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Alternation between dietary protein depletion
and normal feeding cause liver damage in mouse
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Abstract The effect of frequent protein malnutrition
on liver function has not been intensively examined.
Thus, the effects of alternating 5 days of a protein and
amino acid-free diet followed by 5 days of a complete
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diet repeated three times (3 PFD-CD) on female
mouse liver were examined. The expression of
carbonic anhydrase III (CAIII), fatty acid synthase
(FAS), glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) and glutathione S-transferase P1 (GSTP1)
in liver were assessed by proteomics, reverse
transcriptase-polymerase chain reaction and Northern
blotting. The activities of liver GSTs, glutathione
reductase (GR) and catalase (CAT), as well as serum
glutamic-oxaloacetic transaminase (SGOT) and
glutamic-pyruvic transaminase (SGPT) were also
tested. Additionally, oxidative damage was examined
by measuring of protein carbonylation and lipid
peroxidation. Liver histology was examined by light
and electron microscopy. Compared with control
mice, 3 PFD-CD increased the content of FAS protein
(+90%) and FAS mRNA (+30%), while the levels of
CAIIl and CAIIl mRNAs were decreased (—48% and
—64%, respectively). In addition, 3 PFD-CD did not
significantly change the content of GSTP1 but
produced an increase in its mRNA level (+20%),
while it decreased the activities of both CAT (—66%)
and GSTs (—26%). After 3 PFD-CD, liver protein
carbonylation and lipid peroxidation were increased
by +55% and +95%, respectively. In serum, 3 PFD-
CD increased the activities of both SGOT (+30%) and
SGPT (+61%). In addition, 3 PFD-CD showed a
histological pattern characteristic of hepatic damage.
All together, these data suggest that frequent dietary
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amino acid deprivation causes hepatic metabolic and
ultrastructural changes in a fashion similar to precan-
cerous or cancerous conditions.

Keywords Mouse liver- Cycles of protein depletion -
Liver damage - Oxidative stress

Introduction

Protein malnutrition causes severe metabolic changes
in mammalian liver [1, 2, 7, 8, 16, 21, 24, 41].
However, the extent to which periodic dietary protein
deprivation affects liver function has not been
intensively examined.

Previously, we have found that mouse liver protein
content decreases by 50% after 5 days of subjecting
mice to a diet that lacks amino acids and protein
(protein free diet (PFD)), while it is rapidly restored
by administration of a complete diet (CD) [10]. In
addition, the content of several cytosolic proteins
depends on the amino acid intake [31, 33, 36, 37]. It
also has been reported that subjecting mice to a 5-day
PFD diet produces changes in the liver content of
glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), glutathione S-transferase subunits (GSTs),
carbonic anhydrase III (CAII), fatty acid synthase
(FAS) and Cu/Zn superoxide dismutase (SOD) [15,
33, 36, 37]. Conversely, these changes are reverted by
feeding a CD for 2 days [15, 36]. Additionally, we
have recently shown that feeding mice a PFD for
5 days causes hepatic oxidative stress [34]. Interest-
ingly, it has been reported that changes in GSTPI
subunit, GAPDH, FAS and CAIIl can be used as
markers for precancerous, cancerous or senescent
conditions in the liver tissue [4, 6, 23].

Based on our previous observations on the effects
of a 5-day PFD on mouse liver, we examined how
three successive cycles of 5-day PFD followed by
5 days of CD (3 PFD-CD) affect mouse liver
function. For this purpose, we measured protein and
mRNA content of CAIII, FAS, GSTP1 and GAPDH,
as well as the activities of catalase (CAT), GSTs and
glutathione reductase (GR), total content of carbonyl
groups and lipid peroxidation in liver. In addition,
serum markers for liver damage and hepatic ultra-
stucture were determined. Taken together, our results
show that periodic protein malnutrition affects liver
function in a harmful manner.
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Materials and methods
Animals

Two-month-old female Balb/c mice (body weight,
20-25 g) from I1IB, UNMdP-CONICET, Mar del
Plata, Argentina were kept in a room at 22°C
illuminated from 7:00 to 19:00 hours. They had ad
libitum access to complete diet and water and kept in
accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals.
The local ethical committee for animal research
approved the protocols used in this study.

