Espectroscopía Laser del Li 3

C.B. Suárez

Centro de Química Inorgánica (CeQuinor) - Universidad Nacional de La Plata - CONICET C.C. 962 - (1900) - La Plata - Argentina *e-mail: cbsuarez@isis.unlp.edu.ar*

Se ha obtenido el espectro del Li₃ formado en un haz molecular producido mediante la expansión adiabática de una mezcla de argón y vapores de litio, usando un laser de colorantes monomodo sintonizable. Las moléculas excitadas a su vez son ionizadas por un laser de argón⁺. La subsiguiente detección selectiva de iones con un espectrómetro de masas ha permitido la completa resolución del espectro sub-doppler en sus diversos componentes. En esta etapa se ha realizado la asignación vibracional de las bandas.

The spectrum of Li_3 was obtained using a molecular beam produced by adiabatic expansion of a mixture of argon and lithium vapor, excited with a single-mode tunable dye-laser. The excited molecules were in turn ionized by means of an intense argon+ laser. The ions were selectively detected by using a mass spectrometer, achieving a complete resolution of the sub-doppler components. At this stage the vibrational assignment of the bands was performed.

I. INTRODUCCIÓN

La espectroscopía de alta resolución de pequeños clusters metálicos es necesaria para una detallada descripción de sus estructuras geométricas, propiedades electrónicas y comportamiento dinámico. Como es sabido, el analisis rotacional de espectros bien resueltos provee la determinación de las distancias y ángulos de enlace en la configuración de equilibrio. El análisis vibracional da información sobre las constantes de fuerza y la estructura hiperfina se relaciona con la densidad de la nube electrónica en los núcleos. Estos parámetros moleculares permiten determinar las energías de ligadura y los límites de disociación en función del tamaño del cluster, mientras que las medidas de estados electrónicos excitados provee información sobre canales de fragmentación y energías de ionización.

Se conocen dos sistemas de bandas del Li₃: A-X y C-X en la zonas espectrales alrededor de 690 nm y 480 nm, respectivamente. Para el caso del A-X que es el tema presente, Blanc et al.¹ realizaron un estudio sistemático de clusters del tipo Li_n con n hasta 8, centrando su interés principalmente en fragmentación. Previamente, Wolf et al.² fueron los primeros en obtener el espectro del Li₃, y aunque limitados en resolución propusieron una energía de estabilización de 57 cm⁻¹ y una barrera de pseudorotación de 17 cm⁻¹, lo cual refleja una baja distorsión en la geometría de la estructura vibrónica con características de localización.

II. MÉTODOS

Parte experimental

El vapor de litio producido en un horno en vacío a 800-1200 C se expandió a través de un orificio de 70 μ m de diámetro hacia un tanque vacío, mediante argón que sirvió de transporte. La presión del argón fue de 5 a 8 atm, magnitud limitada sólo por la velocidad de la

72- ANALES AFA Vol. 9

bomba difusora, de 2000 l/seg. La tensión de vapor asi es de entre 50-100 Torr. Esto hace que se produzca un enfriamiento, necesario para lograr espectros bien resueltos, con estructura rotacional reducida, y sólo líneas provenientes del nivel (0,0,0), excluyendo tanto como sea posible las "hot-bands", producidas por niveles vibracionales excitados.

El espectro que se obtuvo se muestra con baja resolución en la figura 1, y aparece en la zona espectral entre $14500 \text{ y} 15000 \text{ cm}^{-1}$.

Figura 1: Sistemas A-X del ${}^{21}Li_3$ (trazo superior) y ${}^{20}Li_3$ con baja resolución.

Discusión del método

Este experimento combina espectroscopía laser de alta resolución coĥ enfriamiento de moléculas en un haz molecular colimado supersónico y detección selectiva de masas.

