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On the Role of Coherence in Shor’s Algorithm
Supplemental Material

In this Supplemental Material, we give the proofs of the results presented in the main text and some further information. This
includes additional dynamic resource measures and their properties.

I. On the appearing measures

In this section, we present properties of the resource measures employed in our analysis of the performance of Shor’s algo-
rithm. To begin with, we discuss the functional

D(Λ) = max
ρ
‖∆Λ(1−∆)ρ‖1 , (1)

which is interesting from a resource theoretical perspective and we will see later that D(Λ) appears naturally when connecting the
success probability of the investigated order-finding protocol with the ability to detect coherence. Moreover, it seems to be a natu-
ral candidate for a resource measure under detection incoherent operations. However, it is not monotonic underDIS as we show
here. To relate the performance of Shor’s algorithm with a rigorous dynamical measure in Thm. 14 and Thm. 16 we make use of
the fact that the functional D shares sufficient similarities with the NSID measure M̃�(Λ) = minΦ∈DI maxρ ‖∆(Λ− Φ)ρ‖1.
In particular, that D provides an upper bound on M̃� and that the two functionals coincide on qubit channels.

Proposition 1. Let Φ ∈ DI. The functional D(Λ) = maxρ ‖∆Λ(1−∆)ρ‖1 has the following properties:

1. D(Λ) = 0⇔ Λ ∈ DI,

2. D(ΛC←A ⊗ 1B) = D(ΛC←A),

3. D(ΦΛ) ≤ D(Λ),

4. D is convex.

Proof. Let us begin by pointing out that convexity in the argument follows from the convexity of the trace norm itself. Notice
that for any Λ ∈ DI, i.e., ∆Λ = ∆Λ∆, it follows that the functional vanishes. Furthermore, for any detecting channel Λ there
exists some state ρ such that ∆Λ(1−∆)ρ 6= 0, which proves faithfulness since ‖·‖1 is a norm.
The functional behaves monotonically under post-processing with free channels even with an identity channel attached in paral-
lel. Using [? , Lem. 14] for the inequality, we see that

D(ΛC←A ⊗ 1B) = max
ρAB

∥∥∆CB(ΛC←A ⊗ 1B)(1AB −∆AB)ρAB
∥∥

1

= max
ρAB

∥∥∆CB(ΛC←A ⊗ 1B)(1A ⊗ 1B −∆A ⊗∆B)ρAB
∥∥

1

= max
ρAB

∥∥[(∆CΛC←A −∆CΛC←A∆A)⊗ 1B
]

(1A ⊗∆B)ρAB
∥∥

1

≤ max
|ψ〉,|i〉

∥∥(∆CΛC←A −∆CΛC←A∆A)|ψ〉〈ψ|A ⊗ |i〉〈i|
∥∥

1

= max
|ψ〉,|i〉

∥∥(∆CΛC←A −∆CΛC←A∆A)|ψ〉〈ψ|A
∥∥

1
‖|i〉〈i|‖1

= max
|ψ〉

∥∥(∆CΛC←A −∆CΛC←A∆A)|ψ〉〈ψ|A
∥∥

1
,

(2)

which coincides with D(ΛC←A) due to the convexity of the trace norm. The reverse inequality follows from restricting ρAB to
product states in the first line.

Additionally, the properties of the trace norm allow us to write

D(ΦΛ) = max
ρ
‖∆ΦΛ(1−∆)ρ‖1

= max
ρ
‖∆Φ∆Λ(1−∆)ρ‖1

≤ max
ρ
‖∆Λ(1−∆)ρ‖1 .

(3)
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To show that D is a resource measure, we would need in addition that D(ΛΦ) ≤ D(Λ). However, this condition is violated
in general for Φ ∈ DI. To prove this, we first describe how we can evaluate D numerically.

Proposition 2. Consider a quantum channel ΘC←B and let N = dim(C). Let further (sm,n)m,n be the matrix of dimension
2N ×N that contains as rows all N -dimensional vectors ~sm whose entries are ±1. The numerical value of D(ΘC←B) is then
equivalent to the maximum of the solutions of the following 2N semidefinite programs (each for a fixed m)

maximize: tm =

N−1∑
n=0

sm,n 〈n|C ΘC←B (1−∆)σ |n〉C ,

subject to: σB ≥ 0,

Tr [σB ] = 1.

(4)

Proof. We use that for real fn ∑
n

|fn| = max
~sm

(~sm · ~f), (5)

where the vectors ~sm have been introduced in the statement of the Proposition. In addition

D(ΘC←B) = max
σ

∥∥∆ΘC←B (1−∆)σ
∥∥

1
= max

σ

∑
n

∣∣〈n|ΘC←B (1−∆)σ |n〉
∣∣ . (6)

This method of evaluating D is certainly not the most efficient. However, with the help of the following Proposition, it allows
us to disprove monotonicity.

Proposition 3. Let ΘC←B be a quantum channel and A a third and fixed quantum system. Denote by S the set of all diagonal
matrices of dimension dim(C) with diagonal elements ±1, and by MA the matrix on system A with all entries equal to one.
Furthermore, we define

X = {X = (MA − 1A)⊗Θ†S : S ∈ S}. (7)

The solution of the maximization problem

max
σ,ΦB←A∈DI

∥∥∆ΘC←BΦB←A (1−∆)σ
∥∥

1
(8)

is then given by the maximum of the solutions of the following (finite number of) semidefinite programs to be evaluated for all
fixed X ∈ X

maximize: Tr [XYAB ] ,

subject to: Y ≥ 0,

TrB [Y ] = ∆σA,

σA ≥ 0,

Tr [σA] = 1,

diag (〈i|A Y |j〉A) = 0 ∀i 6= j.

(9)

Proof. We write quantum states as ρ =
∑
i,j ρij |i〉〈j| and the action of quantum channels as Φ(|i〉〈j|) =

∑
k,l Φ

ij
kl|k〉〈l|. With

this notation, we find

‖∆ΘΦ (1−∆) ρ‖1 =

∥∥∥∥∥∥∆Θ

∑
i 6=j

∑
kl

Φijkl|k〉〈l|ρij

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥∆Θ

∑
i 6=j

〈i|A

(∑
op

ρop|o〉〈p|A ⊗
∑
kl

Φopkl |k〉〈l|B

)
|j〉A

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥∆Θ

∑
i 6=j

〈i|A

((
1
A ⊗ ΦB←Ã

)∑
op

ρop|oo〉〈pp|AÃ

)
|j〉A

∥∥∥∥∥∥
1

. (10)
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Using [? , Lem. 12] we thus have

max
σ,ΦB←A∈DI

∥∥∆ΘC←BΦB←A (1−∆)σ
∥∥

1
= max
YAB∈Y

∥∥∥∥∥∥∆ΘC←B

∑
i 6=j

〈i|A YAB |j〉A

∥∥∥∥∥∥
1

, (11)

where the set Y is defined as

Y :={YAB |Y ≥ 0, TrB(Y ) = ∆σA, diag (〈i|A Y |j〉A) = 0 ∀i 6= j, σA quantum state} (12)

and therefore characterized by semidefinite constraints. Using the absolute value technique from Prop. 2, we can solve this
optimization problem via a set of SDPs: With the definitions from the Proposition, we note that

∑
i 6=j 〈i|A YAB |j〉A =

TrA [(MA − 1A)⊗ 1BYAB ] and therefore

max
YAB∈Y

∣∣∣∣∣∣
∣∣∣∣∣∣∆ΘC←B

∑
i 6=j

〈i|A YAB |j〉A

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= max
S∈S

max
YAB∈Y

Tr

SΘC←B

∑
i 6=j

〈i|A YAB |j〉A


= max

S∈S
max
YAB∈Y

Tr

[Θ†S]
∑
i 6=j

〈i|A YAB |j〉A


= max

S∈S
max
YAB∈Y

Tr
([

Θ†S
]

TrA [(MA − 1A)⊗ 1BYAB ]
)

= max
S∈S

max
YAB∈Y

Tr
([
1A ⊗Θ†S

]
(MA − 1A)⊗ 1BYAB

)
= max
X∈X

max
YAB∈Y

Tr (XYAB) . (13)

Due to this Proposition, for every fixed system A, we can evaluate

D̃A(ΘC←B) := max
ΦB←A∈DI

D(ΘC←BΦB←A) = max
ΦB←A∈DI

max
σA

∥∥∆ΘC←BΦB←A(1A −∆A)σA
∥∥

1
(14)

numerically by solving a collection of SDPs. We now move to the equivalence on qubit channels, which we will use to connect
the performance of Shor’s algorithm to the ability to detect coherence.

Lemma 4. Let Λ be any qubit channel defined in the index representation as Λ(|n〉〈m|) =
∑
kl Λ

nm
kl |k〉〈l|.

Then the functional D

1. is given by D(Λ) = 2|Λ01
00|,

2. coincides with the NSID measure [? ] M̃�(Λ) = minΦ∈DI maxρ ‖∆(Λ− Φ)ρ‖1.

