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Abstract
We find an exact solution of scalar-tensor-vector gravity field equations that 
represents a black hole embedded in an expanding universe. This is the first 
solution of such a kind found in the theory. We analyze the properties of the 
apparent horizons as well as the essential singularities of the metric, and 
compare them with the McVittie spacetime of general relativity. Depending on 
the cosmological model adopted and the value of the free parameter α of the 
theory, the solution describes a cosmological black hole, an inhomogeneity in 
an expanding universe, or a naked singularity. We use the results to set further 
constraints on the free parameters of the theory and we study geodesic motion 
in this spacetime.
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1. Introduction

‘Probably the most beautiful of all existing theories’. These words by Landau and Lifschitz 
[1] reflect the pleasant aesthetic experience induced on many of us by general relativity (GR). 
The theory not only excels in simplicity, symmetry, unification strength, and fundamentality 
[2], but also has an outstanding predictive and explanatory power. Though Einstein himself 
remarked GR charm [3], he was quite aware that it was not the ultimate theory of gravitation. 
He struggled the last decades of his life searching for suitable generalizations of the theory 
that could accommodate electrodynamics and also include quantum effects.
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Besides the inherent deficiencies in the theory, such as the problem of spacetime singulari-
ties, GR models do not succeed in reproducing rotation curves of nearby galaxies, mass profiles 
of galaxies clusters, some gravitational lensing effects, and cosmological data. A possible solu-
tion to these problems consists of modifying the right hand side of Einstein equations: a term 
with a cosmological constant is added and the existence of dark matter is postulated. From an 
ontological point of view, this approach is quite costly since we are assuming the existence of 
entities of unknown nature whose properties have never been measured to date [4–6].

We can follow a different strategy to explain the astronomical data: modify the theory of 
gravitation. This is the approach adopted by the theory scalar-tensor-vector gravity (STVG), 
also dubbed MOdified gravity (MOG) [7]. In STVG, the effects of gravity are not only repre-
sented by a metric tensor field but also by scalar and vector fields. Specifically, the universal 
constant G along with the mass µ̃ of the vector field are the dynamical scalar fields of the 
theory. When gravity is weak, the equations of the theory reduce to a modified acceleration 
law characterized by: (1) an enhanced Newtonian constant G = GN (1+ α), and (2) at certain 
scales, a repulsive Yukawa force term that counteracts the augmented Newtonian acceleration 
law, in such a way that the results of GR in the Solar System GR are recovered. The first of 
the features mentioned above allows to reproduce the rotation curves of many galaxies [8–10], 
the dynamics of galactic clusters [11–13] and cosmological observations [14, 15], without 
dark matter. There are others alternative theories of gravitation, such as fourth order gravity, 
that also offer a modified acceleration law that can explain the observed rotation curves of 
galaxies. Remarkably, this modified law is very similar to that of STVG in vacuum, as shown 
by Mishra and Singh [16]. It should be noticed that modifications to STVG have also been 
proposed. For instance Xue-Mei Deng and collaborators [17] relaxed some assumptions of 
STVG and thus derived a modified version of the theory, called MSTVG, obtaining the corre-
sponding constraints of the Yukawa parameters4.

We can classify the known solutions of the field equations of STVG in two main groups. 
On the one hand, vacuum and non-vacuum solutions for a given distribution of matter where 
the spacetime metric is asymptotically flat. This is the case of the Schwarzschild and Kerr 
STVG black holes5 found by Moffat [30], and neutron star models constructed by Lopez 
Armengol and Romero [31]. Banerjee et al [32] studied the modifications in the interior struc-
ture of white dwarfs, including STVG. On the other hand, there are cosmological solutions 
such as the ones derived by Roshan [33] and Jamali and collaborators [34]. Until now, a third 
class of solutions remains unexplored in the theory: metrics that represent an inhomogeneity 
in an expanding universe.

In general relativity, McVittie [35] was the first to obtain an exact solution of Einstein field 
equations that corresponds to a central inhomogeneity embedded in a Friedmann–Lemaître–
Robertson–Walker (FLRW) background. The McVittie metric and its generalization have been 
widely studied through the years (see for instance the works by Faraoni and Jacques [36] and 
Carrera and Giulini [37]). The investigation of such solutions has transcended GR to encom-
pass alternative theories of gravitation, such as Brans–Dicke theory, f (R)-gravity, Horndeski 

4 The recent detection of a neutron star merger in gravitational waves [18] (GW170817), and the observation of the 
electromagnetic counterpart GRB 170814A [19] have been used to show that a large class of alternative theories of 
gravitation, for instance those in which photons suffer an additional Shapiro time delay, must be discarded  
[20, 21]. As demonstrated by Green and collaborators [22], STVG survives such stringent test: both gravitational 
and electromagnetic signals travel on null geodesics in some limits of this theory (see, however [23]).
5 Different aspects of the STVG black hole solutions have been extensively studied in the literature: accretion disks 
around Schwarzschild and Kerr STVG black holes [24], shadows cast by near-extremal Kerr STVG black holes 
[25], black hole superradiance in STVG [26], quasinormal modes of Schwarzschild STVG black holes [27], the 
process of acceleration and collimation of relativistic jets in Kerr STVG black holes [28], dynamics of neutral and 
charged particles around a Schwarzschild STVG black hole immersed in a weak magnetic field [29], among others.
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theories, and f (T) gravity (for a review on cosmological black hole solutions in these theories 
see, for instance, [38] and [39]) . The results of the studies of inhomogeneous spacetimes have 
direct astrophysical implications: a cosmological force acting on large scales can modify the 
structure of galaxies and clusters of galaxies, and inhibit large-scale accretion processes. The 
effects of the cosmological expansion, thus, need to be taken into account when modeling the 
evolution of structure in the universe.

In this work we present exact solutions of STVG that represent an inhomogeneity in an 
expanding spacetime, and analyze the corresponding properties. We distinguish the metrics 
that represent cosmological black holes and we compare them with the corresponding solu-
tions in GR.

The paper is organized as follows. We provide a brief introduction to STVG in section 2. 
Next, we introduce a solution to the field equations of the theory that represents an inhomo-
geneity in an expanding universe. In section 4, we analyze the properties of the metric: singu-
larities and apparent horizons, and explore the space of parameters of the theory. We explore 
the trajectories of photons and massive particles in section 5. The last section of the paper is 
devoted to the conclusions.

