Let
Sh be the direct sum of the corresponding associated eigenspaces.

We recall the definition of the gap δ̂ between S and Sh:

δ̂(S,Sh) := max {δ(S,Sh), δ(Sh,S)} ,
with

δ(S,Sh) := sup
(w,ξ,p)∈S

‖(w,ξ,p)‖Hε
=1

[

inf
(wh,ξh,ph)∈Sh

‖(w − wh, ξ − ξh, p − ph)‖Hε

]

,

and δ(Sh,S) analogously defined.
The following theorem is an immediate consequence of Theorem 7.1 in

[3] and Lemmas 4.3 and 4.6:

Theorem 4.2 For ε ∈ (0, s − 1
2 ), with s ∈ ( 1

2 , 1] as in Theorem 2.2, there
holds

δ̂ (Sh,S) ≤ Chr+r
′
ε ,

with r and r ′
ε as in Lemma 4.6, and C a strictly positive constant not depend-

ing on ε.
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As a consequence of this theorem, we can prove a higher order error
estimate for the post-processed pressure pL

h , which is the main result of this
paper:

Theorem 4.3 Let (λh, (uh,wh)) be a solution of Problem (2.10) such that
λh → λ as h → 0. Let pL

h be the post-processed pressure defined by (3.1)–
(3.2). Then, there exists a solution (λ, (u,w)) of Problem (2.8) and a strictly
positive constant C such that

∥
∥p − pL

h

∥
∥

0,�F
≤ Chr+r

′ (‖p‖0,�F
+ ‖w‖0,�S

)

,

where p = −ρFc
2 div u is the corresponding fluid pressure, r = min{s, t},

and r ′ = min{ 1
2 , t}, with s ∈ ( 1

2 , 1] and t ∈ (0, 1] as in Theorem 2.2.

Proof. For (λh, (uh,wh)) a solution of Problem (2.10), let (λh, (ph,wh)) be
the solution of Problem (3.3) as in Lemma 3.1. From Theorem 4.2, there
exists a solution (λ, (p,w)) of Problem (2.9) such that

‖p − ph‖0,�F
+ ‖w − wh‖0,�S

≤ Chr+r
′
ε‖(w,w · n, p)‖Hε

(4.25)

≤ Chr+r
′
ε

(

‖p‖0,�F
+ ‖w‖1,�S

)

∀ε ∈ (0, s − 1
2 ), with C independent of ε and r ′ε = (1 − 2ε)r ′. On the other

hand, from Lemma 3.2, we have

∥
∥p − pL

h

∥
∥

0,�F
≤ ‖p − ph‖0,�F

+ ∥∥ph − pL
h

∥
∥

0,�F

≤ ‖p − ph‖0,�F
+ Ch2‖ph‖0,�F

≤ ‖p − ph‖0,�F
+ Ch2

(

‖p − ph‖0,�F
+ ‖p‖0,�F

)

≤ C
(

‖p − ph‖0,�F
+ h2‖p‖0,�F

)

.

Thus, from these two estimates, Lemma 2.1, and Theorem 2.2, we obtain
∀ε ∈ (0, s − 1

2 ),

∥
∥p − pL

h

∥
∥

0,�F
≤ Chr+r

′
ε

(

‖p‖0,�F
+ ‖w‖0,�S

)

.

Therefore, the theorem follows by passing to the limit as ε → 0. ��

Remark 4.2 As a by-product of (4.25) in the previous proof, we have also
proved a higher order error estimate in L2(�S) norm for the solid displace-
ments wh obtained from Problem (2.10).
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5 Lemmata

This section contains statements and proofs of some technical lemmas used
above. We preserve the notation of the previous section.

Lemma 5.1 There exists a strictly positive constant α, independent of h,
such that

ah ((zh, ζh, qh), (zh, ζh, qh)) ≥ α‖(zh, ζh, qh)‖2
Wh

∀(zh, ζh, qh) ∈ Wh.

Proof. Clearly, it is enough to show that there exists a positive constant α1,
independent of h, such that

α1‖qh‖2
1,�F

≤
∑

T ∈T F
h

∫

T

∣
∣�

T
∇qh
∣
∣
2 +
∑

T ∈T F
h

∫

T

|Pqh|2 ∀qh ∈ CRb
h(�F).