Diets

All diets used were based on the PFD outlined by the
USP XV Pharmacopoeia and the amino acid compo-
sition of bovine [(-casein [12, 42]. Normal or
complete diet (CD) containing 23% (w/w) (3-casein
was prepared as described by Ronchi et al. [33].
Because carbohydrates replace protein and amino
acids, all diets are isocaloric. Mice consumed 2.53+
0.29 and 3.384+0.14 g a day of CD and PFD,
respectively.

The test mouse group was subjected to three cycles
of 5 days of PFD followed by 5 days of CD. The
control group was fed a CD throughout the entire
experiment. After the treatment, animals were killed
by cervical dislocation, and livers were rapidly
removed, weighed and placed in buffer A (0.15 M
NaCl, 1 mM EDTA, 5 mM [-mercaptoethanol and
20 mM Tris—HCI buffer; pH 7.4).

Cytosol preparation

Livers were homogenized in 5 ml/g fresh weight of
cold buffer A. The supernatant obtained by centrifu-
gation at 100,000xg for 10 min represents the cytosol
[37].

Cytosolic enzymes were extracted according to
Wiegand et al. [47], with some adjustments. Briefly,
each liver was homogenized in 0.1 M potassium
phosphate buffer pH 6.5 containing 20% (v/v)
glycerol, 1 mM EDTA and 14 mM 1 ,4-dithioerythritol
(DTE). Cell debris was removed by centrifugation at
10,000xg for 10 min. The supernatant was centrifuged
at 100,000xg for 60 min, and the soluble cytosolic
fraction was immediately frozen with liquid nitrogen



Protein malnutrition and liver damage

45

and stored at —80°C until use. Activity of total
glutathione S-transferases (GSTs) was determined
according to Habig et al. [17]. Glutathione reductase
(GR) was tested according to Tanaka et al. [40].
Catalase (CAT) was determined according to Claiborne
[9]. Results were expressed in nanokatals per milli-
gram of protein (nkat/mg prot), where 1 kat represents
the conversion of 1 mol of substrate per second. Each
test was carried out in triplicate.

Protein and nucleic acid determination

Protein concentration was determined according to
Bradford [5] using bovine serum albumin as a
standard. Nucleic acid concentrations were deter-
mined by the method described by Fleck and Munro
[14].

Polyacrylamide gel electrophoresis

Cytosol samples were subjected to sodium dodecyl
sulphate-polyacrylamide gel electrophoresis (SDS-
PAGE) in 12% acrylamide under reducing conditions
[25] followed by staining with Coomassie blue [28].
Resulting protein patterns were photographed and
analyzed with the computer image analyzer system
ImageQuant TL v2005. It may be noted that CAIII,
FAS and GSTP1 bands were previously identified and
quantified using mass spectroscopy combined with
sequence analysis of peptide produced by in-gel
trypsin digestion [15, 33]. In addition, GAPDH band
was identified and quantified by both Western blot
test and N-term amino acid sequence [36].

Reverse transcriptase-polymerase chain reaction

Total liver RNA was extracted with Trizol (Invitrogen,
Gaitherburg, MD, USA). Extracts were treated with
RQI RNase-Free DNase (Promega), quantified by
measuring the absorbance at 260/280 nm and tested
for quality by agarose 1% native gel electrophoresis.
First-Strand cDNA synthesis was generated with M-
MLV reverse transcriptase (Invitrogen) and oligo dT
primers and used for reverse transcriptase-polymerase
chain reaction (RT-PCR). Products were obtained
after 30-35 cycles of amplification considering the
exponential phase for each probe and 55-65°C
annealing temperatures. RT-PCR products were sep-
arated on 2% agarose gels. Electrophoresis was

carried out at 100 V for 60 min in TBE 1X buffer
(0.89 M Tris, 0.89 M borate, 2 mM EDTA). The gels
were stained with SYBR® Gold nucleic acid stain
(Molecular Probes, Eugene, OR, USA). Bands were
detected with a Scanner Storm Amersham Biosciences
and quantified by ImageQ TL v2005. All the band
intensities were related to actin.