2. STVG gravity

2.1. STVG action and field equations

The action6 in STVG theory is [7]:

S = SGR + Sφ + SS + SM, (1)

where

SGR =
1

16π

∫
d4x

√
−g

1
G
R, (2)

Sφ = −
∫

d4x
√
−g

(
1
4
BµνBµν − 1

2
µ̃2φµφµ

)
, (3)

SS =

∫
d4x

√
−g

1
G3

(
1
2
gµν∇µG∇νG− V(G)

)
 (4)

+

∫
d4x

1
µ̃2G

(
1
2
gµν∇µµ̃∇ν µ̃− V(µ̃)

)
. (5)

Here, gµν is the spacetime metric, R denotes the Ricci scalar, and ∇µ is the covariant deriva-
tive; φµ stands for a Proca-type massive vector field, µ̃ is its mass, and Bµν = ∂µφν − ∂νφµ. 
The scalar fields G(x) and µ̃(x) vary in space and time, and V(G), and V(µ̃) are the corre-
sponding potentials. We adopt the metric signature ηµν = diag(−1,+1,+1,+1). The term SM  
in the action refers to possible matter sources.

The full energy–momentum tensor for the gravitational sources is:

Tµν = TM
µν + Tφ

µν + TS
µν , (6)

6 As suggested by Moffat and Rahvar [9] and Moffat and Toth [40], we dismiss the scalar field ω , and we treat it as 
a constant, ω = 1.
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where

TM
µν = − 2√

−g
δSM
δgµν

, (7)

Tφ
µν = − 2√

−g
δSφ
δgµν

, (8)

TS
µν = − 2√

−g
δSS
δgµν

. (9)

Following the notation introduced above, TM
µν denotes the ordinary matter energy–momentum 

and TS
µν the scalar contributions to the energy–momentum tensor; Tφ

µν stands for the energy–
momentum tensor7 of the field φµ:

Tφ
µν = −1

4

(
Bµ

αBνα − 1
4
gµνBαβBαβ

)
. (10)

3. Solution of STVG field equations

3.1. Derivation of the metric

In order to derive the spacetime metric that represents an inhomogeneity in an expanding 
universe, we make the following assumptions:

 •  The energy–momentum tensor has two components Tµν = TM
µν + Tφ

µν, where TM
µν stands 

for the energy–momentum of the cosmological fluid, and Tφ
µν is the energy–momentum 

tensor for the vector field φµ:

TM
µν =

(
ρ+

p
c2

)
uµuν + pgµν . (11)

  Here, ρ  and p  are the density and pressure of the cosmological fluid, respectively, and uµ 
is the four-velocity of the fluid, which in a comoving coordinate system has the form:

[uµ] =
(

c√
−g00

, 0, 0, 0
)
. (12)

 •  Since the effects of the mass of the vector field µ̃ manifest on kiloparsec scales from the 
source, it is neglected when solving the field equations for compact objects such as black 
holes [30].

 •  G is a constant that depends on the parameter α [7]:

G = GN (1+ α) . (13)

Given these hypotheses, the action (1) takes the form,

S =

∫
d4x

√
−g

(
R

16πG
− 1

4
BµνBµν

)
. (14)

7 Moffat [30] set the potential V(φ) equal to zero in the definition of Tφ
µν given in [7].
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Variation of the latter expression with respect to gµν yields the STVG field equations:

Gµν = 8πG
(
TM
µν + Tφ

µν

)
, (15)

where Gµν  is the Einstein tensor. If we vary the action (14) with respect to the vector field φµ, 
we obtain the dynamical equation for this field:

∇νBµν = 0, (16)

and

∇σBµν +∇µBνσ +∇νBσν = 0. (17)

Adopting the heuristic method used by Schwarzschild to find his solution, we propose the 
following metric ansatz8:

ds2 = −A(t, x)2dt2 + B(t, x)2
(
dx2 + x2dθ2 + x2sin θ2dφ2

)
, (18)

where (t, x, θ,φ) are isotropic coordinates. Since the off-diagonal elements of the energy–
momentum tensor Tµν = TM

µν + Tφ
µν are zero, the Gtx component of the Einstein tensor yields:

Gtx = 0. (19)

The expression for Gtx is:

Gtx =

[(
B(t, x)

A′(t, x)
A(t, x)

+ B′(t, x)
)
Ḃ(t, x)− B(t, x)(Ḃ(t, x))′

]
= 0. (20)

In the latter formula, the dot denotes the derivative with respect to the t coordinate whereas 
the prime corresponds to the derivative with respect to the x coordinate. Since B(t, x) �= 0 and 
Ḃ(t, x) �= 0, we can divide equation (20) by B(t, x)Ḃ(t, x). This yields:

Gtx =
A′(t, x)
A(t, x)

+
B′(t, x)
B(t, x)

− (Ḃ(t, x))′

Ḃ(t, x)

=
∂

∂x
(lnA(t, x)) +

∂

∂x
(lnB(t, x))− ∂

∂x

(
ln Ḃ(t, x)

)

=
∂

∂x

[
lnA(t, x) + lnB(t, x)− ln Ḃ(t, x)

]

=
∂

∂x

[
ln

(
A(t, x)B(t, x)

Ḃ(t, x)

)]
= 0.

 

(21)

If we integrate equation (21) with respect to the x coordinate, we obtain:

ln

(
A(t, x)B(t, x)

Ḃ(t, x)

)
+ g(t) = C, (22)

where g(t) is an unspecified function that only depends on the t coordinate, and C is an inte-
gration constant. After some algebra, we can get an expression for A(t, x) as follows:

8 In what follows we work with geometrized units G  =  c  =  1.
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ln

(
A(t, x)B(t, x)

Ḃ(t, x)

)
= C− g(t)

A(t, x)B(t, x)
Ḃ(t, x)

= eC−g(t)

A(t, x) = f (t)
Ḃ(t, x)
B(t, x)

,

 

(23)

where

f (t) = eC−g(t). (24)

Our next step is to consider a possible form for the function B(t, x) by comparing the line 
element given by equation (18) with the line element for a Schwarzschild STVG black hole 
in isotropic coordinates9:

ds2 = −

(
1− M2

4x2 +
Q2

4x2

)2

[(
1+ M

2x

)2 − Q2

4x2

]2 dt2

+

[(
1+

M
2x

)2

− Q2

4x2

]2 (
dx2 + x2dΩ2) ,

 

(26)

where dΩ2 = dθ2 + sin θ2dφ2. Thus, the proposal for B(t, x) is:
(
1+

M
2x

)2

− Q2

4x2
=⇒ B(t, x) =

(
k(t, x) +

l(t)
x

)2

− h(t)
x2

. (27)

The functions l(t) and h(t) are related to the gravitational mass M and gravitational charge 
Q of the source. Because we assume that both M and Q are not distributed in space but are 
concentrated in the singularity, l(t) and h(t) depend only on the time coordinate. By substitut-
ing B(t, x) into equation (23), we derive an expression for A(t, x):