Now, for any T ∈ �F , a scaling argument applied to ‖qh‖0,T leads to

‖qh‖2
1,T ≤ C

[

‖∇qh‖2
0,T + 1

|T |
(∫

T

qh

)2
]

,

with C only depending on the regularity of T . Since

1

|T |
(∫

T

qh

)2

=
∫

T

|Pqh|2 ,

we only need to prove that ‖∇qh‖2
0,T ≤ C

∥
∥�

T
∇qh
∥
∥

2
0,T .

Now, since qh ∈ CRb
h(�F), we can write qh|T = qL + α

T
b
T
, with qL a

linear function and b
T

the basis bubble function introduced in Remark 3.4.
Straightforward computations yield

‖∇qh‖2
0,T = ∥∥∇qL

∥
∥

2
0,T + α2

T

∥
∥∇b

T

∥
∥

2
0,T

and
∥
∥�

T
∇qh
∥
∥

2
0,T = ∥∥�

T
∇qL

∥
∥

2
0,T + α2

T

∥
∥�

T
∇b

T

∥
∥

2
0,T

= ∥∥∇qL

∥
∥

2
0,T + α2

T

∥
∥�

T
∇b

T

∥
∥

2
0,T ,

the latter because ∇qL ∈ RT0(T ). Thus, we only need to prove that

∥
∥∇b

T

∥
∥

2
0,T ≤ C

∥
∥�

T
∇b

T

∥
∥

2
0,T .

Scaling arguments show that
∥
∥∇b

T

∥
∥

2
0,T ≤ C.
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On the other hand, using that RT0(T ) = span {(1, 0), (0, 1), (x, y)}, we
obtain

�
T
∇b

T
(x, y) = −9|T |

10
∫

T

|(x − xT , y − yT )|2
(x−xT , y−yT ) ∀(x, y) ∈ T ,

where (xT , yT ) is the barycenter of T . Hence, since
∫

T
|(x − xT , y − yT )|2 =

|T |
3

∑

�⊂∂T |�|2, we have

∥
∥�

T
∇b

T

∥
∥

2
0,T =
(

9

10

)2 |T |2
∫

T

|(x − xT , y − yT )|2
= 2.43 |T |
∑

�⊂∂T
|�|2

≥ C,

and we conclude the lemma. ��

In the proofs of the following lemmas we will use several times the following
local trace inequality:

Lemma 5.2 Let T be a triangle and � one of its edges. There exists a positive
constant C only depending on the minimum angle of T , such that, if q ∈
Hν(T ) with ν ∈ ( 1

2 , 1], then

‖q‖0,� ≤ C
(

|�|− 1
2 ‖q‖0,T + |�|ν− 1

2 |q|ν,T
)

.

Proof. Since the inequality holds for the reference triangle T̂ of vertices
(0, 0), (1, 0), and (0, 1) (see [16]), a change of variable leads to

1

|�|‖q‖
2
0,� ≤ Ĉ

(

1

|T |‖q‖
2
0,T + h2+2ν

T

|T |2 |q|2ν,T
)

,

where hT is the diameter T and Ĉ only depends on the reference triangle T̂ .
Thus, the lemma follows. ��

Lemma 5.3 The following inequality holds

ah
(

(w̃I − w̃, (w̃I − w̃) · n, p̃I − p̃), (zh, ζh, qh)
)

≤
{

Cεh
rε‖(f, η, g)‖Hε

‖(zh, ζh, qh)‖Wh
for (f, η, g) ∈ Hε,

Chr‖(f, η, g)‖Hε
‖(zh, ζh, qh)‖Wh

for (f, η, g) ∈ S.
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Proof. From the definition of ah we have

ah
(

(w̃I − w̃, (w̃I − w̃) · n, p̃I − p̃), (zh, ζh, qh)
)

=
∫

�S

σ (w̃I − w̃) : ε(zh)+
∫

�S

ρS

(

w̃I − w̃
) · zh

+
∑

T ∈T F
h

∫

T

1

ρF

∇ (p̃I − p̃
) ·�

T
∇qh

+
∫

�F

1

ρFc
2

(

p̃I − p̃
)

Pqh −
∫

�I

ζh P�I

(

p̃I − p̃
)

+
∫

�I

(

w̃I − w̃
) · nP

�I
qh

≤ C
∥
∥(w̃I − w̃, (w̃I − w̃) · n, p̃I − p̃)

∥
∥

Wh
‖(zh, ζh, qh)‖Wh

+
∫

�I

(

w̃I − w̃
) · nP

�I
qh.