Proof. Due to convexity of the trace norm, the optimization in the definition of D(Λ) over all states can be reduced to pure states
ρ = |ψ〉〈ψ|. We expand a pure qubit state as |ψ〉 = p0 |0〉+ p1e

iφ |1〉 and write Λnmkl = |Λnmkl |eiλ
nm
kl . According to [? , Lem. 6],

|λ01
00| = −|λ10

00| =: λ and |Λ01
00| = |Λ10

00|. For the first part, from ∆Λ(1−∆) being diagonal it follows then straightforward that

D(Λ) = max
ρ
‖∆Λ(1−∆)ρ‖1 = max

ρ
2 |〈0|∆Λ(1−∆)ρ |0〉|

= max
{pn,φ}

2

∣∣∣∣∣∣
∑
n 6=m

√
pnpme

iφ(n−m)Λnm00

∣∣∣∣∣∣ = max
{pn,φ}

2

∣∣∣∣∣∣
∑
n 6=m

√
pnpme

iφ(n−m)|Λnm00 |eiλ
nm
00

∣∣∣∣∣∣
= max
{pn,φ}

2

∣∣∣∣∣∣
∑
n 6=m

√
pnpme

i(φ+λ)(n−m)|Λnm00 |

∣∣∣∣∣∣
= max
{pn,φ}

4
√
p0p1 cos(φ+ λ)|Λ01

00|,

= 2|Λ01
00|.

(15)
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Secondly, for a qubit map Λ, we find that

M̃�(Λ) = min
Φ∈DI

max
ρ
‖∆(Λ− Φ)ρ‖1

= min
Φ∈DI

max
ρ

2 |〈0|∆(Λ− Φ)ρ |0〉|

= min
Φ∈DI

max
{pn,φ}

2

∣∣∣∣∣∣
∑
n

pn(Λnn00 − Φnn00 ) +
∑
n 6=m

√
pnpme

iφ(n−m)Λnm00

∣∣∣∣∣∣
= min

Φ∈DI
max
{pn,φ}

2

∣∣∣∣∣∣
∑
n

pn(Λnn00 − Φnn00 ) +
∑
n 6=m

√
pnpme

i(φ+λ)(n−m)|Λnm00 |

∣∣∣∣∣∣ .
(16)

Now we first consider the inner optimization problem, i.e., we fix Φ. The first sum always evaluates to a real number, and
the phase φ only appears in the second sum. Let us assume that the first sum is positive. The optimum over φ is then obviously
achieved for φ = −λ. If the first sum is negative, the optimum is φ = π − λ. In both cases, we have

M̃�(Λ) = min
Φ∈DI

max
{pn}

2

(∣∣∣∣∣∑
n

pn(Λnn00 − Φnn00 )

∣∣∣∣∣+ 2
√
p0p1|Λ01

00|

)
≥ max
{pn}

4
√
p0p1|Λ01

00| = 2|Λ01
00|

= D(Λ).

(17)

Since Λ∆ ∈ DI, we also have

M̃�(Λ) = min
Φ∈DI

max
ρ
‖∆(Λ− Φ)ρ‖1

≤ max
ρ
‖∆(Λ− Λ∆)ρ‖1

= D(Λ)

(18)

and find

M̃�(Λ) = D(Λ) = 2|Λ01
00| (19)

for qubit channels Λ.

Furthermore, this allows us to prove that D(Λ) = maxρ ‖∆Λ(1−∆)ρ‖1 fails to form a measure as defined in the main text.

Proposition 5. There exist Φ ∈ DI,Θ such that D(Θ) < D(ΘΦ).

Proof. Let ΘB←B be defined via the two Kraus operators

K1 =
1√
2

(
i 1
0 0

)
, K2 =

1√
2

(
0 0
1 i

)
, (20)

i.e., |B| = 2 (and it is straightforward to check that this defines indeed a CPTP map). With the help of Lem. 4, we find D(Θ) = 1.
Choosing |A| = 3, we can use Prop. 3 to evaluate D̃A(ΘB←B) numerically. Moreover, it is possible to extract optimal ΦB←A

and σA from the solution of the semidefinite program. An optimal choice consists of

σA =
1

3

1 1 1
1 1 1
1 1 1

 , (21)

which is a maximally coherent state and the quantum operation ΦB←A given by its Choi state

JΦ = (1A ⊗ Φ)

3∑
n,m=1

|nn〉〈mm| =:

3∑
n,m=1

|n〉〈m|A ⊗Xnm (22)
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where

Xnn =

(
1/2 i/6
−i/6 1/2

)
(23)

and

Xnm =

(
0 −i/3
i/3 0

)
(24)

for n 6= m. It is straightforward to check that JΦ is hermitian, has eigenvalues (0, 0, 0, 1, 1, 1), and

TrB (JΦ) = 1A, (25)

i.e., ΦB←A is CPTP. Moreover, due to

J∆Φ∆ = ∆ABJΦ =
1

2
1AB = ∆BJΦ = J∆Φ, (26)

Φ ∈ DI. We are not going to prove optimality of Φ and σ, for example by deriving the dual program, but rather note that

D̃A(ΘB←B) = max
Φ̃B←A∈DI

max
σ̃A

∥∥∥∆ΘB←BΦ̃B←A (1−∆) σ̃A

∥∥∥
1

≥
∥∥∆ΘB←BΦB←A (1−∆)σA

∥∥
1

=
∥∥∥∆ΘB←B TrA

[(
((1−∆)σA)

T ⊗ 1B
)
JΦ

]∥∥∥
1

=
∥∥∆ΘB←B TrA [((1−∆)σA ⊗ 1B) JΦ]

∥∥
1

=

∥∥∥∥∥∥∥∥∆ΘB←B 1

3

3∑
n,m=0
n 6=m

Xij

∥∥∥∥∥∥∥∥
1

=
2

3

∥∥∥∥∆ΘB←B
(

0 −i
i 0

)∥∥∥∥
1

=
2

3

∥∥∥∥(1 0
0 −1

)∥∥∥∥
1

=
4

3
> 1, (27)

which finishes the proof by giving an explicit example.

Whilst this is not the purpose of this Letter, we note that it is straightforward to show that the family of functionals

D̃A(ΘC←B) = max
ΦB←A∈DI

max
σA

∥∥∆ΘC←BΦB←A(1A −∆A)σA
∥∥

1
(28)

defines resource measures in the detection-incoherent setting in itself. We notice similarities to the measures in Ref. [? ], but
leave further investigations on these measures, for example on an operational interpretation, to future work.

II. Shor’s factorization algorithm

In this section we review Shor’s algorithm, beginning with the basic prerequisites in number theory, moving on to Shor’s
protocol and a sequential version introduced in Ref. [? ]. Additionally, the fine-tuned interplay of the quantum part and the
classical post-processing via the continued fraction algorithm is discussed in detail, paving the way for a discussion of the
protocols investigated in this work. Some notable examples of further reading on Shor’s algorithm are the articles [? ? ] and the
textbook [? ], on which the following brief review is based.
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A. Reduction to order-finding

The first step in Shor’s algorithm is the reduction of the integer factorization problem to the so-called order-finding problem [?
]. Let N denote the integer to be factorized, which consists of m distinct prime factors and can be represented in an n bit string.
Furthermore, let x be an integer 1 ≤ x < N with x coprime to N , i.e., x and N share no common factor. The order-finding
problem is then to find the smallest integer r such that xr = 1 modN . This integer r is called the order of x modulo N . The
reduction of factoring to order-finding results from the following two statements. We omit the proofs at this point, for further
reading see for example Ref. [? ].

Lemma 6. Given a composite (with more than one distinct prime factor), odd integer N and an integer solution a with 1 ≤
a < N to the equation a2 = 1 modN , that is non-trivial, i.e., a 6= ±1 modN , then at least one of gcd(a± 1, N) is a non-trivial
factor of N .

Lemma 7. For a uniformly chosen x in the range 1 ≤ x < N and coprime to N , the probability that the order r of x modulo
N is even and non-trivial is bounded by

P (r even, and xr/2 6= −1 modN) > 1− 1

2m
, (29)

where m is the number of distinct prime factors of N .

With this at hand, a factorization algorithm is given by the following procedure: In a first step, catch exceptions like N having
two as a (multiple) prime factor and check if N is a composite integer, i.e., has more than one distinct prime factor. This can be
done efficiently on a classical device, see Ref. [? ]. These two steps guarantee that the prerequisites of Lem. 6 and Lem. 7 are
satisfied. In the next step, choose a random x, check if it is coprime to N , otherwise, repeat until it is. The bottleneck of the
algorithm is the order-finding, but assuming we can solve this in polynomial time, determine the order r and subsequently check
if it is even and non-trivial (which has sufficiently high probability due to Lem. 7). If so, compute a = xr/2 (note that xr/2

cannot be 1 mod N due to the definition of the order) and use Lem. 6 to find a factor of N , otherwise, repeat. The algorithm is
run until all prime factors have been found. Since the greatest common divisor can be computed efficiently in polynomial time
in the input length n (for example using Euclid’s algorithm), having a polynomial time algorithm for order-finding results in a
polynomial time algorithm for factorization.

B. Order-finding à la Shor

Shor’s coup of an efficient order-finding protocol, depicted schematically in Fig. 2, is at the heart of the factorization algorithm.
This standard protocol for order-finding utilizes two quantum systems A and B of dimension q and N respectively, where
system A consists of L qubits such thatN2 < q = 2L < 2N2, with N being the number to factor. Along with the classical post-
processing via the continued fraction algorithm, the quantum part of the protocol can be separated into three essential ingredients:
preparation of an initial state, then the so-called modular exponentiation, and a measurement. The modular exponentiation is
defined by the controlled-like unitary

Uc =

q−1∑
n=0

|n〉〈n|A ⊗ UnB , (30)

where UB |n〉B = |xnmodN〉B . Note that the modular exponentiation can be implemented in polynomial time [? ? ? ? ].
The modular exponentiation encodes information about the order r into the state of system A, only requiring knowledge about
x and the number N to be factored. The encoding of this information depends on the initial state of the auxiliary system B, and
a convenient choice is the state |1〉B . Let us emphasize that other incoherent states can be used as well. For instance in Ref. [?
], it is shown that choosing a normalized maximally mixed initial state 1B will increase the runtime of the algorithm at most
polynomially. In fact, for factorization problems of the form N = pq, where p and q are primes, the increase is asymptotically
negligible. After performing the modular exponentiation, the auxiliary system is discarded. For our purposes, the action of the
modular exponentiation on system A will be fixed and labeled by E . This channel E admits the following simple structure.
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Lemma 8. If system B is in the state |1〉B , then the effect of the modular exponentiation on system A is given by

E(ρA) =
1

r

r−1∑
j=0

Ej(ρA) with Ej(ρA) = Rj/rρAR
†
j/r, (31)

where the Rj/r denote rotations around multiples of the fraction of r, i.e., Rj/r =
∑
n e

2πi
j
r n|n〉〈n|.