A(t, x) = f̃ (t)
k̇
k +

ll̇
k2x2 +

(l̇k+lk̇)
xk2 − ḣ

2k2x2[(
1+ l

xk

)2 − h
k2x2

] , (28)

where f̃ (t) is simply f̃ (t) = 2f (t).
In order to determine the specific form of the functions f̃ (t), k(t, x), l(t), and h(t), we 

impose the following conditions on A(t, x):

9 The coordinate transformation between Schwarzschild coordinates (t, r, θ,φ) and isotropic coordinates (t, x, θ,φ) 
is:

r = x

[(
1+

M
2x

)2

− Q2

4x2

]
. (25)

D Pérez and G E Romero Class. Quantum Grav. 36 (2019) 245022
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 (i)  In the limit t = const, the metric coefficients should not depend on the t coordinate. Then:

f̃ (t)
k̇
k +

ll̇
k2x2 +

(l̇k+lk̇)
xk2 − ḣ

2k2x2[(
1+ l

xk

)2 − h
k2x2

] −→
t=const

(
1− M2

4x2 +
Q2

4x2

)
[(
1+ M

2x

)2 − Q2

4x2

] . (29)

  In other words, we should recover the line element of the Schwarzschild-STVG black 
hole.

 (ii)  When the gravitational mass and charge tend to zero, the line element should be that of a 
FLRW model (for simplicity we assume the spatial curvature κ = 0):

ds2 = −dt2 + a(t)2
(
dx2 + x2dΩ2) . (30)

  From condition (i), comparing the expressions in equation (29), we get:

f̃
k̇
k
= 1 ⇒ f̃ k̇ = k, (31)

f̃

(
l̇k + lk̇

)

xk2
= 0. (32)

  Substitution of equation (31) into equation (32) yields:

f̃ l̇ = −l, (33)

  and,

f̃
ll̇

k2x2
= − l2

x2k2
, (34)

where we use equation (33). A final requisite to satisfy condition (i) is:

− f̃ ḣ
2k2x2

=
h

k2x2
⇒ ḣf̃ = −2h. (35)

Condition (ii) implies that if l(t) → 0 and h(t) → 0, then B(t, x) ⇒ k(t, x), and comparing 
with FLRW metric k(t, x) ⇒ a(t). Thus, the function k depends only on the temporal coordi-
nate, and from (31):

f̃ =
k
k̇
=

ã(t)
˙̃a(t)

. (36)

Substituting the later expression into equations (33) and (35) yields:

l̇
ã
˙̃a
= −l ⇒ l =

M
ã
, (37)

ḣ
ã
˙̃a
= −2h ⇒ h =

Q2

ã2
. (38)

The integration constants M and Q are the gravitational mass and gravitational charge of the 
central inhomogeneity, respectively, while ã is associated with the scale factor a(t) of the cos-
mological model as ã(t) =

√
a(t).

Finally, by replacing f̃ (t), k(t), l(t), and h(t) into expressions (23) and (27), the metric (18) 
takes the form:

D Pérez and G E Romero Class. Quantum Grav. 36 (2019) 245022
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ds2 = −c2

[
1− G(GM2−Q2)

4c4a2x2

]2

[(
1+ GM

2c2xa

)2 − GQ2

4c4a2x2

]2 dt2

+ a(t)2
[(

1+
GM
2c2xa

)2

− GQ2

4c4a2x2

]2 (
dx2 + x2dΩ2) ,

 

(39)

where the corresponding constants have been adequately restored.
In the next subsection, we prove that the metric here obtained does indeed satisfy the field 

equations of the theory.

3.2. Correctness of the metric

The first step in order to show that metric (39) satisfies the field equations of STVG given by 
(15)–(17), is to compute the Einstein tensor. The non-zero components of Gµ

ν  are:

Gt
t = −a0 − 3

(
ȧ
a

)2

= κ

(
−ρc2 +

BtxBtx

8π

)
, (40)

Gx
x = −a0 −

(
ȧ
a

)2

a1 − 2
ä
a
a2 = κ

(
p+

BtxBtx

8π

)
 (41)

Gθ
θ = a0 −

(
ȧ
a

)2

a1 − 2
ä
a
a2 = κ

(
p− BtxBtx

8π

)
, (42)

Gφ
φ = Gθ

θ, (43)

where an overdot denotes differentiation with respect to the comoving time t, κ = 8πG/c4, 
and the coefficients a0, a1 and a2 are given by:

a0 =
256 GQ2c12x4a4

(G2M2 − GQ2 + 4Gc2Mxa+ 4c4x2a2)4
, (44)

a1 =
−5G2M2 + 5GQ2 − 8GMc2xa+ 4c4x2a2

−G2M2 + GQ2 + 4c4x2a2
, (45)

a2 =
G2M2 − GQ2 + 4GMc2xa+ 4c4x2a2

−G2M2 + GQ2 + 4c4x2a2
. (46)

We determine the explicit form of the tensor Bµν  subtracting equation  (41) from equa-
tion (42). After some algebraic manipulation, the non-zero components of Bµν  are:

Btx =
Q

x2a3
[
1− G(GM2−Q2)

4c4a2x2

] [(
1+ GM

2c2xa

)2 − GQ2

4c4a2x2

]2 , (47)

and Bxt = −Btx.

D Pérez and G E Romero Class. Quantum Grav. 36 (2019) 245022
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Next, we verify that equation (16) is satisfied. Since Bµν  is an anti-symmetric tensor:

∇µBµν =
1√
|g|

∂µ

(√
|g|Bµν

)
. (48)

Furthermore, given that the only non-null components of Bµν  are Btx and Bxt, two of the four 
equations of (16) are trivially satisfied. The other two remaining terms read:

1√
|g|

∂x

(√
|g|Bxt

)
=

1√
|g|

∂x (Q sin θ) = 0, (49)

1√
|g|

∂t

(√
|g|Btx

)
=

1√
|g|

∂t (−Q sin θ) = 0. (50)

Thus, equation (16) holds. On the other hand, it can be easily checked that the tensor Bµν  with 
components given by expression (47) also satisfies equation (17).

All these lengthy calculations were necessary to prove that there is an exact solution of 
STVG field equations that corresponds to an inhomogeneity in an expanding universe. Our 
next goal is to assess the nature of this spacetime; more specifically, we first analyze whether 
the metric becomes singular for a certain range of coordinates and values of the parameters. 
Second, we compute the location of the apparent horizons and determine if they correspond 
to event or cosmological horizons. These features are essential to obtain a precise characteri-
zation of the spacetime and evaluate if cosmological black hole solutions are possible within 
the theory.

