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Abstract

Least Squares Collocation (LSC) and kriging are the most used techniques

to predict gravity values as well as gravity anomalies. The limitations of LSC

technique are mainly related in obtaining an adequate co-variance function.

Moreover, LSC and kriging predictions depend strongly on known data distribu-

tion. Artificial Neural Network (ANN) is a promising tool to be applied in

the interpolation problems. Even though, far from the deterministic ones, these

techniques are presented as alternatives for interpolating due their good adapta-

tion to several data distribution and easy implementation for fusion of different

kinds of data basis. To test the performance of ANN in face of interpolation

problems with respect to LSC and kriging, an experiment was developed in

a region in the Brazil–Argentina border. Interpolated gravity values were obtained

by LSC and kriging and compared with values obtained by ANN considering

different data distributions and by using the same test points where gravity values

are known. Considering the need of consistency of datum for predicting gravity

related values, only a Brazilian data set was used in the present analysis. The

smallest number of reference data for training and the low dispersion reveals

the ANN as an alternative for LSC and kriging techniques for the usual poor

gravity data distribution in South America.

114.1 Introduction

Due to the impossibility of observing gravity values

all over the Earth’s surface, in some cases it is nec-

essary to do a prediction of these values from two or

more known data. Prediction of gravity values is very

useful in Geodesy, when we use techniques such as

those related to the solution of the Geodetic Bound-

ary Value Problems (GBVP) where gridded data are

needed; or for geopotential numbers computation

along with leveling lines. This problem is present in

the South American territory where most of vertical

networks have only normal-orthometric corrections
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and the vertical datums are only local ones because

the poor distribution of gravity data necessary to an

adequate GBVP solution.

Interpolation of gravity values is affected by several

effects. Most of them are very difficult to model

because the need of considering different kinds of

data and the fusion of local gravity data with different

origin like Digital Topography Models and Global

Geopotential Models. Interpolated values from a data

set by deterministic or statistical methods in the space

domain have some limitations in computations related

with inadequate data distribution. The classic tech-

nique usually used when predicting the gravity values

is the LSC which highly depends on the chosen covari-

ance function and of data distribution. The problem

is emphasized when we need to consider different

kind of data source. However, with the development

of the computing methods, other methodologies can

be applied, in some cases, with advantages. We have

the Artificial Neural Networks (ANNs) as an example

of that.

The used network for testing interpolation techniques

has 34 benchmarks in the Brazilian side and other

additional reference points. The PREDGRAV tool

provided by SIRGAS/WG III (Drewes et al. 2002)

based on LSC was used. The kriging technique was

tested with basis in the SURFER™ package. ANNs

were constructed with a radial basis function with

distributed training points in the region. Several tests

were realized. The best results with LSC points

out a RMS of 1.57 mGal but most cases presented

limitations regarding the data distribution. The ANN

presented in the better case a RMS of 2.39 mGal in

similar situation. But the ANNs have less limitation

for data distribution, still working with poor data

distribution. Also, the ANN allowed incorporating

EGM2008 information which improved the predic-

tion capability reducing the RMS to half. Kriging

presented, in general, worse results even for the best

data distribution.

114.1.1 Data Set

There is a Bilateral Project (involving Brazilian and

Argentine Institutes and Universities) for the connec-

tion between Brazilian and Argentine Fundamental

Vertical Networks. This project has main purpose to

build a vertical net based on geopotential numbers in

the Brazil–Argentina border. However, there are sev-

eral problems, not discussed here, to put the Brazilian

and Argentine data sets in a common basis.

Aiming to generate a consistent data basis in the

Brazilian–Argentine border region some bi-lateral

campaigns were organized in the region of Corrientes
and Rio Grande do Sul states in August and December,

2008. Each country has its data basis referred to dif-

ferent datums. In this sense we are considering only

the Brazilian data set in this manuscript. The Brazilian

gravity reference in the region is the São Borja gravity

station which is a point of the Brazilian Fundamental

Gravity Network (ON 1986). Several gravity

observations associated with GPS/RTK positioning

were realized in the region, most of them over existing

benchmarks. The gravity observations were performed

with the LaCoste & Romberg G-372 gravimeter

calibrated on the Brazilian Absolute Gravity Network

(RENEGA) in 2007 and the SCINTREX CG3 with

factory original calibration and which was submitted

to static drift determination before each campaign.

