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Abstract. Unphysical behavior in the QR algorithm 
based least squares determination of the expansion coeffi- 
cients of the charge density obtained from limited in- 
formation about the charge form factor occurs when the 
spread of the singular values in the matrix relating these 
quantities becomes too large. Setting the smallest singular 
values equal to zero in the singular value decomposition 
used in the minimum norm method yields a much more 
reasonable determination of the charge density. Increas- 
ing the size of the basis without increasing the range of the 
prior information about the charge form factor leads to 
ambiguities in the determination of the charge density. 
Numerical results in an analytic model are presented. 

PACS: 21.10.Ft; 25.30.Bf 

Elastic electron scattering provides a means of determin- 
ing the charge density of a nucleus, p(r), from the experi- 
mentally determined charge form factor, Fc(q) • Since the 
electron-nucleus interaction is relatively weak, multiple 
scattering effects can be neglected and the scattering pro- 
cess can be described in first order perturbation theory. 
The connection between the charge density and the cross 
section is well understood and in plane wave Born ap- 
proximation Fc(q) is just the Fourier transform of p(r) 
which for the case of even-even nuclei, which we shall 
consider, is simply given by 

oo 

Fc(q) = 4n ~ dr r2jo(qr) p(r) (1) 
0 

wherejo is the spherical Bessel function of zero order and 
q is the absolute value of the three momentum transfer. 
Given that the experimental measurements are performed 
over a limited range at a finite number of values of the 
momentum transfer, q, a unique determination of p(r) is 
not possible since the resulting inverse problem is ill 
posed. The generally accepted procedure for determining 

p(r) is to expand it in a Fourier Bessel (FB) basis [1-3] 
and then determine the expansion coefficients from a least 
squares fit to the experimentally determined values of 
Fc(q). One of the problems in the aforementioned proced- 
ure is that increasing the number of terms in the expansion 
generally leads to unphysical oscillations in the charge 
density in spite of the fact that the charge form factor is 
well reproduced at the experimentally determined values 
of q. These unphysical oscillations arise, as we shall show, 
if one or more of the singular values of the non-square 
matrix to be inverted becomes abnormally small. In this 
case the least squares problem does not have a unique 
solution [41. Since the inversion in the least squares prob- 
lem is generally accomplished by means of the QR algo- 
rithm [4], this fact is overlooked. If the minimum norm 
method, which makes use of a singular value decomposi- 
tion, is used, a unique solution of the least squares prob- 
lem always exists [4] and the unphysical oscillations can 
be eliminated. 

In order to demonstrate this we make use of the 
following analytical model. For a charge density given by 
a symmetrized Fermi distribution [5] 

cosh(R/d) 
p(r) = c~ (2) 

cosh (R/d) + cosh (r/d) 

a n  analytical expression for the corresponding charge 
form factor can easily be obtained [6, 7]: 

Fc(q) - 
4n2~d cosh(R/d) 

q sinh(R/d) 

FR cos(qR) ndsin(qR) cosh(nqd) ] 
XL ) j .  (3) 

Only two of the parameters c~, R and d are independent 
since the charge density must fulfill the normalization 
condition 

4n S drr 2 p(r) = Z. (4) 



142 

Since the charge density is a single-valued function 
defined in a finite domain it can be expanded in a basis of 
orthogonal functions. In the FB expansion [1-3]  use is 
made of the following orthogonali ty relation between 
spherical Bessel functions in a finite domain 

R~ R? 
drrZjl(q.r)jt(qm r) = - ~  [Jt+l (q,,R~)] 2 (3.,,, (5) 

0 

where the q, are defined such that 

Jr(q,, R~) = O. (6) 

For  an even-even nucleus this yields the following FB 
expansion of the charge density 

p ( r ) = f ~ ,  a,,jo(q,,r)r<_Rc (7) 
r>R~" 

where, from Eq. (6), 

n ~  
q. = - - .  (8) 

R~ 

If the form factor in Eq. (1) is known at q,, the coefficients 
a, can easily be obtained and are given by: 

V~(q,) 
a,, = 2nR~(jl(q,,Rc))2 (9) 

In general, however, the cross section is measured at 
momentum transfers different from q,. Using the expan- 
sion of the charge density given in Eq. (7) the charge form 
factor is then given by 

Fc(q) 4 n R 2 ~ a ,  ( -  1)" ~ sin(qRc). (10) 
= q . (qR-)  g -_2 (nn) -  

Now, given that n measurements are made at momentum 
transfers q ' =  (q'b q~ . . . . .  q',) , we wish to determine the 
m expansion coefficients a = (al, a2, . . . ,  a,,). In this case 
Eq. (10) leads to the following system of equations 

F¢ = Aa (11) 

where F~ ~ R" is a column vector with elements F~(~) with 
c~ ~ q' and the corresponding matrix A ~ R m+". If n > m 
and rank(A)=  m, a unique solution a for which the 
L 2 norm tlF~ - Aal]2 is minimized exists [4]. This is just 
the least squares problem and it is usually solved by 
inverting the square matrix ATA since 

ATFc = AT A a (12) 

where A r is the transpose of A. Numerically the most 
efficient way to accomplish this is by means of the QR 
algorithm which transforms ATA into a right upper tri- 
angular matrix by means of a set of orthogonal trans- 
formations. The inverse of this transformed matrix is 
easily obtained by simple back substitutions. 