4. Properties of inhomogeneous expanding spacetimes in STVG

It is convenient to express the line element (39) in terms of the parameter α:

ds2 = −c2
f (t, x)2

g(t, x)2
dt2 + a(t)2g(t, x)2

(
dx2 + x2dΩ2) , (51)

where

f (t, x) =

[
1− GN

2 (1+ α)M2

4c4a(t)2x2

]
,

 
(52)

g(t, x) =

[
1+

GN (1+ α)M
c2xa(t)

+
GN

2 (1+ α)M2

4c4a(t)2x2

]
.

 

(53)

The limits of this metric are as expected: if a ≡ 1, (51) reduces to the line element of a 
Schwarzschild-STVG black hole written in isotropic coordinates, whereas in the limit M → 0 
equation (51) tends to the metric of a spatially flat FLRW model. For α → 0, the McVittie 
metric in GR is recovered.

4.1. Singularities

Singularities are a pathological feature of some solutions of the fundamental equations of a 
theory [41]. In GR and STVG, we can identify singular spacetime models if some physical 
quantity, for instance density or pressure of the fluid, or some curvature invariant is badly 
behaved. Thus, we begin computing the Ricci scalar for metric (51):

D Pérez and G E Romero Class. Quantum Grav. 36 (2019) 245022
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R = RabRab =
6

f (t, x)

[
ä
a
g(t, x) + H(t)2γ

]
, (54)

γ = 1− GN (1+ α)M
c2a(t)x

− 3GN
2 (1+ α)M2

4c4a(t)2x2
. (55)

Inspection of the latter equation reveals that the Ricci scalar diverges if f (t, x) = 0, that is:

a(t)x =
GN (1+ α)

1/2 M
2c2

. (56)

According to the classification of spacetime singularities introduced by Ellis and Schmidt 
[42], the metric possesses a scalar curvature singularity for those values of the coordinate 
x that satisfy equation  (56). In the limit α → 0, the singular points in McVittie metric are 
obtained.

The singularities of the metric corresponds to the hypersurface σ(t, r) = 0, where

σ(t, r) = a(t)x− GN (1+ α)
1/2 M

2c2
. (57)

The normal vector na = ∇aσ to the hypersurface and its corresponding norm are [43] :

nana = − 1
c2

g(t, x)2

f (t, x)2
ȧ2x2 +

1

g(t, x)2
. (58)

Since in the limit x → GN (1+ α) 1/2M/2c2a(t), the norm of the normal vector tends to −∞, 
the surface is spacelike, and consequently the singularity is spacelike.

We write the Ricci scalar in terms of the energy density of the fluid and its pressure: we take 

the trace of equation (15), and using that Tφ = Tµ
µ
φ = 0, we get:

R =
8πG
c4

(
ρc2 − 3p

)
. (59)

On the other hand, we obtain an additional relation between ρ  and p  by subtracting equa-
tion (40) from equation (41). The result is:

2 ˙H(t)
g(t, x)
f (t, x)

= −8πG
c4

(
ρc2 + p

)
. (60)

Equations (59) and (60) form a system of two equations with two unknowns, ρ  and p . The 
solution is:

ρc2 =
3c4

8πGN (1+ α)
H(t)2, (61)

p = − c4

8πGN (1+ α)

[
2 ˙H(t)

g(t, x)
f (t, x)

+ 3 H(t)2
]
. (62)

In the limit α → 0, the corresponding expressions for the energy density and pressure in 
McVittie spacetime in GR are recovered [44]. Notice that ρ  is homogeneous on hypersurfaces 
of t constant as opposed to the pressure. From expression (62), we see that p  diverges in the 
same way as the Ricci scalar. Both the energy density and the pressure have the same qualita-
tive features as in McVittie spacetime in GR [45].
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4.2. Apparent horizons

We characterize stationary black holes by the presence of event horizons. In dynamical space-
times, however, to compute the location of the event horizon is an impossible task since we 
would need to know the entire spacetime manifold to future infinity. Instead, we can resort 
to the concept of apparent horizon. This is defined as the boundary where the convergence 
properties of null geodesics congruences change. The apparent horizons are located where:

θn = 0, (63)

and

θl > 0. (64)

Here, θn  and θl are the expansion of the future-directed ingoing and outgoing null geodesics 
congruences, respectively [44]. Apparent horizons are defined quasi-locally and do not refer 
to the global causal structure of spacetime [44]. In spherical symmetry, the future-directed 
ingoing and outgoing null geodesics are radial and their tangent fields are denoted na and la, 
respectively. If the null vectors na and la are not affinely-parametrized, their corresponding 
expansions are calculated as follows:

θn = hab∇anb =
[
gab +

lanb + nalb

(−ncldgcd)

]
∇anb, (65)

where in the later equation nb should be substituted by lb in order to calculate θl. The tensor hab 
acts as a projector onto the two-dimensional surface to which na and la are normal.

The tangent fields to the ingoing and outgoing radial null geodesics of metric (51) are:

nµ =

(
g(t, x)
c f (t, x)

,
−1

a(t)g(t, x)
, 0, 0

)
, (66)

lµ =

(
g(t, x)
c f (t, x)

,
1

a(t)g(t, x)
, 0, 0

)
. (67)

These tangents fields are such that nµnµ = lµlµ = 0, and gµνnµlν = −2. Given the vectors na 
and lb, after some algebraic manipulations, the expansions for θn  and θl take the form:

θn =
2γ

a(t)xg(t, x)2

[
xȧ(t)

g(t, x)
cf (t, x)

− 1
g(t, x)

]
, (68)

θl =
2γ

a(t)xg(t, x)2

[
xȧ(t)

g(t, x)
cf (t, x)

+
1

g(t, x)

]
, (69)

γ = 1+
GNM (1+ α)

2c2xa(t)
. (70)

The condition θn = 0 implies xȧ(t)g(t, x)2 = cf (t, x), which in terms of the areal radius:

R(t, x) = a(t)x

[
1+

GN (1+ α)M
c2xa(t)

+
GN

2 (1+ α)M2

4c4a(t)2x2

]
, (71)
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can be written as:

H(t)2

c2
R4 − R2 + 2

GN (1+ α)M
c2

R− GN
2 (1+ α)αM2

c4
= 0, (72)

and H(t) = ˙a(t)/a(t) is the Hubble function. We can gain some insight on the nature of the 
apparent horizons of metric (51) by analyzing the limits of equation (72). For large values 
of the areal radius, R → c/H; this is the value of the cosmological apparent horizon in the 
FLRW model. In the case H → 0, equation (72) reduces to:

R2 − 2
GN (1+ α)M

c2
R+

GN
2 (1+ α)αM2

c4
= 0. (73)

The two solutions of the quadratic equation are:

R± =
GNM
c2

[
(1+ α)± (1+ α)

1/2
]
. (74)

These are the outer (+) and inner (−) event horizons in the Schwarzschild STVG black hole 
[30]. Finally, if we take α → 0, equation  (72) reduces to a cubic equation  that locates the 
apparent horizons in McVittie metric in GR (see for instance equation (4.25) in [44]). Thus, 
in the appropriate limits, the apparent horizons become a cosmological or a black hole event 
horizon, a strong hint that this metric may represent a cosmological black hole.