For the first term on the right hand side of the inequality above we have
∥
∥(w̃I − w̃, (w̃I − w̃) · n, p̃I − p̃)

∥
∥

Wh
‖(zh, ζh, qh)‖Wh

≤ Cεh
rε‖(f, η, g)‖Hε

‖(zh, ζh, qh)‖Wh

if (f, η, g) ∈ Hε (from (4.10)), and a similar inequality withCεhrε substituted
by Chr if (f, η, g) ∈ S (from (4.11)).

To estimate the second term, for each edge � ⊂ �I , let TF ∈ T F
h and

TS ∈ T S
h be such that TF ∩ TS = �. For w̃ ∈ H1+t (�S)

2, Lemma 5.2 applied
to (w̃I − w̃) and qh, both with ν = 1, and standard error estimates for the
Lagrange interpolant w̃I, yield

∫

�

(

w̃I − w̃
) · nP

�
qh ≤ ∥∥w̃I − w̃

∥
∥

0,�
‖qh‖0,�

≤ C
(

|�| 1
2 +t‖w̃‖1+t,TS

) (

|�|− 1
2 ‖qh‖1,TF

)

.

Then, summing up on all the edges � ⊂ �I and using Lemma 4.1 we have
∫

�I

(w̃I − w̃) · nP
�I
qh ≤ Cht‖(f, η, g)‖Hε

‖z, ζ, q)‖Wh
.

Since both, rε < t and r < t , then we conclude the proof. ��
Lemma 5.4 The following estimate holds
∣
∣
∣
∣
∣
∣

1

ρF

∑

�∈Eo
h

∫

�

∂p̃

∂n
�

[[

qh
]]

�

∣
∣
∣
∣
∣
∣

≤
{

Cεh
1
2 +ε‖(f, η, g)‖Hε

‖(zh, ζh, qh)‖Wh
for (f, η, g) ∈ Hε,

Chs‖(f, η, g)‖Hε
‖(zh, ζh, qh)‖Wh

for (f, η, g) ∈ S.
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Proof. For � ∈ Eo
h , let T1, T2 ∈ T F

h be such that T1 ∩ T2 = �. Since
[[

qh
]]

�
is

a linear function vanishing at the midpoint of �, we have
∣
∣
∣
∣

∫

�

∂p̃

∂n
�

[[

qh
]]

�

∣
∣
∣
∣
=
∣
∣
∣
∣

∫

�

[
∂p̃

∂n
�

− P
�

(
∂p̃

∂n
�

)]
[[

qh
]]

�

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�

[
∂p̃

∂n
�

− P
�

(
∂p̃

∂n
�

)]

(qh|T1
)

−
∫

�

[
∂p̃

∂n
�

− P
�

(
∂p̃

∂n
�

)]

(qh|T2
)

∣
∣
∣
∣

≤
∑

i=1,2

∣
∣
∣
∣

∫

�

[
∂p̃

∂n
�

− P
�

(
∂p̃

∂n
�

)]

[(qh|Ti )− P
�
(qh|Ti )]

∣
∣
∣
∣

≤
∑

i=1,2

‖∇p̃ · n
�
− P(∇p̃ · n

�
)‖

0,�
‖(qh|Ti )− P(qh|Ti )‖0,�

.

For (f, η, g) ∈ Hε , by using Lemma 5.2 applied to [∇p̃ · n
�
− P(∇p̃ · n

�
)]

with ν = 1
2 + ε, and to [(qh|Ti ) − P(qh|Ti )], i = 1, 2, with ν = 1, from

standard estimates for the projection P , we obtain
∣
∣
∣
∣

∫

�

∂p̃

∂n
�

[[

qh
]]

�

∣
∣
∣
∣
≤ C
∑

i=1,2

(

|�|ε‖∇p̃‖ 1
2 +ε,Ti
) (

|�| 1
2 ‖∇qh‖0,Ti

)

.