However, if the rank(A) < m, there are many solutions 
a ~ R" for which liFe - Aalt2 is minimized. A unique solu- 
tion to this least squares problem may be obtained if the 
additional requirement that Ilall2 be minimized is also 
included [4]. This is nothing more than the minimum 
norm solution of the least squares problem and is ob- 
tained from a singular value decomposit ion of A. In this 

case A is decomposed in the following manner  

A = UTZV (13) 

where 

"a l  0 

0" 2 

0 (7 r 

6 R  m+" (14) 

where U ~ R  "+" and V~ R m+" are or thogonal  and the 
square of the singular values a 2 are the eigenvalues of  ArA 
with at  > 0.2---Or > 0. Since this decomposi t ion is nu- 
merically expensive, the QR algorithm is usually used to 
solve the least squares problem. 

It should also be noted that the matrix 71 = 
(ATA)  - IAT needed to determine a in Eq. (1 1)is nothing 
more than the Moore-Penrose inverse of A [8, 9] which 
often is denoted as the pseudoinverse. In general, for any 
n, m, the pseudoinverse of A is given in terms of  the 
aforementioned singular value decomposit ion as 

ft = vT z - 1 U  (15) 

where the non-zero diagonal elements of the matrix 
£ -  1 are a7 1. For  m = n it corresponds to the inverse of A. 
Furthermore, a unique solution of Eq. (11) can be ob- 
tained with the minimum norm method for n > m when 
the system of equations is overdetermined [4] as well as 
for undetermined inverse problems with n < m. Lastly, it 
is interesting to note that under certain conditions Max- 
imum Entropy methods for solving undetermined inverse 
problems also lead to the minimum norm method 
[10-12].  

If r ank(A)=  m, there is no benefit in obtaining the 
minimum norm solution of the least squares problem as it 
is the same as that obtained with the QR algorithm. 
However, generally one does not know the rank of A. The 
simplest way to determine the rank of A is to determine 
the singular values of A. The number  of non-zero singular 
values determines the rank of the matrix. In practice, 
however, if one or more of the singular values become 
small, the rank of the matrix A is usually less than the 
dimension of the square matrix ATA and as we shall show 
unphysical behavior will occur in the least squares fit 
obtained by means of the QR algorithm. In this case the 
problem can be avoided by using the minimum norm 
method and setting the small singular values to zero in the 
singular value decomposition of A. Unfortunately there 
are no hard and fast rules to determine how small a singu- 
lar value should be before it is set equal to zero. Further- 
more, large gaps in the values of the singular values do not 
always occur. 

We have performed a numerical calculation for 12C in 
the aforementioned analytical model with Rc = 8 fm, 
d = 0.626 fm and R = 1.1A 1/3. As input we have taken the 
values of Fc(q) determined at a set of nine momentum 
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Fig. 1. Charge density as a function of r. The  solid curve is the exact 
density, while the dot-dashed curve designates the least squares  fit 
with the QR algorithm, and the dashed curve  represents the result of 
the m i n i m u m  norm method  for 7 basis states 
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Fig. 2. Charge density as a function ofr .  The  solid curve is the exact 
density, while the dashed curve represents the result of the m i n i m u m  
n o r m  method for 30 basis states 

transfers (0.001 fm- t ,  0.5 fro-l ,  1.0 fm-1, 2.0 fm- l ,  3.0 
fm- i, 4.0 fm- l, 5.0 fm-  i, 6.0 fro- t, 7.0 fm-  1). If we require 
that the spread in the singular values of A be less than 105 
the QR algorithm may be used to determine the set of 
a,, for m < 6 and the fits to the charge density look quite 
reasonable. For m = 7 (see Fig. 1) the smallest singular 
value (.00307165) is less than 10- 5 the value of the largest 
singular value (701.129) and we have set it equal to zero in 
the singular value decomposition of A. In this case the use 
of the QR algorithm results in large unphysical oscilla- 
tions in the charge density while the minimum norm 
method provides a reasonable fit to the charge density. In 
both cases we reproduce the values of Fc(q) at the nine 
given values of the momentum transfer. 

Furthermore, with the same requirement on the 
spread of the singular values and for the same prior 
information about the charge form factor, a well-behaved 
charge density with m = 30 may also be obtained with the 
minimum norm method (see Fig. 2). Here again we repro- 
duce the values of Fc(q) at the nine given values of the 
momentum transfer. It is interesting to note that although 
the tail of the charge density agrees well with that ob- 
tained with m = 7 it does not agree well at smaller values 
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Fig. 3. The FB expansion coefficients as a function of n. The  circles 
connected by a solid curve are the exact values of  the expansion 
coefficients while the triangles connected  by the short  dashed curve 
designates the values obtained from the least squares  me thod  with 
the QR algori thm and the squares  connected  by the tonq dashed 
curve represents the result obta ined from the m i n i m u m  norm 
method  for 7 basis states 

of r. This ambiguity arises from the fact that not enough 
information about the charge form factor has been pro- 
vided to uniquely determine the charge density. The fact 
that no information has been given about the charge form 
factor for q _> 7 fro-i  nicely demonstrates the fact that 
a unique determination of the charge density is not pos- 
sible at smaller values of r. 