The GPS positioning was performed with a pair of

Leica Geosystems 1,200 dual frequency GPS receivers

equipped with RTK system. GPS/RTK positioning

was used to improve the velocity of position determi-

nation for points until distances of 15 km of reference

station. However most of points were processed with

basis in static relative technique by using some local

reference stations realized with reference in GNSS

Continuous Monitoring Brazilian Network (RBMC)

part of the SIRGAS network. The obtained mean

precisions in position for static-relative positioning

were: Horizontal: 3 mm; and Vertical 6 mm. In the

RTK positioning the mean precisions were: Horizontal

20 mm; and Vertical 45 mm.

In Fig. 114.1 is possible to see the range of heights

and gravity anomalies variation at the studied region

(Fig. 114.2). The apparent low correlation among free

air gravity anomalies and heights points out that the

relief information is not fundamental for gravity inter-

polation. It must be emphasized that the Bouguer

anomalies seems to have a distribution of values as

rough as the free air anomalies.

In general, the gravity data on the whole South

America is not adequate because the poor distribution

of data. Therefore, the gravity prediction based on all

possible related information is still a necessity, mainly

because the lack of resources to cover the entire region

with gravimetry in a terrestrial conventional form.
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114.2 Interpolation Techniques

114.2.1 Artificial Neural Networks

ANNs are computing instructions used mainly for

the classification of groups. The basic idea came up

from the development of the perceptron algorithms

by McCulloch & Pits (Negnevitsky 2002). The

perceptron allows, using only one function, to distin-

guish two groupswhich are linearly separable.However,

when the groups are not linearly separable, different

functions are used to allow such classification. The result

of that classification, known as learning, has, as a final

result, a matrix which can be used to make a prediction

of different data which belong to the same initial group.

AnANN (Fig. 114.3) can therefore, be usedwith latitude

and longitude values to obtain a specific result, such as

gravity value (Tierra Criollo and de Freitas 2005).

In Fig. 114.3, W is an initial vector of weight which

is adjusted through interactions with values obtained

from the transference function f. b is a unit vector

which is called bias and which increases the weight

vector. The iteration process continues until the

weights are adjusted so that we can get the desired

values in a certain level of confidence. Several kinds

of ANNs can be built by using different instruction

routines.

114.2.2 Least Squares Collocation

Least Squares Collocation (LSC) is a technique which

serves both a prediction and a filtering of data. For

example, a formula that uses the least squares colloca-

tion concept for prediction gravity anomalies and its

details can be found in Tscherning (1974):

~DgP ¼
Xn

i¼1

aiDgi; (114.1)

where Dgi are gravity anomalies observed and ~DgP is

the predicted gravity anomaly at point P. In Hofmann-

Wellenhof and Moritz (2005) the treatment of (1) can

be found in a matrix form:

~DgP ¼ CP1 CP2 � � � CPn½ � � � � �
C11 C12 � � � C1n

C21 C22 � � � C2n

..
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. . .
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.
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..
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Dgn
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: (114.2)

Hofmann-Wellenhof and Moritz (2005) consider

that “for optimal prediction, we must know the statis-

tical behavior of the gravity anomalies through the
covariance function C”. The C functions are obtained,

in general, from terms that depend of positions of

points, from spherical distance between those points
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and other operators. For each different quantity, there

is a different covariance function associated, which

makes the LSC a not easy problem to solve. Because

of many types of covariance functions developed for

different situations, this paper used the PREDGRAV,

a LSC tool provided by SIRGAS WGIII.

114.2.3 Kriging

Kriging is a prediction process which uses the principle

that closer points must presents more similar char-

acteristics than farther away ones. There are many

kinds of kriging. This work uses ordinary kriging.

According to Trauth (2007), ordinary point kriging

uses a weighted average of the neighboring points to

estimate the value of an unobserved point:

~gP ¼
Xn

i

li � gi; (114.3)

where li are the weights which have to be estimated.

The sum of the weights should be one to guarantee that

the estimates are unbiased:

Xn

i

li ¼ 1: (114.4)

The expected error of the estimation has to be zero,

in this way we have:

E ~gP � gPð Þ ¼ 0; (114.5)

where gP is the expected true, but unknown value.

114.3 Prediction of Gravity Values

For training the ANNs, it was used the data configura-

tion shown in Fig. 114.4. These points were the same

generated database for kriging and PREDGRAV pre-

diction. Four kinds of ANNs were tested (Cases num-

ber 01, 02, 03 and 06). Several other tests can be found

in Pereira (2009).