Proof. Notice that by definition of the order-finding problem xr = 1 modN . It follows that UrB = 1B , since ∀n we find
UrB |n〉B = |xrnmodN〉B = |(xr modN)(nmodN) modN〉B = |n〉B . Hence, orthonormal eigenstates |ψj〉B of UB are
simply given by

|ψj〉B =
1√
r

r−1∑
l=0

e−2πil
j
r |xl modN〉B , (32)

with corresponding eigenvalues of e2πi
j
r . This allows us to expand the auxiliary state as |1〉B = 1√

r

∑r−1
j=0 |ψj〉B . With this at

hand, it is straightforward to calculate

E(ρA) = TrB
[
Uc(ρA ⊗ |1〉〈1|B)U†c

]
= TrB

∑
n,m

ρnm|n〉〈m|A ⊗
1

r

r−1∑
j,j′=0

UnB |ψj〉〈ψj′ |B(UmB )†


= TrB

∑
n,m

ρnm|n〉〈m|A ⊗
1

r

r−1∑
j,j′=0

e2πi(n
j
r−m

j′

r )|ψj〉〈ψj′ |B


=

1

r

r−1∑
j=0

∑
n,m

ρnme
2πi

j
r (n−m)|n〉〈m|A =

1

r

r−1∑
j=0

Ej(ρA).

Let us emphasize the resemblance of E to a symmetry operation that gives rise to the resource theory of asymmetry [? ? ?
]. In this particular case, the symmetry group elements are simple rotations, being uniformly weighted to define the symmetry
operation E . This symmetry group gives rise to the resource theory of coherence as a special case [? ? ? ]. Any incoherent state
is left invariant under the action of E , i.e., an incoherent state is symmetric with respect to the symmetry group, thereby naturally
selecting a set of free states. On the contrary, any coherent state will encode information about r, thus being useful at least in
principle for the task of order-finding. Analyzing the protocol in the framework of coherence theory is a natural consequence.
Concretely, in this work the performance of the protocol will be quantitatively linked to the ability to create and detect coherence.

Furthermore, it has to be noted that not every single rotation Ej encodes the order r the way we wish. In fact, any rotation Ej
where gcd(j, r) 6= 1 is equivalent to a rotation around an angle depending on a factor of r rather than r itself. Fortunately, this is
sufficiently rare to still allow for an efficient post-processing strategy that estimates r from the measurement statistics efficiently.
After the modular exponentiation, a measurement of system A in the Fourier basis produces an outcome k that is forwarded to
the continued fraction algorithm (CFA), which will then compute a continued fraction decomposition of k/q.

The continued fraction algorithm computes the decomposition of a number x in the following iterative form: the sum of its
closest integer part and the reciprocal of another number, which is then written as the sum of its closets integer part and another
reciprocal, and so on, see for example Ref. [? ]. This decomposition is typically denoted as

x = [a0, a1, a2, . . .] = a0 +
1

a1 + 1
a2+ 1

...

, (33)

where the list is finite for rational x, i.e., x = [a0, a1, . . . , an], and infinite otherwise. The so-called convergents, or specifically
them-th convergent of x, is defined by [a0, a1, . . . , am]. The post-processing of measurement results will be done by computing
the convergents of k/q. Some measurement results give sufficiently good approximations to some j/r that allow recovering the
latter fraction from k/q by using the CFA to compute the convergents, where one matches j/r.

To clarify which measurement outcomes do so, we continue with the following result from number theory involved in the
study of Diophantine Approximation, i.e., approximations of irrational numbers by rational ones. The following statement can
be found in various textbooks on number theory, see for example Ref. [? ]. The first part is also treated in the textbook [? ], and
for completeness, we give a short proof of the statement based on Ref. [? ].
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Theorem 9. Let x be a positive number and p/q a positive rational number. If∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
(34)

then p/q is a convergent of x. Conversely if p/q is a convergent of x, then∣∣∣∣x− p

q

∣∣∣∣ ≤ 1

q2
. (35)

Proof. Let pnqn denote the convergents to the continued fraction decomposition of x. The sequence (qn)n is increasing [? ], thus
there exists some integer n such that qn ≤ q < qn+1. Now assume that pq satisfies the inequality (34) but is not a convergent to
the continued fraction algorithm, i.e., pq 6=

pn
qn
∀n. The convergents pn

qn
are precisely the best approximations to x in the second

sense, thus, |qx− p| < |qnx− pn| implies q > qn+1 [? ]. Therefore, if pq is not a convergent with q < qn+1 (if q = qn+1 there
is nothing to show) we find |qnx− pn| ≤ |qx− p| < 1

2q , since p
q satisfies Eq. (34) by assumption. This yields

1

qqn
≤ |pqn − qpn|

qqn
=

∣∣∣∣pq − pn
qn

∣∣∣∣ ≤ ∣∣∣∣x− pn
qn

∣∣∣∣+

∣∣∣∣x− p

q

∣∣∣∣
<

1

2qqn
+

1

2q2
,

(36)

and thus qn > q, which is a contradiction to qn ≤ q < qn+1. Therefore, we find that q = qn and consequentially p = pn, which
concludes the first part of the statement.
For the second part, we can make use of the so-called complete quotients a′i, see for example Ref. [? ], defined as a′i =
[ai, ai+1, ...] which allows us to express arbitrary x as

x =
a′i+1pi + pi−1

a′i+1qi + qi−1
, (37)

in terms of an arbitrary convergent piqi . Then it follows∣∣∣∣x− pi
qi

∣∣∣∣ =

∣∣∣∣a′i+1pi + pi−1

a′i+1qi + qi−1
− pi
qi

∣∣∣∣ =

∣∣∣∣∣
(
a′i+1pi + pi−1

)
qi − pi

(
a′i+1qi + qi−1

)
qi
(
a′i+1qi + qi−1

) ∣∣∣∣∣
=

∣∣∣∣∣ pi−1qi − piqi−1

qi
(
a′i+1qi + qi−1

) ∣∣∣∣∣ =

∣∣∣∣∣ (−1)i

qi
(
a′i+1qi + qi−1

) ∣∣∣∣∣
≤ 1

qiqi+1
,

(38)

where we used in the last line that a′i+1qi + qi−1 ≥ qi+1. Lastly, since qi+1 ≥ qi every convergent and thus also the particular

convergent p/q satisfies the inequality
∣∣∣x− p

q

∣∣∣ ≤ 1
q2 . Recall that in the case of a rational x, i.e., a simple finite continued fraction

expansion x = [a0, a1, ..., an], we define the denominator of the n + 1 convergent simply as qn, such that the proof also holds
for rational x.

This Theorem provides a sufficient and necessary condition on the absolute difference of the number x and a rational approx-
imation p/q such that said approximation is a convergent of x in the continued fraction decomposition. Coming back to the
question of which measurement outcomes are useful, we employ the following Corollary.

Corollary 10. Let k be an integer with 0 ≤ k < q where N2 < q = 2L < 2N2 that satisfies the inequality∣∣∣∣ jr − k

q

∣∣∣∣ ≤ β

2q
(39)

for some coprime (j, r) with 0 < j < r and β = q−1
r2 . Then the continued fraction expansion of k/q will yield j/r and thereby

r, as a convergent.

Proof. According to the first part of Thm. 9, any integer k that satisfies
∣∣∣ jr − k

q

∣∣∣ < 1
2r2 will yield j/r as a convergent. Obviously

β
2q <

1
2r2 . In particular, since β > 1 all integers k that obey the inequality

∣∣∣ jr − k
q

∣∣∣ < 1
2q will yield j/r as a convergent.
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This justifies the choice of the dimension of quantum system A with dim(A) = q at the beginning of the discussion. Let
us emphasize that extending the margin of error like in Cor. 10 for a β > 1 has allowed to sharpen Shor’s original bound
(which basically utilizes a weaker bound with β = 1) on the coherent protocol, see for example Refs. [? ? ]. Looking at the
following result, the reason why the post-processing via the CFA works well for a measurement result as in Cor. 10 can be better
understood.

Lemma 11. Consider fixed integers N and q > N2.
i) Assume you have a fixed integer 0 ≤ k < q. Then there exists at most one pair of integers (j, r) with 1 ≤ r < N , 0 ≤ j < r,

and gcd(j, r) = 1 such that
∣∣∣ jr − k

q

∣∣∣ < 1
2q .

ii) Assume that you have a pair of integers (j, r) with 1 ≤ r < N and 0 ≤ j < r. Then there exists an integer 0 ≤ k < q such

that
∣∣∣ jr − k

q

∣∣∣ < 1
2q is satisfied.