In order to ascertain in a more quantitative manner 
the underlying reasons for the large unphysical oscilla- 
tions in charge density obtained we compare the values of 
the expansion coefficients obtained from the least squares 
and minimum norm method with the exact values given 
by Eq. (9). The-results for m = 7 are given in Fig. 3. Note 
that the coefficients for small values of n are not well 
determined because of the sparse amount of information 
initially provided about the form factor. The exact coeffi- 
cients become very small very quickly and oscillate slowly 
about zero. The least squares method produces much 
larger oscillations which persist as m is increased while the 
minimum norm method provides a much smoother rep- 
resentation of the behavior of the coefficients. The devi- 
ations in the calculated expansion coefficients, which may 
be substantial, lead to deviations in p as can be seen in 
Fig. 2. Fortunately, and this is the nice thing about the 
choice of the FB basis, the coefficients'with larger values of 
n are small and large deviations in these coefficients are 
not that important except at small values of r. If this were 
not the case the cut-off procedure used in the Fourier 
Bessel method would certainly not work as well as it does. 
Note also that setting the smallest singular value of 
A equal to zero is not equivalent to setting any of the 
values of the expansion coefficients equal to zero but 
rather a simple way of guaranteeing that no excessive 
structure is introduced into these coefficients. For this 
reason for larger values of n they are in better agreement 
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Fig 4. Charge density as a function of r. The solid curve is the exact 
density, while the dot-dashed curve designates the least squares fit 
with the QR algorithm, and the dashed curve represents the result of 
the minimum norm method for 20 basis states. The minimum norm 
results are distinguishable from the exact calculations only at small 
values of r 

with the exact values of the expans ion  coefficieots. This 
type of behavior  persists if one increases m without  in- 
creasing the amount  of initial information.  

In Fig. 4 we show the results for which there is a large 
amount  of pr ior  informat ion as is usually the case when 
the charge form factor has been determined experi- 
mentally.  The values of F¢(q) are given at 140 equally 
spaced values for 0.001 < q < 7.001 fro-  1. If no assump- 
tions are made about  Fch(q) for q > 7 f m -  1 reasonable  and 
identical results are obtained for p(r) for m _< 19 from both 
the least squares and the min imum norm method.  Note  
that  m may take on much larger values than the suggested 
cut-off for rn ( <_ qma~Rc/rc) of Eq. (8) [1]. Fo r  m _> 20 the 
spread in the singular  becomes too  large and oscillations 
occur in the least squares fit. In  spite of the fact that  no 
pr ior  information is available for q > 7 fm-1 the min- 
imum norm method  provides a means  of ext rapola t ing to 
higher momen tum which is consis tent  with the pr ior  in- 
formation and provides a reasonable  determinat ion of 
p(r). The results are, of course, model  dependent  as the 
short  ranged behavior  of p(r) depends  on the choice of 
m as has been previously demons t ra ted .  

If, as is usually the case, the experimental  data,  Fc, is 
assumed to have Gauss ian  errors  then the uncertainties in 
the determinat ion p(r) may be determined in the manner  
suggested in [2]. In  this case the var iance in p(r) due to the 
errors in the charge form factor, AFc  are given by 

(OP(r)~ z 
clap(r) -= ~(z12Fc)i 

\0(vc) d 

: ~ (A 2 F.)/(~ clP(r)ctai c~(F.)i / c~aj ")2 (16) 

and derivatives can be determined from Eqs. (7) and  (12) 
(in terms of pseudoinverse ,4 used to determine  the expan-  
sion coefficients). The square root  of A2p(r) cor responds  
to the width of a Gauss ian  d is t r ibut ion  which describes 
the uncertainty in the de te rmina t ion  of p(r ) .  Within  the 
f ramework of Maximum Ent ropy  methods  a highly non- 
l inear method for treat ing inverse problems  involving 
da ta  with Gauss ian  errors has been given by Gul l  and 
Daniell  [13]. 

In the present note we have shown that  unphysical  
oscil lat ions of the FB expanded  charge densi ty  deter-  
mined from information of the charge form factor  occur 
when the spread in the singular  values of the matr ix  
relating these quanti t ies becomes too  large. These oscilla- 
t ions may occur in any basis and  are not  the result of using 
the FB basis [-7]. When they occur, the min imum norm 
method  with the small s ingular  values set equal  to zero 
should be used to obta in  the expansion coefficients. In- 
creasing the size of the basis wi thout  increasing the range 
of the prior  information about  the charge form factor 
leads to ambiguit ies in the de te rmina t ion  of the charge 
density. 
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