Equation (72), nonetheless, has four roots. Using Descartes’ rule of sign, we determine that 
three of them are positive and one is negative. We discard the latter because it has no physical 
meaning. Let us denote the three positive roots R*, R−, and R+ , where R∗ < R− < R+. We 

Figure 1. Plot of the areal radius of the apparent horizons as a function of time for 
a stellar mass source in a dust-dominated background. The blue line corresponds to 
α = 0, and the red line to α = 5× 10−2. For each case, the dashed line indicates the 
location of the singularity.
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show plots of the roots as a function of the cosmic time from figures 1–4. For figures 1 and 2, 
the Hubble function is that of a cosmological dust dominated background model:

H(t) =
2
3
1
t
. (75)

In figures 3 and 4, we adopt the scale factor of the Λ Cold Dark Matter model (ΛCDM):

a(t) =

[
(1− ΩΛ,0)

ΩΛ,0

(
sinh

(
3
2
H0

√
ΩΛ,0 t

))2
]1/3

. (76)

Here, H0 = 2.27× 10−18 s−1 ≈ 70 km s−1 Mpc, and ΩΛ,0 = 0.7 for the Hubble factor and 
the cosmological constant density parameter, respectively.

The value of the parameter α depends on the mass of the gravitational central source. For 
stellar mass sources, Lopez Armengol and Romero [31] found that α < 0.1. In the case of 
supermassive black holes (107M� � M � 109M�) the range of values are 0.03 < α < 2.47 
(see for instance [11, 24]). Figures 1 and 3 correspond to a stellar mass source (we choose 
α = 5× 10−2) while for figures 2 and 4 the source is a supermassive black hole (we select 
α = 1, and α = 2.45). In the four plots, we include the apparent horizons in McVittie space-
time in GR (α = 0) for comparison.

There are common features to all these plots:

 •  We distinguish three apparent horizons. Two of them, R− and R+ , lay in the causal future 
of the curvature singularity (see equation  (57)). The innermost apparent horizon R* is 
bounded by the singularity and disconnected from the exterior geometry. In what follows, 

Figure 2. Plot of the areal radius of the apparent horizons as a function of time for a 
supermassive black hole in a dust-dominated background. The blue line corresponds to 
α = 0, the red line to α = 1, and the green line α = 2.45. For each case, the dashed line 
indicates the location of the singularity.
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we restrict our analysis to the spacetime region that corresponds to the causal future of the 
curvature singularity.

 •  The curvature singularity (dashed line in the figures) is present since t  =  0 and its location 
in terms of the areal radius does not change with cosmic time. Since the surface given 
by equation (57) at t  =  0 is in the causal past of all the spacetime events of the region of 
interest, we regard it as a cosmological ‘Big-Bang’ singularity10.

 •  At early values of the cosmic time, we only have a cosmological singularity. Later on, the 
apparent horizons R− and R+ appear together at a specific value of the cosmic time. The 
horizon R+ becomes larger for growing t, reaching the value of the cosmological apparent 
horizon in the FLRW model. Conversely, R− gets smaller for increasing values of t, and 
in the limit t → ∞, it gets closer and closer to the singularity.

 •  For larger values of the parameter α, the appearance of the apparent horizons occurs at 
later times. Furthermore, the value of the areal radius of the surface singularity and the 
horizons is higher for increasing values of α.

Since R+ expands forever and it tends to the cosmological apparent horizon in the FLRW 
model, we interpret the surface R+ , t finite as a cosmological apparent horizon of the space-
time metric (39).

The nature of the apparent horizon R− requires some further analysis. We are particularly 
interested in the surface R  =  R−, t = ∞. In the next subsection, we show that independently 
of the asymptotic form of the Hubble function as long as the null energy condition is satis-
fied, ingoing null radial geodesics reach the null surface R  =  R−, t = ∞ in a finite lapse of 

Figure 3. Plot of the areal radius of the apparent horizons as a function of time for a 
stellar mass source in the Λ-CDM model. The blue line corresponds to α = 0, and the 
red line to α = 5× 10−2. For each case, the dashed line indicates the location of the 
singularity.

10 Kaloper and collaborators [45] give the same interpretation for the curvature singularity in McVittie spacetime in 
GR.

D Pérez and G E Romero Class. Quantum Grav. 36 (2019) 245022



15

the affine parameter. In other words, the spacetime metric (39) is incomplete to null future-
oriented ingoing geodesics11.

4.2.1. The surface R  =  R−, t = ∞. Consider ingoing null radial geodesics from an initial 
distance Ri > R− and geodesic initial velocity at that point R′

i < 0. We aim to show that these 
geodesics arrive in a finite lapse of affine parameter σ to the surface R  =  R−, t = ∞. More 
precisely:

R′ =
dR
dσ

⇒ dσ =
dR
R′ ⇒ ∆σ =

∫ σ

σR−

dσ =

∫ R

R−

dR
R
, (77)

being ∆σ a finite quantity.
Before starting, it is convenient to express the line element (51) in terms of the areal radius 

(see equation (71)). When doing the coordinate transformation, the algebraic manipulations 
are considerably simplified if you employ the relation:

f (t, x)2

g(t, x)2
= 1− 4r0

R
+

4r12

R2 , (78)

Figure 4. Plot of the areal radius of the apparent horizons as a function of time for a 
supermassive black hole the Λ-CDM model. The blue line corresponds to α = 0, the 
red line to α = 1, and the green line α = 2.45. For each case, the dashed line indicates 
the location of the singularity.

11 In other to obtain this result, we follow the methods developed by Kaloper et al [45].
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where we introduce r0 and r1 to simplify the notation:

r0 =
GN (1+ α)M

2c2
, (79)

r1 =
GN

√
(1+ α)αM
2c2

. (80)

After the coordinate transformation, the line element takes the form:

ds2 = −c2
(
1− 4r0

R
+

4r12

R2 − H(t)2R2

c2

)
dt2

− 2RH(t)√
1− 4r0

R + 4r12
R2

dRdt +
dR2

1− 4r0
R + 4r12

R2

+ R2dΩ2.
 (81)

For radial null geodesics, ds2 = 0 and we derive the equation:

dt
dR

∣∣∣∣∣
±

=
±
c

1√
1− 4r0

R + 4r12
R2 ± H(t)R

c

1√
1− 4r0

R + 4r12
R2

. (82)

Here, the  +  (−) sign corresponds to outgoing (ingoing) radial null geodesics, respectively.
We focus on ingoing radial geodesics and rewrite equation (82) as:

dt
dR

= −1
c

√
1− 4r0

R + 4r12
R2 + H(t)R

c√
1− 4r0

R + 4r12
R2

(
1− 4r0

R + 4r12
R2 − H(t)2R2

c2

)

= − R2

H(t)2


1+ H(t)R

c

√
1− 4r0

R +
4r1

2

R2




(R− R∗) (R+ − R) (R+ R∗ + R− + R+)

× 1
(R− R−)

.