In Case 01, latitude, longitude and height were used

in the training to obtain gravity values. The architec-

ture is presented in Fig. 114.5, with 3, 4, 3 and 1

neurons in a hyperbolic -tangent sigmoid, in a radial

basis function, in a hyperbolic tangent sigmoid and in

a linear transfer function, respectively.

In Case 02 (Figs. 114.6 and 114.7), latitude and

longitude were used. However, heights were not

Fig. 114.4 Database for the initial prediction
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used. The structure is similar to case 01. However, the

numbers of neurons in each layer are not the same.

For Case 04, it was used PREDGRAV, and in the

case number 05, kriging.

114.4 Results

As already mentioned, the RMS was calculated con-

sidering the local observations built in the campaigns

as a reference. The next figures show the predicted

grids from the techniques presented. In the all cases

of ANN, the trainning’s goal was 0.02. The worst case

of ANN reached the desired values after 504 epochs.

In the following figures the isolines from gridding

must be added by 979,000 mGal. Figure 114.8 shows

the grid from local observations of g. The next ones

(Figs. 114.9–114.13) shows the results reached.

Another possibility offered by ANN is to use

quantities derived from global geopotential models

without modifications in the original routines. Case 06

related with this approach is showed in Fig. 114.14.

Latitude, longitude and heights can be obtained from

local frame and the learning can be improved with

geoidal heights from EGM 2008 to compute gravity

values. The worst Case (03) was used to test this

hypothesis becaming Case 06.

With the same points of initial database, the RMS

computed for the Case 6 was 3.68 mGal, which con-

firmed the hipotesis.

Table 114.1 summarizes the main obtained results

in this work:

Other interesting situation happen when the geom-

etry and number of database points is changed. It must

be emphasized that in PREDGRAV applied for the

LSC, it is necessary at least 30 different points to

generate the database. For the cases involving ANN

it is shown that the number of training points could be

a half part for applying the LSC technique. Another
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Fig. 114.7 Case 03 of ANN

Fig. 114.8 Grid from g observe.

Fig. 114.9 Isolines of predicted grid from ANN Case 01

Fig. 114.10 Isolines of predicted grid from ANN Case 02
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aspect is that the ANN is less exigent about data

distribution.

Figure 114.15 shows a case where the database has

less than 30 points and the computed RMS was

1.18 mGal with the ANN Case 03.

Some these effects could be related to terrain

corrections. However, if we calculate that quantity

from Digital Elevation Model DTM2006 (ICGEM

2010) (Fig. 114.16), the magnitude of results shows

that the differences in prediction data not comes from

local effects once that the terrain corrections are, at

least, two times smaller.

Fig. 114.11 Isolines of predicted grid from ANN Case 03

Fig. 114.12 Isolines of predicted grid from PREDGRAV

(Case 04)

Fig. 114.13 Isolines of predicted grid from kriging (Case 05)
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Fig. 114.14 Case 06 of ANN with learning based on geoidal
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Table 114.1 RMS of different predictions without restriction

of data distribution

Case RMS (mGal)

ANN Case 01 4.08

ANN Case 02 2.39

ANN Case 03 6.64

PREDGRAV (Case 4) 1.57

Kriging (Case 5) 3.10

ANN Case 06 3.68

Fig. 114.15 Database of ANN Case 03 where less of 30 points

were used in the learning
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Conclusions

The ANNs are very easy to apply for gravity predic-

tion, even considering the integration of different

data basis. It must be emphasized that the worst

case of interpolation with ANN (Case 03) could be

improved, reducing the RMS to a half part by

integrating EGM2008 geoid heights. This process

is not trivial to implement in the LSC because the

difficulties to establish the covariance function in

this case. For the cases in that it is necessary to

integrate many parameters in LSC; the central prob-

lem is to obtain the covariance functions. However,

for builting an ANN, additional care must be taken

into account. The number of layers, usually related

to separable groups, is not observed in case of

prediction of gravity values. There were examples

in which the number of neurons is the same as

the number of points used in the learning, but the

RMS was one order higher than Case number 01

of ANN.

It must be considered as a special case that the

structure of Case 03 applied to few training points

still works with good performance while LSC and

kriging do not work.

In the Brazilian case, because of heterogeneities

of height system, again the ANN can be used with

advantages, once that gravity anomaly is strongly

dependent of point’s height. In spite of positive

results about of ANN, it must be considered that

these results are referred to the studied region and

therefore kriging and LSC concepts applied in other

regions can furnish different results.
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