Thus, summing up on all the edges � ∈ Eo
h and using Lemma 4.1, we con-

clude the lemma for (f, η, g) ∈ Hε . The case (f, η, g) ∈ S can be dealt with
analogously. ��
Lemma 5.5 The following estimate holds
∣
∣
∣
∣
∣
∣

1

ρF

∑

T ∈T F
h

∫

T

(∇p̃ −�
T
∇p̃) · ∇qh

∣
∣
∣
∣
∣
∣

≤
{

Cεh
1
2 +ε‖(f, η, g)‖Hε

‖(zh, ζh, qh)‖Wh
for (f, η, g) ∈ Hε,

Chs‖(f, η, g)‖Hε
‖(zh, ζh, qh)‖Wh

for (f, η, g) ∈ S.
Proof. It is an immediate consequence of standard error estimates for�

T
and

Lemma 4.1. ��
Lemma 5.6 The following estimates hold

∣
∣
∣
∣
∣

1

ρFc
2

∫

�F

p̃(qh − Pqh)

∣
∣
∣
∣
∣
≤ Ch‖(f, η, g)‖Hε

‖(zh, ζh, qh)‖Wh

and
∣
∣
∣
∣
∣

1

ρFc
2

∫

�F

g(qh − Pqh)

∣
∣
∣
∣
∣
≤ Ch‖(f, η, g)‖Hε

‖(zh, ζh, qh)‖Wh
.
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Proof. They follow immediately from the standard error estimate for P and
(4.2). ��
Lemma 5.7 The following estimate holds

∣
∣
∣
∣
∣

∫

�I

w̃ · n
(

qh − P
�I
qh

)
∣
∣
∣
∣
∣
≤ Ch‖(f, η, g)‖Hε

‖(zh, ζh, qh)‖Wh
.

Proof. We have
∣
∣
∣
∣
∣

∫

�I

w̃ · n
(

qh − P
�I
qh

)
∣
∣
∣
∣
∣
≤
∥
∥
∥w̃ · n − P

�I
(w̃ · n)

∥
∥
∥

0,�I

∥
∥
∥qh − P

�I
qh

∥
∥
∥

0,�I

.

By using standard error estimates for P
�I

and the trace theorem, we bound
the first term on the right hand side as follows

∥
∥
∥w̃ · n − P

�I
(w̃ · n)

∥
∥
∥

0,�I

≤ Ch
min
{

1, 1
2 +t
}

‖w̃‖1+t,�S
.

On the other hand, for each edge � ⊂ �I , let T� ∈ T F
h be such that � ⊂ ∂T�.

By using Lemma 5.2 applied to (qh−Pqh)with ν = 1 and the error estimate
for P , we have

∥
∥
∥qh − P

�I
qh

∥
∥
∥

0,�
≤ ‖qh − Pqh‖0,� ≤ C|�| 1

2 ‖∇qh‖0,T� .

Thus, summing up on all the edges � ⊂ �I and using Lemma 4.1, since
min{ 3

2 , 1 + t} > 1, we conclude the proof. ��
Lemma 5.8 The following estimate holds
∣
∣
∣
∣
∣

∫

�I

η(qh − P
�I
qh)

∣
∣
∣
∣
∣

≤
{

Ch
1
2 +ε‖(f, η, g)‖Hε

‖(zh, ζh, qh)‖Wh
for (f, η, g) ∈ Hε,

Ch‖(f, η, g)‖Hε
‖(zh, ζh, qh)‖Wh

for (f, η, g) ∈ S.

Proof. For (f, η, g) ∈ S , η = f · n = µw̃ · n ∈∏J
j=1 H

1
2 (�j ), with





J
∑

j=1

‖η‖2
1
2 ,�j





1
2

≤ C‖w̃‖1,�S
≤ C‖(f, η, g)‖Hε

,

the latter because of (4.2). Then, we proceed in this case as in the proof of the
previous lemma, with w̃ ·n substituted by η. On the other hand, for (f, η, g) ∈
Hε , η ∈ Hε(�I) and we modify the proof by using that

∥
∥
∥η − P

�I
η

∥
∥
∥

0,�
≤

Chε‖η‖ε,� in this case. ��
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Lemma 5.9 For (f, η, g) ∈ S , the following estimate holds
∣
∣
∣
∣
∣

∫

�S

σ (ew̃) : ε(w∗ − wI
∗)+
∫

�S

ρSew̃ · (w∗ − wI
∗
)

∣
∣
∣
∣
∣

≤ Chr+r
′‖(f, η, g)‖Hε

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
.