 

(83)

In the limit R → R−,

dt → −R−
2

H̃0
2

1
(R− − R∗) (R+ − R−) (2R− + (R∗ + R+)

× dR
(R− R−)

.
 

(84)

H̃0 is the value of the Hubble function in the limit t → ∞. To leading order, integration of the 
latter yields:

e(H̃0t) →
(

1
R− R−

)γ

+ ..., (85)

where γ = R−
2/ [(R− − R∗) (R+ − R−) (2R− + (R∗ + R+)], being γ > 0. Later on, we will 

use the result given by (85).
Next, we compute an additional radial null geodesic equation. After some algebra, we 

obtain

D Pérez and G E Romero Class. Quantum Grav. 36 (2019) 245022



17

R′′ =
R ˙H(t)R′2

c2
√
1− 4r0

R + 4r12
R2

(√
1− 4r0

R + 4r12
R2 − H(t)R

c

)2 . (86)

The primes denote the derivative with respect to some affine parameter σ.

Notice that ˙H(t) < 0 provided the null energy condition holds. This can be proved by add-
ing equations (61) and (62):

ρc2 + p =
−c4

4πGN
(1+ α) ˙H(t)

g(t, x)
f (t, x)

. (87)

We see that if the null energy condition is satisfied, ρc2 + p > 0, then ˙H(t) < 0. The follow-
ing step is to look for an approximated formula for ˙H(t): substituting an expression for the 
energy density of the universe:

ρ = Λ+ ρ0

(
a0
a(t)

)s

, (88)

where s = 3 (1+ w) and w = p/ρ, into equation (61) and also taking into account the defini-

tion of the Hubble function, ˙H(t) = ˙a(t)/a(t), in the limit t → ∞, H(t) → H̃0 +O
(
e(−sH̃0t)

)
, 

and hence ˙H(t) ∝ e(−sH̃0t). Now, we make use of the approximation given in (85):

˙H(t) ∝ (R− R∗)
γs. (89)

Then, along null ingoing radial geodesics near the surface R  =  R−, t = ∞:

R′′ → −C̃ (R− R−)
γs−2 R′2. (90)

Integration of the latter to leading order yields:

R′ = R′
ie

(
−

∫ R
Ri
C̃(R−R−)γs−2

)
dR

= Ge−
C̃

(αs−1) (R−R−)γs−1

.
 (91)

We denote by R′
i  the initial radial velocity of an ingoing geodesics that begins at the areal 

radius R = Ri > R−; we also consider that R′
i < 0. Under this assumption, the constant G  is 

finite and negative:

G = R′
ie

C̃
(γs−1) (Ri − R−)

γs−1 . (92)

Using equation (91), we can straightforward estimate the quantity ∆σ:

∆σ G =

∫ R−

Ri

dR e
C̃

(γs−1) (R−R−)γs−1

. (93)

If αs− 1 < 0, then

lim
R→R−

C̃
(γs− 1)

(R− R−)
γs−1 → −∞, (94)
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and the integral is convergent. In the case γs− 1 � 0:

lim
R→R−

C̃
(γs− 1)

(R− R−)
γs−1 → 0, (95)

the integral is also convergent. Consequently, the integral always remains finite and so the 
quantity ∆σ. Hence, we have proved that ingoing radial null geodesics arrive at the surface 
R  =  R−, t = ∞ in a finite lapse of affine parameter.

The event horizon is characterized as a one way membrane: once we have crossed this 
surface it is physically impossible to cross it back in the opposite sense. This is precisely the 
case for the surface R  =  R−, t = ∞ provided H̃0 > 0 when t → ∞.

Consider again a radial ingoing null geodesic with initial velocity R′ < 0. According to 

equation (86), and since ˙H(t) < 0, the acceleration R′′ is negative. This geodesic can never 
turn back or decrease its speed. Once the geodesic arrives at R  =  R−, t = ∞ in a finite lapse 
of affine parameter, it crosses this surface which is perfectly traversable. Recall that R  =  R− is 
a null branch of the apparent horizon, and thus constitutes a boundary where the convergence 
properties of null geodesics change. Right after crossing R  =  R−, t = ∞, the convergence 
properties of the geodesic are modified and it is unable to return back. Hence, the surface 
R  =  R−, t = ∞ is an event horizon, and the spacetime metric (51) represents a cosmological 
black hole.

The nature of the surface R  =  R−, t = ∞ when H̃0 = 0 is much more subtle. The equa-
tion for the location of the apparent horizons (72) can be rewritten as:

fah = 1− 4
r0
R

+ 4
r21
R2 − H(t)2R2

c2
. (96)

In the limit t → ∞, H(t) → 0, and fah reduces to:

1− 4r0
R

+
4r12

R2 =
f (t, x)2

g(t, x)2
, (97)

where we employ the equality given by (78). The apparent horizons are located where fah = 0, 
or equivalently where f (t, x) = 0. As shown in section 4.1, f (t, x) = 0 identifies a singular 
surface of the spacetime metric. Consequently, the cosmological solution does not represent a 
black hole. Further investigation is needed to assess the strength of the singularity, and thus to 
get a better understanding of the global causal structure of the spacetime.

4.3. Exploration of the space of parameters

So far, we have explored the properties of the solution for a limited range of values of the 
parameter α. In what follows, we remove such restriction and allow α to freely move in the 
interval 0 < α < ∞.

As already mentioned in section 4.1, the location of the singularity is independent of the 
cosmic time. We write equation (57) in terms of the areal radius:

R
√
1+ α− (1+ α)

[
1+

√
1+ α

]
= 0, (98)

or

R(α) =
√
1+ α

[
1+

√
1+ α

]
. (99)
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The function R(α) is strictly increasing: the higher the value of α, the larger the areal radius of 
the singularity. Also notice that there is no value for α such that the singularity can be avoided, 
implying that there are no regular cosmological black hole solutions in the theory.