Mouse specific primer sequences for PCR reaction

FAS: FW, 5-TGC GCC CAG CCT CCT AAG GC-
3", RV, 5-ATC ACA CGC CGG CAA CAC
CTA TCC-3'

CAIIl: FW, 5-TGC CAA AGG GGACAA CCA
GT-3’; RV, 5-GCA CCG GGG GCTCAT
TCT C-3'

GAPDH: FW, 5'-ACG GCA AAT TCA ACG GCA
CAG TCA-3"; RV, 5'-CAT TGG GGG TAG
GAA CAC GGA AGG-3'

GSTP1: FW, 5'-ATG CCA CCA TAC ACC ATT
GT-3'; RV, 5-GTC CAG CAA GTT GTA
ATC GG-3'

Actin: FW, 5-AGT ACT TGC GCT CAG GAG
GA-3'; RV: 5-TCC TCC CTG GAG AAG
AGC TA-3".

Northern blotting

Total RNA was extracted from livers using 4 M
guanidinium thiocyanate followed by extraction with
phenol [35]. The extract was dissolved in water
DEPC, quantified and stored at —80°C for further
tests. Thirty microgrammes of RNA per condition
were denatured for 1 h in GLYOXAL at 55°C [43],
separated by electrophoresis on agarose gels 1.5%
(w/v) and transferred onto a nylon membrane
(Amersham, UK).

DNA probes were obtained by PCR amplification
with specific primers (see above) using DNA as
template. Then, the probes were labelled by random
priming (Invitrogen, Life Technologies, DNA labelling
System) using [32P] dCTP. Probes were purified by
chromatography in G-50 Sephadex columns. Sequen-
tial hybridization with the different probes was
performed using standard methods. The intensity of
the bands was detected by Scanner Storm (Amersham
Biosciences) and quantified by ImageQuant TL v2005.
All the band intensities were related to actin.
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Serum analyses

Blood was collected in 1.5 ml tubes after beheading
the animals by guillotine. Blood collection was
performed between 8:00 and 10:00 am and kept in
37°C. Within 15 min, the samples were centrifuged
for 10 min at 1,000xg (4°C) to separate the serum.
Samples were kept at —80°C until determination of
serum components.

Serum glutamic-oxaloacetic transaminase (SGOT)
and serum glutamic-pyruvic transaminase (SGPT)
were measured by using a commercial kit (Wiener
Lab, Rosario, Argentina) and performed according to
the appended protocol.

Measurement of protein carbonyl content

The reactive carbonyl content of liver proteins was
measured according to Ronchi et al. [34]. Briefly,
livers were homogenized at 4°C in 10 ml/g fresh
weight of cold 0.15 M NaCl, 1 mM EDTA and
20 mM Tris—HCI, pH 7.4. Two 0.75-ml aliquots per
sample containing nearly 1 mg protein were mixed
with 0.75 ml of 20% (w/v) trichloroacetic acid (TCA).
The pellets were separated by centrifugation at
6,000xg for 5 min, mixed with either 0.75 ml of
2 N HCI (blank) or 0.75 ml of 2 N HCI containing
0.2% (w/v) dinitrophenylhydrazine (DNPH) and agi-
tated for 1 h at 25°C in the dark. Then, they were
re-precipitated with 0.75 ml of 20% (w/v) TCA,
washed three times with ethanol:ethyl acetate (I:1, v/v),
dried and mixed with 0.75 ml of 6 M guanidine HCI at
25°C. After removing the debris by centrifugation,
absorbance at 370 nm of DNPH-treated samples after
subtraction of blanks was assessed. This value was
used to calculate the nanomoles of DNPH incorporated
per milligramme of protein based on an average
absorption of 21 mM ' ¢cm 'for aliphatic hydrazones
[22].

Lipid peroxidation test

Thiobarbituric acid reactive substances (TBARS),
indicative of lipid peroxidation level, were evaluated
as showed by Oakes and Van Der Kraak [30] with
adjustments. Briefly, 50 mg of fresh liver were
homogenized in 450 pl of a solution containing
0.15 M KCI and 35 uM butylated hydroxytoluene
(BHT). Homogenate aliquots of 100 pl were added to
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3.9 ml of a reaction mixture containing 37.5 mM
TBA, 67 uM BHT, 7.5% (w/v) TCA and 0.4% (w/v)
SDS. Then, samples were heated at 95°C for 30 min,
cooled to 15°C, and centrifuged at 3,000xg for
10 min. Optical density at 532 nm of supernatants,
through a molar extinction coefficient of 1.56x
105 M em ™', allowed assessing the TBARS content
in nanomoles by milligramme of tissue [30].