Proof. The inequality follows immediately from standard approximation
properties of the Lagrange interpolant of w∗, and Lemmas 4.4 and 4.2. ��
Lemma 5.10 For (f, η, g) ∈ S , the following estimate holds

∣
∣
∣
∣
∣

∫

�I

ew̃·n
(

p∗ − pI
∗
)

∣
∣
∣
∣
∣
≤ Chr+1‖(f, η, g)‖Hε

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
.

Proof. Using the trace theorem and standard approximation properties of the
Lagrange interpolant of p∗|�I

we have
∣
∣
∣
∣
∣

∫

�I

ew̃·n
(

p∗ − pI
∗
)

∣
∣
∣
∣
∣
≤ Ch‖p∗‖ 3

2 ,�F
‖ew̃‖1,�S

.

Then, the result follows from Lemmas 4.4 and 4.2. ��
Lemma 5.11 For (f, η, g) ∈ S , the following estimate holds

∣
∣
∣
∣
∣
∣

1

ρF

∑

T ∈T F
h

∫

T

∇ep̃ · ∇ (p∗ − pI
∗
)+ 1

ρFc
2

∫

�F

ep̃
(

p∗ − pI
∗
)

∣
∣
∣
∣
∣
∣

≤ Chr+s‖(f, η, g)‖Hε

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
.

Proof. It is a direct application of the standard approximation properties of
the Lagrange interpolant of p∗ and Lemmas 4.4 and 4.2. ��
Lemma 5.12 For (f, η, g) ∈ S , the following estimate holds
∣
∣
∣
∣
∣

∫

�I

ep̃
(

w∗ − wI
∗
) · n

∣
∣
∣
∣
∣
≤ Chr+r

′‖(f, η, g)‖Hε

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
.

Proof. For each edge � ⊂ �I , let TF ∈ T F
h and TS ∈ T S

h be such that
TF ∩ TS = �. Lemma 5.2 applied to ep̃ and (w∗ − wI

∗), both with ν = 1, and
the standard approximation properties of the Lagrange interpolant wI

∗ yield
∣
∣
∣
∣

∫

�

ep̃
(

w∗ − wI
∗
) · n

∣
∣
∣
∣
≤ ∥∥ep̃
∥
∥

0,�

∥
∥w∗ − wI

∗
∥
∥

0,�

≤ C
(

|�|− 1
2
∥
∥ep̃
∥
∥

1,TF

) (

|�| 1
2 +r ′‖w∗‖1+r ′,TS

)

.

Thus, summing up on all the edges � ⊂ �I and using Lemmas 4.4 and 4.2,
we conclude the proof. ��
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Lemma 5.13 For (f, η, g) ∈ S , the following estimate holds
∣
∣
∣
∣
∣
∣

1

ρF

∑

�∈Eo
h

∫

�

[[

ep̃
]]

�

∂p∗
∂n

�

∣
∣
∣
∣
∣
∣

≤ Chr+s‖(f, η, g)‖Hε

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
.

Proof. First we observe that p̃ is continuous because of Lemma 4.4. Conse-
quently, we have

∫

�

[[

ep̃
]]

�
= − ∫

�

[[

ph
]]

�
= 0. Then, proceeding as in the

proof of Lemma 5.4, we obtain
∣
∣
∣
∣

∫

�

[[

ep̃
]]

�

∂p∗
∂n

�

∣
∣
∣
∣
≤ C
∑

i=1,2

(

|�|s− 1
2 ‖∇p∗‖s,Ti

) (

|�| 1
2
∥
∥∇ep̃
∥
∥

0,Ti

)

,

where T1, T2 ∈ T F
h are such that T1 ∩ T2 = �. Thus, summing up on all the

edges � ∈ Eo
h and using Lemma 4.4 and 4.2 we conclude the proof. ��

Lemma 5.14 For (f, η, g) ∈ S , the following estimate holds
∣
∣
∣
∣
∣

1

ρFc
2

∫

�F

p̃h
(

pI
∗ − PpI

∗
)

∣
∣
∣
∣
∣
≤ Ch2‖(f, η, g)‖Hε

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
.