Proof. We begin with i). Assume that there exist two distinct fractions j′
r′ 6=

j
r that satisfy

∣∣∣ jr − k
q

∣∣∣ < 1
2q and

∣∣∣ j′r′ − k
q

∣∣∣ < 1
2q . It

follows that ∣∣∣ j′r′ − j
r

∣∣∣ =
∣∣∣ j′r′ − k

q + k
q −

j
r

∣∣∣ < 1
q <

1
N2 . (40)

On the other hand
∣∣∣ j′r′ − j

r

∣∣∣ =
∣∣∣ j′r−jr′rr′

∣∣∣ > 1
N2 , since r, r′ < N and there exists an integer i such that |j′r − jr′| = |i| ≥ 1. By

contradiction the two fractions are identical.
For ii), we note that the distance between neighboring fractions k

q is given by 1
q . Therefore, there always exists a k′ such

that
∣∣∣ jr − k′

q

∣∣∣ ≤ 1
2q . However, equality can only hold if r is a power of 2, in which case there exists a k such that kq samples j

r

exactly.

Combining the results of Cor. 10 and Lem. 11 tells us, that given a single rotation Ej as defined in Lem. 8 and with j coprime
to r, there always exists a measurement outcome k that will yield r via the continued fraction algorithm. With this at hand, we
define the following two sets for a fixed j coprime to r

Kj1 =

{
k : 0 ≤ k < q ∧

∣∣∣∣ jr − k

q

∣∣∣∣ < 1

2q

}
,

Kj2 =

{
k : 0 ≤ k < q ∧

∣∣∣∣ jr − k

q

∣∣∣∣ ≤ 1

r2

}
.

(41)

Additionally we define the sets K1,K2 as Ki = ∪jKji , where the union is formed over all j smaller than and coprime to r. The
set K1 contains all measurement outcomes that will yield the correct order r by putting the outcome in the continued fraction
algorithm. The second setK2 consists of all outcomes that obey the necessary condition to be a convergent of the CFA according
to Thm. 9, i.e., it contains all outcomes that will yield the correct r via the CFA but potentially also outcomes that do not. Let
us conclude this preliminary discussion by noting what happens for an unknown and randomly chosen j (or equivalently a
uniformly weighted Ej , as we got here) during the post-processing. Suppose for the sampled Ej , j and r share a common
factor. The post-processing will then maximally yield a factor of r and thus fail. This case is however rare: the probability
that a randomly chosen j is coprime to r is given by ϕ(r)/r, where ϕ(r) denotes Euler’s totient function. This ratio between
Euler’s totient function and its argument is bounded by ϕ(r)

r > δ
log log r >

δ
log logN , for some positive constant δ, according to a

well-known result by Hardy [? , Theorem 328]. In fact, the latter inequality is asymptotically tight for infinitely many values of
r.

C. Sequential order-finding

Furthermore, we have to discuss a sequential version of Shor’s original order-finding protocol that allows reducing the number
of qubits drastically for large factorization problems. The protocol is based on a semi-classical implementation of the combi-
nation of an inverse quantum Fourier transform and a measurement in the computational basis following directly afterward (see
Refs. [? ? ]): Assume the inverse Fourier transform is implemented via its standard decomposition into Hadamard gates and
controlled rotations as depicted in Fig. 1, see also Ref. [? ]. Fig. 2 therefore shows an implementation of Shor’s algorithm in
which the measurement outcome has to be reordered in reverse order. As explained in detail in Ref. [? ], it is then possible
to do the measurement on the first qubit directly after the first Hadamard gate belonging to the inverse Fourier transform was
implemented (the second Hadamard gate in the figure) and use its outcome to classically control all the following rotations that
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depend on this qubit. A similar argument holds for the other qubits as well: after the respective Hadamard gate in their line,
one can directly measure them and control all following rotations classically depending on the outcome. Since all the controlled
rotations in one line lead to an effective rotation, in this way, one can replace them with a single effective classically controlled
rotation R′l that depends on the previous measurement outcomes. This is shown in Fig. 3.

Thereby, the gates and measurements on the individual qubits are performed sequentially, which allows to split Shor’s
protocol into blocks, see Fig. 4, that each utilize only a single control qubit on which the Hadamard gates and the classically
controlled rotations R′l are performed. The single control qubit can be recycled after each block, such that the total amount of
qubits required decreases to logN + 1. Due to this decomposition, Shor’s original protocol and the sequential version lead to
identical measurement statistics if the auxiliary systems are initialized in the same state.

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

RL RL−1 R2 H

RL−1 RL−2 H

R2 H

H

Figure 1: Standard decomposition of the inverse Fourier transform into Hadamard gates and controlled rotations Rl. The
controlled rotation Rl adds a phase of −2πi/2l to |1〉 and leaves |0〉 unchanged. An additional initial reordering of the qubits in

reverse order is not shown.

. . . . . . . . .
k0

. . . . . . . . .
k1

.

.

.

. . . . . . . . .

kL−2

. . . . . . . . .

kL−1

. . .

|0〉 H H

|0〉 H R2 H

|0〉 H RL−1 RL−2 H

|0〉 H RL RL−1 R2 H

|1〉 U2L−1

B U2L−2

B U21

B U20

B Discard

Figure 2: Decomposition of Shor’s algorithm, with the inverse Fourier transform decomposed into Hadamard gates and
controlled rotations Rl. A controlled rotation Rl adds a phase of −2πi/2l to |1〉 and leaves |0〉 unchanged. This leads to a total

outcome k =
∑L−1
i=0 2iki.

III. Choosing the free operations

As discussed in the main text, we fix the overall protocol that we investigate and vary only parts of it. Here, we will explain our
choices a bit more in detail. First, we assume that the post-processing of measurement results after a single round is achieved by
the continued fraction algorithm. If this fails, then we restart the algorithm and perform the post-processing without accounting
for the previous outcomes, thereby ignoring possible correlations between results of failed trials. In general, this is not the
best possible post-processing strategy. An example of a more involved strategy can be found in Ref. [? ]. Nevertheless, for
simplicity, we assume this fixed post-processing involves only the outcome of individual trials since we are not optimizing over
post-processing strategies anyway. The ability to create, then utilize, and finally detect coherence is a key feature in the protocol.
Imposing constraints on these abilities can be done naturally within the framework of dynamical resource theories of coherence.
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. . .
k0

. . .
k1

.

.

.

. . .

kL−2

. . .

kL−1

. . .

|0〉 H H

|0〉 H R′2 H

|0〉 H R′L−1 H

|0〉 H R′L H

|1〉 U2L−1

B U2L−2

B U21

B U20

B Discard

Figure 3: Rewriting Shor’s algorithm using classically controlled effective rotations R′l =
∑1
n=0 e

−2πinφ′l |n〉〈n| that depend on
the outcomes of previous measurements via φ′l =

∑l
a=2 kl−a/2

a.

BLOCK 1 BLOCK 2 BLOCK L

. . .

. . . . . .

A

|0〉 H R′1 H |0〉 H R′2 H |0〉 H R′L H

|1〉 U1 U2 UL Discard

CLASSICAL CONTROL AND CLASSICAL POST-PROCESSING

Figure 4: Sequential order-finding protocol using the semi-classical version of the Fourier transform. The modular
exponentiation factors into single qubit controlled-operations given by Ul = U2L−l

B and the classically controlled rotations
R′l =

∑
n e
−2πinφ′l |n〉〈n|, where the phases φ′l depend on the previous measurement outcomes kl via φ′l =

∑l
a=2 kl−a/2

a, see
Refs. [? ? ].

Notice that expressing the protocol in the form of Fig. 4 makes it clear that except for the Hadamard gates, the protocol
utilizes only incoherent input states, channels Ul and R′l that can neither detect nor create coherence, and measurements in the
incoherent basis. Replacing Hadamard gates by quantum channels S(l)

1 [Θl] and S(l)
2 [Λl] respectively results in the protocol

depicted in Fig. 5. If no particular block is considered, we omit the label l and refer to the channels for creation and detection
simply as Θ and Λ.

BLOCK 1 BLOCK 2 BLOCK L

. . .

. . . . . .

A

σ1 S
(1)
1 [Θ1] R′1 S

(1)
2 [Λ1] σ2 S

(2)
1 [Θ2] R′2 S

(2)
2 [Λ2] σL S

(L)
1 [ΘL] R′L S

(L)
2 [ΛL]

|1〉 U1 U2 UL Discard

CLASSICAL CONTROL AND CLASSICAL POST-PROCESSING

Figure 5: Circuit representation of the order-finding protocol using only channels Θl and Λl to create and detect coherence. The
outcomes of an (incoherent) projective measurement in the computational basis are forwarded to the classical control and

post-processing unit, which re-initializes the single control qubit, classically controls the rotations R′l to implement the inverse
Fourier transform, and lastly computes the continued fraction decomposition to yield an estimate of the order r.

Let us now explain why the symmetry of the fully coherent protocol that uses the same channel to create and detect coher-
ence (i.e., the Hadamard gate) has to be broken in the more general case: The ability to create and detect coherence are two
fundamentally different properties a quantum channel can possess, which in turn gives rise to two different resources that are
generally not interconvertible (e.g., a channel Γ(σ) = ρTr(σ) can prepare coherence if ρ is chosen suitably, but not detect,
whilst a destructive measurement in the Fourier basis can detect but not prepare coherence). The Hadamard gate can however
create a maximally coherent state (by applying it to |0〉), but also maximizes the NSID-measure [? ]. Therefore, it plays a dual
role, i.e., it both creates and detects coherence.