Histological studies

For morphological observation by light microscopy,
liver tissues were fixed in 10% neutral formaldehyde
solution, dehydrated in an ascending ethanol series
and embedded in paraffin. Sections were stained with
haematoxylin and eosin (H&E) and periodic acid-
Schiff (PAS). The structures of liver lobules, hepato-
cytes, portal tracts and sinusoidal and perisinusoidal
acini were analyzed.

For electron microscopy analysis, the samples were
fixed in glutaraldehyde 2% in buffer phosphate
(pH 7.4) for 2 h and washed twice with buffer
solution for 30 min. Then, they were post-fixed in 1%
osmium tetroxide, dehydrated in a series of alcohol
and embedded in Epon 812 for ultra-thin sectioning.
Ultrathin sections, 60—-80-nm thick, were cut with a
diamond knife on an ultramicrotome (ultramicrotome
supernova, Reichert-Jung) and then viewed under a
transmission electron microscope (JEM 1200EX II,
Jeol).

Statistical analysis

All data are presented as means + SEM. Data
comparison was performed using unpaired two-
tailed Student’s ¢ test (InStat, Graph Pad software).
P values lower than 0.05 were considered signifi-
cant. Data analysed include at least three separate
experiments.

Results
General properties

After 3 PFD-CD, body weight of treated mice
declined to a value near 20% lower than the control
(Fig. 1). Figure 1 also shows that major body weight
loss happened during the PFD periods. The treatment
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Fig. 1 Changes in body weight. Treatment groups were (gray
triangle) PFD-CD and (black square) CD. Weights are the
means £ SEM of three independent experiments (n=6 for each
experiment). Values significantly different from the CD group:
“P<0.001, "P<0.0001

did not change either the weight or DNA content of
the liver but showed a tendency to increase RNA
(+19%) and protein (+23%) content. Control mice
(CD diet) displayed the following properties: liver
weight, 1.03+£0.03 g; DNA, 1.47+0.26 mg/liver;
RNA, 4.47+0.43 mg/liver; total protein, 144.12+
9.30 mg.

Liver content of CAIIl, FAS, GAPDH and GSTP1

The effect of 3 PFD-CD on CAIII, FAS, GAPDH and
GSTP1 content was assessed by densitometry of
SDS-PAGE bands (Fig. 2). FAS increased 90% and
CAIIl decreased 48%, while both GAPDH and
GSTP1 did not show a significant change. Western
blotting confirmed the results obtained by SDS-PAGE
for both FAS and GSTP1 (not shown).

Liver content of CAIII, FAS, GAPDH and GSTPI
mRNAs

To find out whether the effects of 3 PFD-CD
observed on CAIIl, FAS, GAPDH and GSTPI
content depend on changes in mRNA content,
Northern blot and RT-PCR experiments were carried
out. In agreement with protein content, FAS mRNA
increased 30% and CAIIl mRNA decreased by 64%.
On the other hand, GSTPI mRNA increased 20%,
while GAPDH mRNA did not change significantly,
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Fig. 2 Effect of 3 PFD-CD on cytosolic protein composition. a
SDS-PAGE representative analysis of protein samples (25 pg)
from CD and 3 PFD-CD. Positions of size markers are
signalled on the /eft. Bands of FAS, GAPDH, CAIIl and
mGSTP1 are signalled on the right. b Average percentages of
FAS, GAPDH, CAIII and mGSTP1 band densities in 3 PFD-
CD (white bars) with respect to CD (grey bars). Values
represent the means + SEM of three independent experiments
(CD and 3 PFD-CD with n=6 each experiments). Values
significantly different from the CD condition: *P<0.001

though individual data displayed high variability
(Figs. 3 and 4).

Liver activities of CAT, GSTs and GR
We also examined whether 3 PFD-CD affect the
enzymatic activities of CAT, GSTs and GR in liver.

Both CAT and GSTs decreased 66% and 26%,
respectively, while GR did not change (Table 1).
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a b Table 1 Activities of liver cytosolic enzymes after dietary
FAS| — — GAPDH | —— — treatments
—~ — Enzymes activity (nkat/mg)
achin | — — actin|  S—
CAT GSTs GR
5 == 5. =
o = 120 o= CD 341.29+70.69 17.81+1.18 0.63+0.06
< o
E'—o Es 3 PFD-CD  117.04+67.65*  13.23+0.79**  0.56+0.03
5= §E ®
g @ °5
g 8 go Values are means=SEM of two independent experiment (n=4
&5 s b PRO.CD each experiments). Values significantly different from CD