The location of the apparent horizons as a function of the parameter α is depicted in fig-
ure 5, for a fixed value of the cosmic time. As before, the dashed line marks the location of the 
singularity. In the interval 0 < α < α̃, we identify three apparent horizons: an inner horizon 
R* that lies beyond the singularity (and hence is not part of the spacetime), a black hole appar-
ent horizon R−, and a cosmological apparent horizon R+ . As α gets closer to α̃, R− increases 
while R+ becomes smaller. For α = α̃ both horizons, R− and R+ , become one.

Higher values of α implies an augmented gravitational constant. In STVG the gravitational 
field is stronger that in GR; the central source drags the cosmological horizon while the black 
hole apparent horizon enlarges.

If α > α̃, the apparent horizons disappear and a naked singularity is left behind. Accepting 
the validity of the cosmic censorship conjecture [46], we see that restrictions can be imposed 
on the values of the parameter α such that solutions that contain naked singularities are not 
allowed in the theory. The constraint on α changes for different values of the cosmic time (the 
coefficients of equation (72) depend on the Hubble function H(t)). The latter implies that the 
permitted values of α do not only depend on the mass of the central source but also on the 
cosmic epoch of the universe.

Figure 5. Plot of the areal radius of the apparent horizons as a function of the parameter 
α for a fixed value of the cosmic time. The central source is a supermassive black hole, 
and the Hubble factor corresponds to the Λ-CDM model. The dashed line indicates the 
location of the singularity.
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5. Geodesic equations

In this section we derive the geodesic equations  for the cosmological black hole metric in 
STVG and analyze whether circular orbits are possible for both photons and massive particles.

In STVG, the equation of motion for a test particle in coordinates xµ is given by
(
d2xµ

dτ 2
+ Γµ

αβ

dxα

dτ
dxβ

dτ

)
=

q
m
Bµ

ν
dxν

dτ
, (100)

where τ  represents the particle proper time, and q is the coupling constant with the vector 
field.

Moffat [30] postulates that the gravitational source charge q of the vector field φµ is pro-
portional to the mass of the source particle,

q = ±
√
αGNm. (101)

Here, GN denotes Newton’s gravitational constant, and α is a free dimensionless param-
eter. The positive value for the root is chosen (q  >  0) to maintain a repulsive, gravitational 
Yukawa-like force when the mass parameter µ̃ is non-zero. We see, then, that in STVG the 
nature of the gravitational field has been modified with respect to GR in two ways: there is an 
enhanced gravitational constant G = GN (1+ α), and a vector field φµ that exerts a gravita-
tional Lorentz-type force on any material object through equation (100).

Before computing the geodesic equations, it is convenient to express the line element (51) 
in terms of Schwarzschild coordinates (t, r, θ,φ). The metric then takes the form:

ds2 = −c2
(
1− 4b0

r
+

4b12

r2
− H(t)r2

c2

)
dt2 − 2H(t)r√(

1− 4b0
r + 4b12

r2

)dtdr

+

(
1− 4b0

r
+

4b12

r2

)−1

dr2 + r2dΩ2,

 

(102)

Figure 6. Plot of the numerical solution of equations  (116) and (117) as a function 
of the Hubble factor H for a cosmological black hole spacetime in STVG: (a) radial 
coordinate r , and (b) specific linear momentum p  of a test particle. The mass of the 
central object is M = 107 M� and the parameter α = 1. The initial conditions are 
r(H0) = 5× 10−3 Mpc, and p (H0)  =  0 (circular orbits in Schwarzschild–de Sitter 
spacetime in STVG).
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where:

b0 =
GN (1+ α)M

2 c2
, (103)

b1 =
GN

√
α (1+ α)M
2 c2

. (104)

We derive the geodetic equations from (100) taking into account that the components of the 
tensor field Bµ

ν in Schwarzschild coordinates are:

Bt
r =

2 c b1√
GN (1+ α) f (r)r2

, (105)

Figure 7. Plot of the numerical solution of equations  (116) and (117) as a function 
of the Hubble factor H for a cosmological black hole spacetime in STVG: (a) radial 
coordinate r , and (b) specific linear momentum p  of a test particle. The mass of the 
central object is M = 107 M� and the parameter α = 1. The initial conditions are 
r(H0) = 1.2× 10−2 Mpc, and p (H0)  =  0 (circular orbits in Schwarzschild–de Sitter 
spacetime in STVG).

Figure 8. Plot of the numerical solution of equations  (116) and (117) as a function 
of the Hubble factor H for a cosmological black hole spacetime in STVG: (a) radial 
coordinate r , and (b) specific linear momentum p  of a test particle. The mass of the 
central object is M = 107 M� and the parameter α = 1. The initial conditions are 
r(H0) = 2× 10−2 Mpc, and p (H0)  =  0 (circular orbits in Schwarzschild–de Sitter 
spacetime in STVG).
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Br
t =

2 c3 b1
(
f (r)− r2H(t)2

c2

)
√

GN (α+ 1)r2
, (106)

and,

f (r) = 1− 4b0
r

+
4b12

r2
. (107)

Since the metric is spherically symmetric, without lost of generality, we analyze the orbits 
in the equatorial plane (θ = π/2). From the geodesic equation for the φ coordinate, we obtain 
a conserved angular momentum:

φ̇ =
L
r2
. (108)

After some lengthy but straightforward algebra, the geodesic equations for t and r coordinates 
are:

d2t
dτ 2

= − H(t)ε

c2
√
f (r)

+
ṫ2H(t)

2
√
f (r)

(−2f (r) + rf ′(r))− ṫṙf ′(r)
f (r)

+
2ṙ

r2f (r)

√
α

α+ 1
b1,

 (109)

d2r
dτ 2

=
L2

r3

(
f (r)− f ′(r)r

2

)
+ ε

(
− rH(t)2

c2
+

f ′(r)
2

)
+ ṫ2r

√
f (r)H′(t)

+ 2c2 ṫ
√

α

α+ 1
b1

f (r)− r2H(t)2

c2

r2
.

 

(110)

Here, ṫ = dt/dτ  and ṙ = dr/dτ , being τ  some affine parameter along the geodesic xµ(τ); 
notice that H′(t) = dH/dt where t stands for the cosmological time. As usual ε = 0 for mass-
less particles whereas ε = −c2 for massive particles.