Proof. Since p̃h|T ∈ H1(T ) ∀T ∈ T F
h and p∗ ∈ H1+s(�F), we have

∫

T

p̃h
(

pI
∗ − PpI

∗
) =
∫

T

(p̃h − P p̃h)
(

pI
∗ − PpI

∗
)≤Ch2‖∇p̃h‖0,T

∥
∥∇pI

∗
∥
∥

0,T

≤ Ch2
(

‖∇p̃‖0,T + ∥∥∇ep̃
∥
∥

0,T

)

‖p∗‖1+s,T ,

where we have used standard error estimates for P and the Lagrange interpo-
lant pI

∗, and the definition of ep̃. Thus, after summing up on all the triangles
T ∈ T F

h , the lemma follows from (4.2) and Lemmas 4.4 and 4.2. ��
Lemma 5.15 For (f, η, g) ∈ S , the following estimate holds
∣
∣
∣
∣
∣

∫

�I

w̃h · n
(

pI
∗ − P

�I
pI

∗
)
∣
∣
∣
∣
∣
≤ Ch1+r‖(f, η, g)‖Hε

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
.

Proof. We have
∫

�I

w̃h · n
(

pI
∗ − P

�I
pI

∗
)

=
∫

�I

w̃ · n
(

pI
∗ − P

�I
pI

∗
)

−
∫

�I

ew̃·n
(

pI
∗ − P

�I
pI

∗
)

.

The first term on the right hand side above can be treated as in the proof of
Lemma 5.7. Thus, by using Lemma 4.1, we obtain

∣
∣
∣
∣
∣

∫

�I

w̃ · n
(

pI
∗ − P

�I
pI

∗
)
∣
∣
∣
∣
∣
≤ Ch

min
{

1, 1
2 +t
}

‖(f, η, g)‖Hε

∥
∥
∥p

I
∗ − P

�I
pI

∗
∥
∥
∥

0,�I

.

(5.1)
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For the second term we apply Lemma 4.2 to obtain
∣
∣
∣
∣
∣

∫

�I

ew̃·n
(

pI
∗ − P

�I
pI

∗
)
∣
∣
∣
∣
∣
≤ Chr‖(f, η, g)‖Hε

∥
∥
∥p

I
∗ − P

�I
pI

∗
∥
∥
∥

0,�I

.

Now, using standard error estimates for the projection P
�I

and the Lagrange

interpolant pI
∗, and Lemma 4.4, we have

(5.2)
∥
∥
∥p

I
∗ − P

�I
pI

∗
∥
∥
∥

0,�I

≤ ∥∥pI
∗ − p∗

∥
∥

0,�I
+
∥
∥
∥p∗ − P

�I
p∗
∥
∥
∥

0,�I

+
∥
∥
∥P�I

(p∗ − pI
∗)
∥
∥
∥

0,�I

≤ Ch‖p∗‖ 3
2 ,�F

≤ Ch
∥
∥(ew̃, ew̃·n, ep̃

∥
∥

H0
.

Thus, since r ≤ min{1, 1
2 + t}, we conclude the lemma. ��

Lemma 5.16 For (f, η, g) ∈ S , the following estimate holds
∣
∣
∣
∣
∣

∫

�I

(

p̃h − P
�I
p̃h

)

wI
∗ · n

∣
∣
∣
∣
∣
≤ Ch1+r ′‖(f, η, g)‖Hε

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
.

Proof. Firstly, we have
∫

�I

(

p̃h − P
�I
p̃h

)

wI
∗ · n ≤

∥
∥
∥p̃h − P

�I
p̃h

∥
∥
∥

0,�I

∥
∥
∥wI

∗ · n − P
�I

wI
∗ · n
∥
∥
∥

0,�I

.