La espectroscopía laser de haces colimados moleculares necesita usar técnicas de detección muy sensibles porque el paso absorbente es de 1 mm y la densidad de moléculas absorbentes es de 10^5 - 10^{10}

SAN LUIS 1997 - 72

moleculas/cm³. Entonces, o se aumenta el camino absorbente, o los fotones absorbidos se detectan indirectamente, por ejemplo, usando: 1) LIF, o fluorescencia inducida por laser; 2) ionización por dos fotones resonantes; 3) espectroscopía opto-térmica (transferencia de la energía de excitación molecular a un bolómetro muy sensible). Ver fig. 2.

Figura 2: Descripción esquemática de tres métodos.a)LIF; b)ionización en dos pasos; c)transferencia opto-térmica

El método 2 empleado por nosotros se basa en la población de niveles moleculares excitados mediante un dye-laser L₁, con una subsiguiente ionización de dichas moléculas por un laser intenso, L2. Se utilizó un laser contínuo de argón+. Con este tipo de lasers, la dificultad es que durante la vida τ de la molécula excitada en el nivel $|k\rangle$ por el dye laser L₁, viaja una distancia d=vxt. A fin de lograr eficiencia, el laser 2 debe ionizar a la molécula antes de que decaiga espontáneamente a niveles inferiores, |m>, donde no habrá nueva excitación por L₁, cuya radiación está sintonizada en una transición |i>-|k>. Los valores típicos son: $\tau = 10^{-8}$ seg; $v = 10^{5}$ cm/s, es decir d=10 μ m. Esto ilustra el hecho de que ambos lasers deben estar bien enfocados en la zona de interés y la superposición espacial debe procurarse cuidadosamente.

Si el área a enfocar se coloca dentro de la cámara de un espectrómetro de masas, los iones formados pueden ser seleccionados, y el número de iones $N_{ion}(m, l)$ puede ser registrado en función de la frecuencia del laser L₁, lo cual constituye el espectro de absorción de la molécula neutra, de masa m. Los espectros que se obtienen son de muy alta resolución, y exhiben una complejidad propia de una estructura rotacional no muy estrecha, pero con el agregado de estructura hiperfina, desdoblamiento por spin y pseudorotación (fig.3).

III. Resultados y conclusiones

La Tabla I exhibe las bandas medidas y asignadas vibracionalmente, asi como la separación de cada una respecto de la primera. De esta manera se obtienen las constantes de estiramiento simétrico y antisimétrico y la debida a la torsión: 262; 165 y 114 cm⁻¹, respectivamente. Los trabajos previos no habían realizado una asignación completa, usando resolución inferior y sin la ventaja del otro componente isotópico

que libra nuestra asignación de ambigüedades. Esta etapa es la inicial y necesaria antes de asignar cuánticamente los niveles rotacionales. Debido a dichas contribuciones esto último no es simple, por lo cual será motivo de posteriores comunicaciones.

Figura 3: Parte del espectro del Li3 con alta resolución. Se muestran las franjas de interferencia de un etalon como referencia. Escala en cm^{-1} .

TABLA 1: TRANSICIONES VIBRACIONALES DEL ²¹ LI ₃
CORRESPONDEN A ABSORCIÓN DESDE EL ESTADO
FUNDAMENTAL A LOS NIVELES DESIGNADOS

V1 V2 V 3	v	DIFERENCIA
000	(CM ⁻¹)	(CM ⁻¹)
0 0 0	14575	0
0 1 0	14689	114
0 0 1	14740	165
020	14801	226
100	14837	262
030	14903	328
110	14934	359
021	14971	396

Agradecimientos

A la Deutscher Akademischer Austauschdienst por la ayuda económica para realizar este experimento en la Universität Kaiserslautern, Fachbereich Physik, Kaiserslautern, Alemania y a la hospitalidad del Profesor Dr. W. Demtröder.

IV. Referencias

- Blanc, J., Broyer, M., Chevaleyre, J., Dugourd, Ph., Kühling, H., Labastie, P., Ulbricht, M., Wolf, J.P., y Wöste, L. Z.Physik D, 19, 7-12 (1991).
- Wolf, J.P., Delacrétaz, G., y Wöste, L. Phys.Rev. Lett. 63, 1946-1949 (1989).