5.1. Circular photon orbits

We first explore whether the conditions for circular photon orbits are possible. From the 
expression gµν ẋµẋν = 0 and setting θ = π/2, it follows:

−c2
(
f (r)− r2H(t)2

c2

)
ṫ2 +

ṙ2

f (r)
− 2rH(t)√

f (r)
ṫṙ +

L2

r2
= 0. (111)

For circular orbits ṙ = 0 and the latter equation reads:

L2

r2
= c2χṫ2, (112)

where

χ(t, r) =

(
f (r)− r2H(t)2

c2

)
. (113)

In section 4.2, we calculated the expansions θn  and θl. It is straightforward to check that 
θnθl = χ(t, r). In a spherically symmetric spacetime θnθl = 0 defines a surface where at least 
one of the null expansions vanishes. Hence, θnθl > 0 corresponds to a regular (or untrapped) 
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region of the spacetime, while θnθl < 0 corresponds to a trapped or antitrapped region. A 
circular photon orbit should be necessarily confined to the regular region of the spacetime. If 
r  =  rc is the radius of the circular orbit of the photon, then in the regular region of the space-
time χ(t, rc) > 0 for all t along the orbit:

χ(t, rc) = f (rc)−
rc2H(t)2

c2
> 0. (114)

We see that no circular orbits of photons exist for spacetimes singular at some time in the past 
(a(t*)  =  0 for t∗ < t0, being t0 the age of the universe). In such a case, limt→t0+H(t) → +∞, 
so χ(t, rc) < 0 at early times. The same feature is present in both McVittie [47] and general-
ized McVittie spacetimes [48].

5.2. Trajectories of massive particles

Next we explore the evolution of trajectories of massive particles through the cosmic history 
of the universe in the ΛCDM model. It is convenient to express the geodesic equations  in 
terms of the Hubble factor:

H(t) = H0 coth (t/tΛ), w(H) :=
dH
dt

=
3
2
(
H0

2 − H2) , (115)

where tΛ = (2/3)/H0. Under the change of coordinates t → H , the geodesic equations take 
the form:

dr
dH

=
p
uw

, (116)

dp
dH

=
ṗ
uw

, (117)

and,

ṗ = r
√
f (r)wu2 +

(
r2 − 6rb0 + 8r12

r2

)
L2

r3
− c2

(
2b0r − 4b12

r3
− rH2

c2

)

+

√
α

1+ α

c2b1
r2

(
fr − r2H2

c2

)
u.

 

(118)

In the limit t → ∞, the line element (102) tends to the Schwarzschild–de Sitter metric 
in STVG where circular orbits are possible. Then, we chose as initial conditions in the inte-
gration of equations  (116) and (117) p (H0)  =  0 and r(H0) = rc(L,M,α), i.e. the orbits are 
asymptotic to circular orbits in Schwarzschild–de Sitter spacetime in STVG with angular 
momentum L, mass M, and parameter α.

The integration of equations  (116) and (117) is done in the interval 3H0 � H � H0 
(3.2× 109 yr � t < ∞). This corresponds to the time interval when the first stars and galax-
ies formed till the spacetime geometry of the universe becomes fully de Sitter. The central 
source is a supermassive black hole of M = 107M�. In figures  6–8 we show plots of the 
results for three different sets of initial conditions. In all cases, the parameter α equals to 1 and 
we use geometrized units (G  =  c  =  1). We found no differences in the evolution of the orbits 
if we change the value of α in the interval 0.03 < α < 2.47. These are the permitted values of 
α if the central source is a supermassive black hole [8, 24].
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Depending on the initial condition, the evolution of the trajectory of the particle is mark-
edly different. In all cases, none of the orbits remain circular. Such a behavior is also present 
in flat McVittie spacetime of GR (see for instance [47] and [48]); the cosmological expansion 
disrupts the circularity. Except for Schwarzschild–de Sitter both in STVG and GR, circular 
orbits only exist in stationary spacetimes.

6. Conclusions

In this work we derived the first exact solution of STVG field equations that represents an inho-
mogeneity in an expanding universe. When the Hubble factor is positive at late cosmic times, 
we proved that the metric describes a black hole immersed in a cosmological background.

The spacetime presents a spacelike singular surface where the pressure of the cosmological 
fluid diverges, a feature that is common to McVittie metric in GR. We also showed that there is 
no value of the parameter α of the theory such that the singularity can be avoided. This result 
implies that there are no regular cosmological black hole solutions in STVG.

The metric has two apparent horizons: an inner horizon and an outer horizon that cor-
respond to an event and cosmological horizon for the black hole case. As the value of the 
parameter α increases, the size of the horizons enlarges as well as the areal radius that locates 
the singular surface.

We showed that for both the Λ-CDM and the cosmological dust dominated background 
models, the apparent horizons begin to exist together and, as time goes by, their separation 
enlarges. The inner horizon approaches the singularity while the outer one tends to the cosmo-
logical horizon in the FLRW model.

For a given value of the cosmic time, there is a limited range of values of α such that the 
solution exhibits an inner and an outer apparent horizon. Beyond this range, both horizons 
merge and finally disappear leaving behind a naked singularity. If we assume the validity of 
the cosmic censorship conjecture, we see that only some values of α are allowed. Thus, the 
value of α is not only dependent on the mass of the central source but on the cosmic epoch. 
This result should be taken into account when modeling the evolution of the structure and the 
dynamics of astrophysical systems through cosmic time.

We also explored the trajectories of photons and massive particles. The existence of certain 
kinds of orbits is fully linked to the cosmological model adopted. For instance, circular photon 
orbits are not permitted if the spacetime is singular at some time in the past. In the case of 
massive particles, we show that in the Λ-CDM model the trajectories are bounded and tend 
asymptotically to circular orbits in Schwarzschild–de Sitter spacetime in STVG. A similar 
feature is also present in the McVittie geometry in GR.

In alternative theories of gravity other than STVG, some cosmological black hole solutions 
are known. For instance, Bejarano and coworkers [49] showed that the McVittie geometry 
in GR is also a non-deformable solution of f (T) gravity. Scalar-tensor theories and some 
f (R)-gravity models naturally contain black hole solutions that are asymptotically de Sitter. 
However, no analytic black hole solutions embedded in more general expanding backgrounds 
are known [38]. The only exception can be found in Brans–Dicke gravity: Clifton, Motta and 
Barrow [50] obtained a perfect fluid solution describing a dynamical cosmological black hole 
in certain regions of the parameter space. Such a solution, however, in the static limit always 
describes a naked singularity [51]. This is not the case in STVG. As shown in section 4, in 
such a limit we recover the Schwarzschild-STVG black hole. Thus in comparison with other 
modified theories of gravity, STVG seems more appropriate to describe black holes both on 
local and global scales.
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This work is a first step towards a better understanding of cosmological black holes in 
STVG. There are several issues that remain unexplored; for instance, the strength of the space-
like surface singularity, the nature of the cosmological solution when the Hubble factor is zero 
at late times, the stability of the orbits, just to mention some. The fact that STVG admits cos-
mological black hole solutions is yet another positive indicator that the theory offers a suitable 
classical description of the various manifestations of gravity.
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