The first term on the right hand side above is bounded as (qh − P
�I
qh) in the

proof of Lemma 5.7. Then, using the definition of ep̃ we obtain

∥
∥
∥p̃h − P

�I
p̃h

∥
∥
∥

0,�I

≤ Ch
1
2




∑

T ∈T F
h

‖p̃h‖2
1,T





1
2

≤ Ch
1
2




‖p̃‖1,�F

+



∑

T ∈T F
h

∥
∥ep̃
∥
∥

2
1,T





1
2






≤ Ch
1
2 ‖(f, η, g)‖Hε

,

the latter because of (4.2) and Lemma 4.2. On the other hand, the second

term is bounded as
(

pI
∗ − P

�I
pI

∗
)

in Lemma 5.15 and we obtain

∥
∥
∥wI

∗ · n − P
�I

wI
∗ · n
∥
∥
∥

0,�I

≤ Ch
1
2 +r ′‖w∗‖1+r ′,�S

≤ Ch
1
2 +r ′∥∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
.

Thus, we conclude the lemma. ��
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Lemma 5.17 For (f, η, g) ∈ S , the following estimate holds
∣
∣
∣
∣
∣

1

ρFc
2

∫

�F

(g − Pg)pI
∗

∣
∣
∣
∣
∣
≤ Ch2‖(f, η, g)‖Hε

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
.

Proof. We have
∫

�F

(g − Pg)pI
∗ ≤ ‖g − Pg‖0,�F

∥
∥pI

∗ − PpI
∗
∥
∥

0,�F
≤ Ch2‖g‖1,�F

∥
∥pI

∗
∥
∥

1,�F

≤ Ch2‖g‖1,�F
‖p∗‖1+s,�F

,

where we have used standard error estimates for P and the Lagrange inter-
polant. Now, since g = µp̃, for (f, η, g) ∈ S , then we conclude the proof
from the estimate (4.2) and Lemma 4.4. ��
Lemma 5.18 For (f, η, g) ∈ S , the following estimate holds

∣
∣
∣
∣
∣

∫

�I

η(pI
∗ − P

�I
pI

∗)

∣
∣
∣
∣
∣
≤ Ch

3
2 +r ′‖(f, η, g)‖Hε

∥
∥(ew̃, ew̃·n, ep̃)

∥
∥

H0
.

Proof. Let (f, η, g) ∈ S . Then, η = f · n = µw̃ · n. Thus, we proceed as
in the proof of Lemma 5.15, and the result follows from estimates (5.1) and
(5.2), and the fact that r ′ = min{ 1

2 , t}.
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9. Bermúdez, A., Rodrı́guez, R.: Finite element computation of the vibration modes of
a fluid-solid system. Comp. Methods Appl. Mech. Eng. 119, 355–370 (1994)

10. Conca, C., Planchard, J., Vanninathan, M.: Fluids and Periodic Structures. Masson,
Paris, 1995

11. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in
Mathematics, 1341, Springer, Berlin, 1988

12. Durán, R., Gastaldi, L., Padra, C.: A posteriori error estimator for mixed approxima-
tions of eigenvalue problem. Math. Models Methods Appl. Sci. 9, 1165–1178 (1999)

13. Everstine, G.C.: A symmetric potential formulation for fluid-structure interaction. J.
Sound Vibr. 79, 157–160 (1981)

14. Gastaldi, L.: Mixed finite element methods in fluid structure systems. Numer. Math.
74, 153–176 (1996)

15. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations.
Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986

16. Grisvard, P.: Elliptic Problems for Non-smooth Domains. Pitman, Boston, 1985
17. Hamdi, M., Ousset,Y., Verchery, G.: A displacement method for the analysis of vibra-

tions of coupled fluid-structure systems. Internat. J. Numer. Methods Eng. 13, 139–150
(1978)

18. Kiefling, L., Feng, G.C.: Fluid-structure finite element vibration analysis. AIAA J.
14, 199–203 (1976)

19. Morand, H.J-P., Ohayon, R.: Fluid Structure Interaction. J. Wiley & Sons, Chichester,
1995

20. Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order ellip-
tic problems. In Mathematical Aspects of Finite Element Methods. Lecture Notes in
Mathematics, 606, Springer Verlag, Berlin, Heidelberg, NewYork, 1972, pp. 292–315

21. Rodrı́guez, R., Solomin, J. : The order of convergence of eigenfrequencies in finite
element approximations of fluid-structure interaction problems. Math. Comp. 65,
1463–1475 (1996)

22. Zienkiewicz, O.C., Newton, R.E.: Coupled vibration of a structure submerged in a
compressible fluid. In Proc. Int. Symp. on Finite Element Techniques. Stuttgart, 1969,
pp. 1–15