As mentioned in the main text, the choice of free channels follows naturally. If Θ is incapable of creating coherence,
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no information about the order can be encoded. If Λ cannot detect coherence, none of this information can influence the
measurement statistics. Thus, the lack of either ingredient renders the protocol practically “useless” by reducing it to a random
number generator independent of the order that it is supposed to estimate, and is moreover classically simulable. Therefore,
the choices of free channels are maximally incoherent channels MIO [? ] and detection-incoherent channels DI [? ], also
known as non-activating [? ]. Let us mention that this random number generator gives rise to different probability distributions
depending on the structure of the free channels Θfree and Λfree. Details will follow in the next section.
It is tempting to choose the set of creation-detection incoherent channels CDI as the set of free channels, i.e., the channels that
can neither create nor detect coherence, also known as dephasing-covariant channels [? ? ? ], classical [? ], or commuting [?
]. This would keep the symmetry of the protocol and seems to be an intuitive choice as it leads to a “fully classical” protocol.
However, it does not lead to a consistent connection between operational advantages and deployed resources: Imagine we would
use an channel Λ ∈ DI with Λ 6∈ MIO for detection. Although not granting any operational advantage, this channel has to be
considered resourceful. In contrast, our choice of different sets of free channels naturally leads to an operationally meaningful
use of resources.

Furthermore, the channel Λ utilized in the detection scheme is assumed to be a unital map. This assumption is physically
motivated: The measurement statics of the incoherent measurement are uniquely determined by the pre-measurement popula-
tions. To be maximally sensitive to information about r, we want that the deviation of the measurement statistics from a flat
distribution purely depends on the coherences that Λ mapped to populations, and not on a reshuffling of populations that does
not include information about r. Without knowing r, we can choose both free super-channels S1 and S2 such that this is the case
iff Λ is unital. Since the state before Ul is still independent of r, we can always choose S1 such that its populations are equal to
a maximally mixed state, without affecting the coherences (because the phases of the coherences are still independent of r and
therefore known). After Ul, the phase of the coherences depends however on r, and we can thus not alter the populations without
varying the coherences (or knowing r). Thus, if Λ were not unital but could detect coherence, the following might happen: The
measurement statistics depend stronger on the population reshuffling than on the detected coherences. In this case, we would
perform worse than with a free channel that leads to equally distributed random numbers and therefore on average produces
better guesses of r than random numbers that are weighted in a way that does not depend on r. To avoid this, we must choose
Λl to be unital and similarly choose the super-channels S(l)

2 to be unitality-preserving.

IV. Success probability

The success probability of the order-finding protocol, consisting of the quantum part combined with the continued fraction
algorithm, can now be expressed. To ease up the notation, we make use of the equivalence between Shor’s original version
and the sequential version. That way, there is no need to laboriously track the back-action of the measurements in each block
on the auxiliary system, which allows us to express the success probability compactly. Recall that the detection part, i.e., the
standard implementation of the inverse Fourier transform (see Fig. 1), was altered only by replacing the Hadamard gates with
channels S(l)

2 [Λl]. Let us denote the resulting channel by F
S

(l)
2 [Λl]

. Furthermore, we use σ̃ =
⊗

l σl and the POVM elements
Mk =

⊗
lMkl . With this notation, the incoherent measurement M = {Mk}k results in the measurement statistics

pk(S
(l)
1 [Θl], S

(l)
2 [Λl]; σ̃,M) = Tr

[
Mk∆F

S
(l)
2 [Λl]

E
L⊗
l=1

S
(l)
1 [Θl]σ̃

]
, (42)

where E denotes the uniformly weighted rotations described in Lem. 8. After completing all blocks, the measurement outcome
k is forwarded to the CFA, which will return the order r with a probability of P (k → r |CFA). Therefore, the probability that
the order-finding protocol in Fig. 5 succeeds, is given by

P succ(S
(l)
1 [Θl], S

(l)
2 [Λl]; σ̃,M) =

∑
k

P (k → r |CFA) pk(S
(l)
1 [Θl], S

(l)
2 [Λl]; σ̃,M). (43)

Since all incoherent input states σl, incoherent measurements, and free super-channels S(l)
1 and S(l)

2 are available at no cost,
we choose them optimally (but without knowledge of r and in a way that is implementable efficiently), which ensures that the
available resources are used adequately. The resulting success probability is then given by
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P succ(Θl,Λl) = max
σ̃∈I
M∈IM

sup
S

(l)
1 ∈MIOS
S

(l)
2 ∈DIS

P succ(S
(l)
1 [Θl], S

(l)
2 [Λl]; σ̃,M)

= max
σ̃∈I
M∈IM

sup
S

(l)
1 ∈MIOS
S

(l)
2 ∈DIS

∑
k

P (k → r |CFA) pk(S
(l)
1 [Θl], S

(l)
2 [Λl]; σ̃,M).

(44)

Since every incoherent POVM M is equivalent to a detection-incoherent channel followed by a projective measurement P in the
incoherent basis [? ], the optimization over the measurement can be absorbed into the optimization of the detection-incoherent
super-channel, i.e.,

P succ(Θl,Λl) = max
σ̃∈I

sup
S

(l)
1 ∈MIOS
S

(l)
2 ∈DIS

∑
k

P (k → r |CFA) pk(S
(l)
1 [Θl], S

(l)
2 [Λl]; σ̃,P). (45)

In general, this expression seems hard to evaluate exactly. However, in the following section, we will provide bounds allowing
us to compare performance and resource content.

V. Proof of the results in the main text

In this section we give the proofs of the results presented in the main text, i.e., we derive bounds on the success probability
given in Eq. (45).

A. Preliminaries

We start by presenting a bound on a product that we will later use to obtain a lower bound on the performance of the order-
finding protocol.

Lemma 12. For positive numbers {al}l with 0 ≤ al ≤ 1 ∀ l the following inequalities hold:

4

π2

L∏
l=1

1

2
[1 + al] ≤

L∏
l=1

1

2

[
1 + al cos

( π
2l

)]
≤

L∏
l=1

1

2
[1 + al] . (46)

Proof. Since al ≥ 0, the upper bound holds trivially. For the lower bound, notice that the term 0 ≤ cos
(
π
2l

)
< 1 rapidly

converges to one for increasing l. Thereby, it is reasonable that the deviation from the simple upper bound is small. First rewrite
the product as

L∏
l=1

1

2

[
1 + al cos

( π
2l

)]
=

L∏
l=1

1

2

[
1 + cos

( π
2l

)] L∏
l=1

[
1 + al cos

(
π
2l

)
1 + cos

(
π
2l

) ]

=

L∏
l=1

1

2

[
1 + cos

( π
2l

)] L∏
l=1

[
1 + al

2
+

1− al
2

1− cos
(
π
2l

)
1 + cos

(
π
2l

)]

≥
L∏
l=1

1

2

[
1 + cos

( π
2l

)] L∏
l=1

[
1 + al

2

]

=

L∏
l=1

cos2
( π

2l+1

) L∏
l=1

[
1 + al

2

]
.

(47)

Now utilize a special case of the Viète-Euler product formula, see for example Ref. [? ], sin(x)
x =

∏∞
l=1 cos

(
x
2l

)
with x = π/2

which results in

4

π2
=

∞∏
l=1

cos2
( π

2l+1

)
=

L∏
l=1

cos2
( π

2l+1

) ∞∏
l=L+1

cos2
( π

2l+1

)
≤

L∏
l=1

cos2
( π

2l+1

)
, (48)

which concludes the proof. Notice that the last inequality is asymptotically tight for L→∞.
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Let us proceed by introducing a particular super-channel S2 for the detection scheme. The channel S2[Λ] mimics a key
property of the Hadamard gate that will allow us to mimic a key property of the inverse Fourier transform such that the protocol
yields useful measurement outcomes with high probability.

Lemma 13. Let Λ be a qubit quantum channel, defined in the index representation as

Λ(|n〉〈m|) =
∑
kl

Λnmkl |k〉〈l|. (49)

There exists an implementable super-channel S2 ∈ DIS , such that

∆S2[Λ](|n〉〈m|) =

1∑
k=0

|Λnmkk |eπik(n−m)|k〉〈k|. (50)

It suffices to choose a super-channel of the form S[Λ] = ΛΦ2. We refer to the action of the channel S2[Λ] on any state as
Hadamard-like, or shortly the channel is Hadamard-like.

Proof. Let us use the notation Λnmkl = |Λnmkl |eiλ
nm
kl and choose Φ2 as the channel corresponding to the unitary

∑
n e

iλ01
00n|n〉〈n|.

In the following, we will see that this choice satisfies our requirements. Note first that Λnnkk ≥ 0 ∀k, n, and therefore property (50)
holds for populations. Moreover

〈0| (ΛΦ2|0〉〈1|) |0〉 = |Λ01
00| (51)

as required, and due to trace preservation

〈1| (ΛΦ2|0〉〈1|) |1〉 = |Λ10
00|ei(λ

01
11−λ

01
00) = −|Λ01

00|, (52)

i.e., ei(λ
01
11−λ

01
00) = −1 = eiπ1(0−1), which finishes this case too. Finally,

ΛΦ2|1〉〈0| = (ΛΦ2|0〉〈1|)† , (53)

from which the remainder of the proof follows.

B. A lower bound

A lower bound on the success probability (45) is essential to bound the runtime of the algorithm. For the coherent protocol,
which utilizes Hadamard gates, it has been shown that the success probability is lower bounded by a function that is slowly
growing in the number N to factor [? ]. In this section, we prove a similar bound for less resourceful channels, that will include
the coherent bound derived by Shor as a limiting case.

For the lower bound on Eq. (45) discussed in the following, we can simply choose a specific set of free super-channels S(l)
1

and S(l)
2 , which are depicted in Fig. 6.