Fig. 3 Effect of 3 PFD-CD on FAS and GAPDH mRNA
content. a RT-PCR analysis of FAS mRNA. b RT-PCR analysis
of GAPDH mRNA. After dietary treatments, total liver mRNA
was isolated, and the levels of FAS and GAPDH mRNAs were
assessed by RT-PCR analysis. Actin content was used for RNA
normalization. Relative changes in FAS and GAPDH mRNA
content were assessed by scanning densitometry of RT-PCR
bands. Data are expressed as the intensity of bands determined
by densitometry and related to the CD group. Values represent
the means + SEM of three independent experiments (CD and 3
PFD-CD with n=6 each experiments). Values significantly
different from CD condition: *P<0.05

Carbonyl-group content of protein

We examined the extent of liver oxidative stress by
measuring the total protein carbonyl content. This was
evaluated by the reaction with DNPH. Carbonyl

R

J

actin

i

N

Percentage of
control (%)

Percentage of
control (%)
S B

cD PFD-CD cD PFD-CD

Fig. 4 Effect of 3 PFD-CD on CAIIl and mGSTP1 mRNA
content. a Northern blot analysis of GSTP1 mRNA. b Northern
blot analysis of CAIIl mRNA. After dietary treatments, total
liver RNA was isolated. Thirty micrograms were subjected to
Northern blot analysis using specific cDNA probes for CAIII
and GSTP1 mRNAs. Actin cDNA probe was used for RNA
normalization. The radioactivity in the Northern blots with
different probes was measured by scanning densitometry. Data
are expressed as intensity of bands determined by densitometry
and related to the CD group. Values represent the means + SEM
of three independent experiments (CD and 3 PFD-CD with n=6
each experiments). Values significantly different from CD
condition: *P<0.05, "P<0.001
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group
*P<0.05; **P<0.005

content significantly increased with 3 PFD-CD when
compared with CD, as evidenced by their values (17+
1.5 and 11.2£0.9, respectively, P<0.0001).

Lipid peroxidation

The effect of 3 PFD-CD on liver lipid peroxidation
was investigated. The 3 PFD-CD increased 95% the
TBARS levels of liver compared with CD (0.232+
0.02 and 0.119+0.01, respectively, P<0.002).

Serum markers of liver damage

We also examined whether 3 PFD-CD changes the
serum content of molecular markers for liver damage.
Activities in U/L + SEM of serum glutamic-
oxaloacetic (SGOT) and serum glutamic-pyruvic
(SGPT) transaminases were SGOT, 472.83+£25.87
and 611.20+£10.64° for CD and 3 PFD-CD, respec-
tively; SGPT, 182.25+13.99 and 293.50+45.09%
respectively. Values correspond to means+SEM of
two independent experiments (n=4); values were
considered significantly different from the CD group
at *P<0.05 and "P<0.001.

Liver histology

The liver of CD mice showed the typical lobular
structure with normal central veins and portal tract
(Fig. 5a). The hepatocytes showed normal cytological
structures with well-preserved staining and morpho-
logical characteristics of cytoplasm, nucleus and
nucleolus (Fig. 5b). Some PAS positive inclusions
were found in the cytoplasm of hepatocytes. After 3
PFD-CD, liver sections showed that although the
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Fig. 5 Histology of the
liver after 3 PFD-CD
treatment. a CD mouse liver
shows typical lobular
structure with normal
central vein and portal tract;
H&E, x100. b CD mouse
liver; H&E, x400. ¢ The
hepatocytes show a
vacuolated cytoplasm (v). In
some areas, nuclei are
absent (arrow); H&E, x400.
d The cytoplasmic vacuoles
are negative to PAS
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lobular organization was preserved, the hepatocytes
displayed a vacuolated cytoplasm. Also, nuclei were
absent in some areas (Fig. 5c). In addition, the
cytoplasmic vacuoles were negative to PAS and
H&E stain (Fig. 5d). Presence of hepatic damage
after 3 PFD-CD was confirmed by electronic micros-
copy. Hepatocytes from these mice showed a de-
creased nuclear size with indented nuclear membrane
and an increase of the perinuclear aggregation of
heterochromatin. Mitochondria organization was ab-
normal and showed swelling and cristolisis. Vast
accumulation of vacuoles representing lipid droplets
were also observed in the liver of mice exposed to 3
PFD-CD (Fig. 5e).