S
(l)
1 S

(l)
2

σl Θl Φ
(l)
2

R′l Φ
(l)
3

Λl

Ul

Figure 6: The particular super-channels that are employed for each individual block to derive the lower bound on the success
probability in Thm. 14.

The super-channels S(l)
2 employed in the detection part will be the ones that lead to Hadamard-like channels (see Lem. 13),

whereas the S(l)
1 will be introduced in the following Theorem.
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Theorem 14. The success probability of the order-finding protocol with qubit channels Θl and unital Λl is bounded by

P succ(Θl,Λl) ≥
4

π2

ϕ(r)

r

L∏
l=1

(
1 + C (Θl)M̃�(Λl)

2

)
, (54)

where C denotes the cohering power with respect to the robustness of coherence, M̃� is the NSID-measure, both introduced in
the main text, and ϕ(r) denotes Euler’s totient function.

Proof. Let us consider an idealized version of the order-finding protocol first. Assume that instead of a symmetry channel E ,
derived in Lem. 8, only a single rotation Ej , where j is coprime to r, is utilized. Let us denote the success probability of this
order-finding protocol by P̃ succ

j (Θl,Λl), which is given by

P̃ succ
j (Θl,Λl) = max

σ̃∈I
sup

S
(l)
1 ∈MIOS
S

(l)
2 ∈DIS

∑
k

P (k → r |CFA) p
(j)
k (S

(l)
1 [Θl], S

(l)
2 [Λl]; σ̃,P), (55)

where p(j)
k (S

(l)
1 [Θl], S

(l)
2 [Λl]; σ̃,P) = Tr

[
Pk∆F

S
(l)
2 [Λl]

Ej
⊗

l S
(l)
1 [Θl]σ̃

]
(recall the notations introduced around Eq. (42)).

One way of obtaining a compact lower bound is the following: Instead of accounting for all possible measurement outcomes
which may or may not yield the correct r via the classical post-processing, i.e., all outcomes contained in the set Kj2 in (41),
we focus on the set Kj1. Since the set Kj1 contains exactly one outcome, we use this single measurement outcome k′ obeying
| jr −

k′

q | < 1/(2q) to provide a lower bound according to

P̃ succ
j (Θl,Λl) = max

σ̃∈I
sup

S
(l)
1 ∈MIOS
S

(l)
2 ∈DIS

∑
k

P (k → r |CFA) p
(j)
k (S

(l)
1 [Θl], S

(l)
2 [Λl]; σ̃,P)

≥ max
σ̃∈I

sup
S

(l)
1 ∈MIOS
S

(l)
2 ∈DIS

P (k′ → r |CFA) p
(j)
k′ (S

(l)
1 [Θl], S

(l)
2 [Λl]; σ̃,P)

= max
σ̃∈I

sup
S

(l)
1 ∈MIOS
S

(l)
2 ∈DIS

p
(j)
k′ (S

(l)
1 [Θl], S

(l)
2 [Λl]; σ̃,P),

(56)

where in the third line we used the results of Cor. 10 and Lem. 11. To further simplify this bound, we make use of particular
super-channels S(l)

1 , S
(l)
2 depicted in Fig. 6. For the detection we choose S(l)

2 [Λl] = ΛlΦ
(l)
2 such that we obtain a Hadamard-like

channel (see Lem. 13). For the adjustment of the channels Θl we do the following: after Θl was applied to σl, we perform
a rotation removing the relative phase of the qubit state Θl(σl). Let us denote this rotation by R(l)

1 . Then we apply the map
Φ̃(ρ) = 1

2 (ρ + σxρσx). This post-processing of Θl(σl) results in a state of the form S
(l)
1 [Θl](σl) = 1

21 + clσx where cl ≥ 0,
which is then used to probe Ej . Importantly, it does not carry any intrinsic phases that may interfere with the detection of the
phases induced by Ej . Enforcing uniformly distributed populations (which are preserved since Λl is unital by assumption) will
ensure that the deviation in the measurement statistics caused by coherence can be maximized. Choosing super-channels defined
in such a way, i.e., S(l)

1 [Θl] = Φ
(l)
1 Θl = Φ̃R(l)

1 Θl and S(l)
2 [Λl] = ΛlΦ

(l)
2 , we obtain from Eq. (56) that

P̃ succ
j (Θl,Λl) ≥ max

σ̃∈I
sup

S
(l)
1 ∈MIOS
S

(l)
2 ∈DIS

p
(j)
k′ (S

(l)
1 [Θl], S

(l)
2 [Λl]; σ̃,P)

≥ max
σ̃∈I

p
(j)
k′ (Φ

(l)
1 Θl,ΛlΦ

(l)
2 ; σ̃,P)

= max
σ̃∈I

Tr

[
Pk′∆FΛlΦ

(l)
2
Ej
⊗
l

Φ
(l)
1 Θlσ̃

]
.

(57)

At this point, we notice that we can express Ej (see Lem. 8) as a tensor product: expanding n into its binary representation, i.e.,
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n = n1n2...nL =
∑L
l=1 nl2

L−l, we find

Rj/r =

2L−1∑
n=0

e2πi jrn|n〉〈n| (58)

=

1∑
n1=0

. . .

1∑
nL=0

e2πi jr
∑L
l=1 nl2

L−l
|n1n2...nL〉〈n1n2...nL| (59)

=

L⊗
l=1

1∑
nl=0

e2πi jrnl2
L−l
|nl〉〈nl| (60)

=

L⊗
l=1

R
(l)
j/r, (61)

with R(l)
j/r =

∑1
nl=0 e

2πi jrnl2
L−l |nl〉〈nl|. We thus define E(l)

j (ρ) := R
(l)
j/rρ

(
R

(l)
j/r

)†
and notice that, with the equivalence of

Figs. 2, 3, and 4 (and σ̃ =
⊗

l σl),

Tr

[
Pk′∆FΛlΦ

(l)
2
Ej

L⊗
l=1

Φ
(l)
1 Θlσ̃

]
= Tr

[
Pk′∆FΛlΦ

(l)
2

L⊗
l=1

(
E(l)
j Φ

(l)
1 Θlσl

)]

=

L∏
l=1

Tr
[
P

(l)
k′ ∆ΛlΦ

(l)
2 R′lE

(l)
j Φ

(l)
1 Θlσl

]
, (62)

where P (l)
k′ = |k′l−1〉〈k′l−1| for a total k′ =

∑L−1
l=0 2lk′l (see Figs. 2 and 3). Here it is important that we understand the product as

ordered, since R′l depends on all previous measurement outcomes. Recall that cl = |[Θl(σl)]01|, with which

∆ΛlΦ
(l)
2 R′lE

(l)
j Φ

(l)
1 Θlσl =∆ΛlΦ

(l)
2 R′lE

(l)
j

[
1

2
1+ clσx

]
=∆ΛlΦ

(l)
2 R′l

[
1

2
1+ cl

(
e−2πi jr 2L−l |0〉〈1|+ h.c.

)]
=∆ΛlΦ

(l)
2

[
1

2
1+ cl

(
e−2πi( jr 2L−l−

∑l
a=2 k

′
l−a/2

a)|0〉〈1|+ h.c.
)]

=
1

2
1+ cl

(
e−2πi( jr 2L−l−

∑l
a=2 k

′
l−a/2

a)
1∑

bl=0

∣∣(Λl)01
blbl

∣∣ eiπbl |bl〉〈bl|+ h.c.

)
. (63)

Since the robustness of coherence coincides with the l1 measure of coherence for qubits, see Ref. [? ], we find

max
σl∈I

cl = max
σl∈I
|[Θl(σl)]01| = max

σl∈I
C(Θlσl)/2 = C (Θl)/2, (64)

where C denotes the cohering power with respect to the robustness, and
∣∣(Λl)01

00

∣∣ =
∣∣(Λl)01

11

∣∣ [? , Prop. 6] and thus

max
σ̃∈I

Tr

[
Pk′∆FΛlΦ

(l)
2

⊗
l

E(l)
j Φ

(l)
1 Θlσ̃

]

=

L∏
l=1

max
σl∈I

[
1

2
+ cl

∣∣∣(Λl)01
k′0k
′
0

∣∣∣ (e−2πi( jr 2L−l−
∑l
a=1 k

′
l−a/2

a) + h.c.
)]

=

L∏
l=1

1

2

[
1 + C (Θl)

∣∣(Λl)01
00

∣∣ (e−2πi( jr 2L−l−
∑l
a=1 k

′
l−a/2

a) + h.c.
)]
. (65)

Following the usual procedure (see for example Ref. [? ]), we note that
∑l
a=1 k

′
l−a/2

a = 2−l
∑l−1
b=0 k

′
b2
b and

e2πi2−l
∑L−1
b=l k

′
b2
b

= 1. Therefore,

e−2πi( jr 2L−l−
∑l
a=1 k

′
l−a/2

a) = e−2πi2L−l( jr−
k′
2L

) (66)
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and if we consider the worst-case scenario we find

max
σ̃∈I

Tr

[
Pk′∆FΛlΦ

(l)
2
Ej
⊗
l

Φ
(l)
1 Θlσ̃

]
=

L∏
l=1

1

2

[
1 + C (Θl)

∣∣(Λl)01
00

∣∣ 2 cos

(
2π2L−l

(
j

r
− k′

2L

))]

≥ inf
|χ|< 1

2q

L∏
l=1

1

2

[
1 + C (Θl)

∣∣(Λl)01
00

∣∣ 2 cos
(
2π2L−lχ

)]
, (67)

where in the last line we used our assumption that k′ ∈ Kj1. Since 2|Λ01
00| = M̃�(Λ), as detailed in Lem. 4, it follows that

P̃ succ
j (Θl,Λl) ≥ inf

|χ|< 1
2q

L∏
l=1

1

2

[
1 + C (Θl)M̃�(Λl) cos

(
2π2L−lχ

)]

=

L∏
l=1

1

2

[
1 + C (Θl)M̃�(Λl) cos

(
π2−l

)]
Lem. 12
≥ 4

π2

L∏
l=1

1

2

[
1 + C (Θl)M̃�(Λl)

]
. (68)

Now remember that up to here, we assumed that we replaced E with Ej . This is of course not possible since it would require
knowledge of r. To get back to the original protocol, we note that applying E corresponds to applying Ej with j ∈ 0, ..., r − 1
chosen uniformly at random. The number of such j with gcd(j, r) = 1 is given by ϕ(r), where ϕ(r) denotes Euler’s totient
function. The overall success probability is therefore bounded by

P succ(Θl,Λl) =
1

r

r−1∑
j=0

P̃ succ
j (Θl,Λl)

≥
(
ϕ(r)

r

)
4

π2

L∏
l=1

1

2

[
1 + C (Θl)M̃�(Λl)

]
.

(69)

Particularly, if the same channels are utilized in each block the bound simplifies to

P succ(Θ,Λ) ≥ 4

π2

(
ϕ(r)

r

)[
1 + C (Θ)M̃�(Λ)

2

]L
. (70)

Euler’s totient function grows almost linearly in its argument and is strictly bounded by ϕ(r) > δr
log log r >

δr
log logN for some

δ > 0, where δ ≈ e−γ with γ being the Euler-Mascheroni constant, see for instance Ref. [? , Theorem 328], which connects
this bound to the original bound derived by Shor [? ? ]. For a perfectly coherent protocol, this bound would take the form
P succ > 4

π2
δ

log log r , which equals the bound originally obtained by Shor [? ]. In the following works, see for example Refs. [?
? ], it has been shown that for the fully coherent protocol, the factor 4

π2 ≈ 0.4 can be pushed to about 0.9 (at least in an average
case) by a more careful, yet tedious, analysis. The basic idea behind these proofs is to consider not only the set K1 as useful
outcomes but to stretch the definition of said set as it has been outlined in Cor. 10. Since continuity in the dynamical measures
C (Θ) and M̃�(Λ) is to be expected, it would not be surprising if the bound in Eq. (54) can be sharpened analogously. For now,
we leave this to future work.

C. Classical limit

As already pointed out, the classical limit of the protocol uses only free channels Θ
(l)
free and Λ

(l)
free and corresponds to

a random number generator. It returns a number in the range 0 ≤ k ≤ 2L − 1 with a probability distribution of
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{pk(S
(l)
1 [Θ

(l)
free], S

(l)
2 [Λ

(l)
free]; σ̃,P)}k independent of the order r since

pk(S
(l)
1 [Θ

(l)
free], S

(l)
2 [Λ

(l)
free]; σ̃,P) = Tr

[
Pk∆F

S
(l)
2 [Λ

(l)
free]
E
⊗
l

S
(l)
1 [Θ

(l)
free](σ̃)

]

= Tr

[
Pk∆F

S
(l)
2 [Λ

(l)
free]

∆E
⊗
l

S
(l)
1 [Θ

(l)
free](σ̃)

]

= Tr

[
Pk∆F

S
(l)
2 [Λ

(l)
free]

⊗
l

S
(l)
1 [Θ

(l)
free](σ̃)

]
.

(71)

Without prior knowledge about the order r (including factors of r itself which may be obtained by considering the outcomes of
multiple rounds combined; not considered here though), the on average most beneficial probability distribution pk is the uniform
distribution. For all free channels Θ

(l)
free,Λ

(l)
free we can always choose a pair S(l)

1 , S
(l)
2 that achieves this uniform distribution. In

fact, such super-channels can even be chosen independently of Θ
(l)
free and Λ

(l)
free in the classical limit, even in the case of non-

unital Λ
(l)
free. A simple example would be to choose a suitable replacement channel as the post-processing of Λ

(l)
free. The resulting

uniformly random measurement outcome is forwarded to the continued fraction algorithm producing an estimate on r. Thus, the
overall success probability (assuming no prior knowledge of r) in the classical limit is given by

P succ(Θ
(l)
free,Λ

(l)
free) =

f(N, r)

2L
, (72)

where we define f(N, r) =
∑
k P (k → r |CFA). The function f(N, r) mitigates the exponential term in the success probability

to some extend and to quantify this notion we proceed to derive bounds on this function.

Proposition 15. The function f(N, r) is bounded by

2ϕ(r)

⌊
q − 1

2r2

⌋
≤ f(N, r) ≤ ϕ(r)

(
1 + 2

⌊ q
r2

⌋)
, (73)

where ϕ(r) denotes Euler’s totient function and q is uniquely given by N2 < q = 2L < 2N2.

Proof. Consider a single coprime pair (j, r). Let f̃j(N, r) denote the function that counts the number of measurement outcomes
that lead to this particular convergent j/r, i.e.,

f̃j(N, r) =
∑
k

P (k → (j, r) |CFA). (74)

For a lower bound, recall Thm. 9 and Cor. 10. Let us define the set Kj1(β) which contains all integers that surely allow for a
successful post-processing, i.e.,

Kj1(β) =

{
k : 0 ≤ k < q ∧

∣∣∣∣ jr − k

q

∣∣∣∣ ≤ β

2q

}
, (75)

where β = q−1
r2 . A lower bound on f̃j(N, r) is then given by

f̃j(N, r) =
∑
k

P (k → (j, r) |CFA) ≥
∑

k∈Kj1(β)

P (k → (j, r) |CFA) =
∑

k∈Kj1(β)

1 = |Kj1(β)|. (76)

Furthermore, according to the second part of Thm. 9 all measurement outcomes that yield the pair (j, r) as a convergent of k/q
are contained in the set Kj2, as introduced in Eq. (41). Thus the function can be upper bounded as

f̃j(N, r) =
∑
k

P (k → (j, r) |CFA) =
∑
k∈Kj2

P (k → (j, r) |CFA) ≤
∑
k∈Kj2

1 = |Kj2|. (77)

To further simplify these bounds, we proceed to bound the cardinalities of Kj2 and Kj1(β). We start with a lower bound on
|Kj1(β)|. Consider the closest fraction k′

q defined by the smallest distance to the fraction j
r . This integer k′ is roughly in the
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center of the set defined by Kj1(β), and also the set Kj2. Now consider the adjacent integers k = k′ ± n to the closets integer k′.
First assume j

r −
k′

q > 0. Then for the elements to the left of k′, i.e., k = k′ − n contained in Kj1(β) we have

β

2q
≥ j

r
− k

q
=

(
j

r
− k′

q

)
+
n

q
>
n

q
, (78)

and therefore

n < q−1
2r2 . (79)

If q−1
2r2 is an integer, all natural numbers n ≤ nmax = q−1

2r2 −1 = satisfy this equation and therefore lead to a k inKj1(β). Moreover,
due to our closeness assumption of k′, larger n cannot be in Kj1(β). In this case, also all k = k′ +m with m ≤ mmax = q−1

2r2 are
contained in Kj1(β), because we assumed j

r −
k′

q > 0, i.e., there cannot be less integers k > k′ in Kj1(β) than integers k < k′

and we cannot hit the boundary twice exactly. In sum, we find |Kj1(β)| = 1 +nmax +mmax = 2 q−1
2r2 . If q−1

2r2 is not an integer, we
take nmax = b q−1

2r2 c instead, and |Kj1(β)| = 1 + 2nmax = 1 + 2b q−1
2r2 c. Combining both cases, we have |Kj1(β)| ≥ 2b q−1

2r2 c.
If j

r −
k′

q < 0, the same bound holds true, which can be seen by switching the role of nmax and mmax, i.e., switching the

intervals to the left and right. Lastly, consider the case of jr −
k′

q = 0 and k = k′ ± n. From

β

2q
≥
∣∣∣∣ jr − k

q

∣∣∣∣ =

∣∣∣∣( jr − k′

q

)
+
n

q

∣∣∣∣ =
|n|
q
, (80)

follows that all integers k = k′+n with |n| ≤ b q−1
2r2 c are contained in Kj1(β), i.e., |Kj1(β)| ≥ 1 + 2b q−1

2r2 c. Combining all cases,
we we find

|Kj1(β)| ≥ min
{

2b q−1
2r2 c, 1 + 2b q−1

2r2 c
}

= 2b q−1
2r2 c. (81)

Now we continue to obtain an upper bound on the cardinality of |Kj2|. All integers k ∈ Kj2 obey | jr −
k
q | ≤

1
r2 by definition.