Discussion

This work was aimed to address whether three cycles
of feeding a diet lacking amino acids for 5 days
followed by a complete diet for 5 days (3 PFD-CD)
produce irreversible changes in the protein composi-
tion and function of mouse liver.

Similar to rats exposed to three cycles of fasting—
re-feeding [24], 3 PFD-CD decrease the total body
weight while preserving liver weight. This result is
consistent with the fast recovery of liver weight in
mice fed with a normal diet after 5 days under PFD
[10]. Similarly, despite body weight loss, liver weight
of fasted rat nearly reaches that of control within few
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days of re-feeding with normal diet [18]. Liver growth
during CD feeding is favoured because PFD is
isocaloric and taken in rather high amount than CD
[26]. Therefore, liver may regained its normal weight
during each period of PFD. In addition, 3 PFD-CD
does not change liver DNA content but increases
slightly RNA and protein levels. These results agreed
with those displayed by mice that were fed a CD after
the intake of a PFD during 6 days [10].

Because FAS is regulated at the transcriptional
level, 3 PFD-CD produces an increase in FAS content
caused by an increase in its mRNA. Besides its
control by hormonal and nutritional factors [19], it
has been recently published that signalling pathways
such as AMPK-S6K1 might be involved in FAS
induction. Furthermore, is also known that lipogenic
enzymes are markedly induced in hepatocellular
carcinomas [13, 45, 48]. Thus, the increase in FAS
caused by 3 PFD-CD could be associated with the
development of hepatocellular carcinoma. In contrast,
although GAPDH content increases in hepatic carci-
nogenesis [3], it remains unmodified after 3 PFD-CD.
Based on our previous studies [36], the last 5 days
under normal diet in the present experimental model
would be enough to restore the content and the
mRNA levels of GAPDH.

We had previously noticed that liver content of
CAIII decreases after feeding a PFD for 5 days [37].
In this study, although the last feeding period of 3
PFD-CD is CD, both CAIII content and CAIIl mRNA
decrease with 3 PFD-CD. Besides preserving the
acid-base balance, CAIII acts as an oxygen radical
scavenger, protecting cells from oxidative damage
[27, 32]. Thus, the down-regulation of this enzyme
might promote liver damage and, possibly, lead to
hepatocellular carcinoma [23].

GSTs have a prominent role in protecting cells
against oxidative stress. Among them, GSTP1 has
been proven to increase during detoxification of
electrophilic drugs and carcinogens [44]. The content
of GSTP1 does not change after 3 PFD-CD, but its
mRNA does. Transcription of the GSTP1 gene is
activated in both chemically induced and spontaneous
precancerous lesions [20, 38]. Thus, the observed
GSTP1 mRNA increase could be a marker for an
early stage of hepatocarcinogenesis.

In this study, we have also shown that 3 PFD-CD
markedly decreases GSTs and CAT activities in liver,
therefore increasing oxidative stress, which is
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revealed by an increment in protein carbonylation
and lipid peroxidation. In addition, 3 PFD-CD
increases the activities of SGPT (+61%) and SGOT
(+30%), which have been reported as markers for
liver damage [50].

Our histological observations support the changes
produced by 3 PFD-CD in both liver and blood
serum. In hepatocytes, 3 PFD-CD induces indented
nuclear membrane and perinucleolar aggregation of
heterochromatin material. This suggests that a nuclear
disorganization might be occurring [46], which
eventually might lead to apoptosis [39]. Interestingly,
the changes in mitochondria organization have been
proposed to reflect a disturbance in the redox balance
of the liver cell [11]. Further, damage of mitochondria
is a common response of the hepatocyte to stress [29],
which can undergo significant swelling to show
“hydropic degeneration” [49]. It is likely that 3
PFD-CD induced vacuolation of the cytoplasm is
caused by accumulation of lipid droplets, as it had
been shown elsewhere [11]. Since extensive vacuole
accumulation can be a cause of cell death, this further
points to 3 PFD-CD as an inducer of liver damage.

In conclusion, shifting mice from protein depriva-
tion to a complete diet three times changes both liver
metabolic status and ultrastucture like it has been
reported for precancerous and cancerous conditions
[33, 44, 48]. These changes might have their origin in
an oxidative stress caused by 3 PFD-CD. However,
the mechanisms that trigger such adjustments are not
entirely known and should be a focus of future work
to understand the influence of nutrition on liver
metabolism.
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