Again consider the closest fraction k′

q defined as the one with the smallest difference to the fraction j
r . As in the discussion

for the lower bound, assume j
r −

k′

q > 0. From the analogue of Eq. (78) follows that k = k′ − n is an element of Kj2 if
n < q

r2 . If q/r2 is an integer then nmax = q
r2 − 1, and for the same arguments as before, mmax = q

r2 . If q/r2 is not an integer,
nmax = b qr2 c. In addition, mmax = b qr2 c. Depending on q

r2 being an integer or not, the cardinality is given by |Kj2| = 1 + 2b qr2 c
or |Kj2| = 2b qr2 c, thereby the cardinality is bounded by

|Kj2| ≤ 1 + 2b qr2 c. (82)

In the remaining case, i.e., if jr −
k
q = 0, we find |Kj2| = 1 + 2b qr2 c, whether or not q

r2 is an integer.
To conclude the proof, take into account all possible integers j that are smaller then and coprime to r. There are exactly ϕ(r)

such values for j, and correspondingly for each such j, there is a range of possible outcomes k that lead to the respective pair
(j, r). Inserting the expressions Eqs. (81) and (82) into Eqs. (75) and (76) respectively, we see that the function f̃j(n, r) can be
bounded by

f(N, r) =
∑
k

P (k → r |CFA) =
∑

j coprime to r

f̃j(N, r) ≥
∑

j coprime to r

2

⌊
q − 1

2r2

⌋
= 2ϕ(r)

⌊
q − 1

2r2

⌋
,

and

f(N, r) =
∑
k

P (k → r |CFA) =
∑

j coprime to r

f̃j(N, r) ≤
∑

j coprime to r

(
1 + 2

⌊ q
r2

⌋)
= ϕ(r)

(
1 + 2

⌊ q
r2

⌋)
.

Note that for all (j, r) with j not coprime to r, the continued fraction algorithm will yield a factor of r. Whilst this information
can be used in principle, it is not relevant for the fixed post-processing strategy that we chose.

Let us conclude this section by noting that with the result of Prop. 15 and Eq. (72), we can provide bounds on the classical
limit of the success probability, i.e.,

2
ϕ(r)

2L

⌊
2L − 1

2r2

⌋
≤ P succ(Θ

(l)
free,Λ

(l)
free) ≤

ϕ(r)

2L

(
1 + 2

⌊
2L

r2

⌋)
, (83)

where we used q = 2L. The classical limit of the success probability is thus sensibly dependent on the ratio between 2L and r2.
Since N2 < 2L < 2N2, this is a purely problem specific expression, in the sense that it only depends on the number N to factor
and a corresponding order r.
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VI. An upper bound

From a complexity theoretic perspective, providing an upper bound on the success probability is rather uninteresting, since
it corresponds to a best-case scenario. On the other hand, an upper bound is an interesting question, if we want to attribute a
potential speed-up to a resource, i.e., in our case coherence. For this reason we use a similar technique as in the classical limit
to provide a sufficiently general upper bound on the performance of the protocol. Nevertheless, the bound is general enough to
provide quantitative insights on the role of coherence in the algorithm.

Theorem 16. The success probability of the order-finding protocol with qubit channels Θl and unital Λl is bounded by

P succ(Θl,Λl) ≤ min

{
ϕ(r)

2L

(
1 + 2b 2L

r2 c
) L∏
l=1

(
1 + C (Θl)M̃�(Λl)

)
, 1

}
, (84)

where C denotes the cohering power with respect to the robustness of coherence, M̃� is the NSID-measure, and ϕ(r) is Euler’s
totient function.

Proof. Again, consider an idealized protocol with only a single rotation Ej first. Recall the notations introduced around Eq. (42).
We now need to be more careful than in the lower bound and use a similar technique as in the classical limit. From the quantum
part of the protocol we obtain a measurement outcome, i.e., an integer k, with a probability depending on the rotation Ej . The
classical post-processing succeeds by definition if it returns a coprime pair (j′, r), where r is the order we are looking for. Even
if a measurement outcome k does not lead to j/r, it could still be close enough to another coprime fraction j′/r such that the
post-processing succeeds. This means we have to account for all possible coprime integers j′ and hence their corresponding
integers k that allow to estimate j′/r. The success probability is given by

P̃ succ
j (Θl,Λl) = sup

S
(l)
1 ∈MIOS
S

(l)
2 ∈DIS

max
σ̃∈I

∑
k

P (k → r |CFA)p
(j)
k (S

(l)
1 [Θl], S

(l)
2 [Λl]; σ̃,P)

= sup
S

(l)
1 ∈MIOS
S

(l)
2 ∈DIS

max
σ̃∈I

∑
j′⊥r

∑
k

P (k → (j′, r) |CFA)p
(j)
k (S

(l)
1 [Θl], S

(l)
2 [Λl]; σ̃,P),

(85)

where in the second line we used that we only consider direct estimates of r but not factors of r, thus we sum only over all
coprime j′. Recall the necessary condition that integers k leading to j′/r are contained in Kj

′

2 , hence
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Recall from the proof of Thm. 14 that
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As in the proof for the lower bound, we derive an expression for the measurement statistics for arbitrary super-channels. We can
write
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where in the last line we used that 1−∆ commutes with the rotations. Let us focus on the second term first. We define

[
S

(l)
1 [Θl](σl)

]
01

=
∣∣∣[S(l)

1 [Θl](σl)
]

01

∣∣∣ eiφ1 = cle
iφ1 ,

(S
(l)
2 [Λl])

01
bl,bl

= |(S(l)
2 [Λl])

01
bl,bl
|eiλ

01
bl,bl . (89)

Then we can write the second term as
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where we used in the last line that
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where we used the expressions for the measures from Eq. (64) and Lem. 4. Using this bound on the probability to measure an
outcome k results in a bound on the success probability given by
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2 [Λl];σl,P) emerging from the distribution of the initial populations depends implicitly on

the integer j′, in the sense that the integer j′ determines which measurement outcomes k are contained in the respective set Kj
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2 .
We assume no prior knowledge about r and therefore no knowledge about the fraction j′

r . Therefore, the integers k ∈ Kj
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be known prior to the experiment and we have to assume that the interval of integers defined by Kj
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2 is distributed uniformly
across the range 0 ≤ k′ < q. Hence, the optimal initial population distribution is uniform, i.e., qkl(S
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2 that can achieves this uniform distribution without influencing the second term involving the measures, see for example
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the super-operations utilized in the proof of the lower bound. Therefore, we find the upper bound
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where we used the results from the proof concerning the classical limit in the last line. So far we only used a single rotation.
Note that since this bound holds for an arbitrary rotation Ej and since it is independent of the j labeling a rotation Ej , which is
applied probabilistically, we find
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Lastly, note that this bound can exceed unit probability and for this reason, we decide to formulate a bound of the form
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which concludes the proof.

Again, note that for identical operations in each block we obtain the important special case of
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If the bound involving the resources measures exceeds unity, the upper bound reduces to a trivial bound. However, we emphasize
that this is not only a trivial bound on the success probability. Most importantly, the expression exceeds unity if the prefactor
becomes large. Comparing it with the classical success probability, we see that the prefactors are the same. This leads us to the
conclusion that our bound is relevant whenever the order-finding problem is hard in the classical limit. Then the bound involving
the dynamical resource measures is indeed useful. In that sense, we can argue that coherence is the resource that provides an
advantage whenever there is an actual advantage to grant.

VII. Visualization

To conclude the Supplementary Material, we provide two plots that visualize the results derived in the previous sections.
First, we note that solving the factorization problem given by the pair (L, r) using the classical limit of the quantum order-
finding protocol becomes less efficient if the order r increases. To visualize this, see Fig. 7, where the upper bound on the
classical performance is depicted (the lower bound behaves similarly). Note that for small orders r of order O(1) the classical
protocol can perform reasonably well, which may be intuitively understood by the fact that an efficient classical search for r is
feasible in this regime. For increasing orders r, the classical performance diminishes. The factorization problems (L, r) with
large order r defy the classical limit of the order-finding protocol, rendering it inefficient. It is this regime where coherence will
allow for a super-polynomial speed-up in L over the classical limit.
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Figure 7: Behavior of the classical upper bound P succ
class(Θfree,Λfree) ≤ ϕ(r)

2L

(
1 + 2

⌊
2L

r2

⌋)
in terms of the order r for a given

L = 30. Furthermore, an approximation of the upper bound based on ϕ(r) ≈ r
eγ log log r .

To better visualize the bounds on the performance of the order-finding algorithm, let us consider specific resourceful channels
Θ and Λ (used for the creation and detection of coherence). First, take the ideal Hadamard channels mixed with dephasing noise
during the creation and detection of coherence, which are given by

Θp(ρ) = pHρH + (1− p)∆(ρ), (97)
Λq(ρ) = qHρH + (1− q)∆(ρ). (98)

The parameters p and q interpolate between an optimal channel for creation and detection and a completely free channel, which
simply erases all coherence. In Fig. 8 we compare our lower and upper bound on the performance of the classical limit (see
Prop. 15) with the bounds of Thms. 14 and 16 given identical operations Θp and Λq on each qubit and p = q. It is straightforward
to see that the measures evaluate to C (Θp) = M̃�(Λp) = p. Note that whilst the upper bound on the performance using
resourceful operations (dashed blue line) also provides an upper bound on the best classical performance given any p > 0, the
lower bound (solid blue line) can drop below the classical limit of the success probability. This is due to the fact that in the proof
of Thm. 14, we neglected terms that give a non-vanishing contribution which we accounted for in the classical limit. Here, it is
important to note that for values of probabilities to apply the correct quantum operations p that exceed approximately p = 0.65
an exponential speed-up (note the logarithmic scale) over the classical limit is guaranteed to be achieved, which demonstrates
the quantitative role of coherence utilized by the specific operations Θp and Λp.

Moreover, let us introduce the partial dephasing map ∆p defined by ∆p(ρ) = p id + (1− p)∆. Then consider the channel

Φp,q(ρ) = ∆pH∆q(ρ), (99)

where H denotes the channel associated to the Hadamard gate, i.e., H(ρ) = HρH . This channel corresponds to an optimal
implementation of the Hadamard gate with partial dephasing noise prior and after its application. For the channel Φp,q , the
measures reduce to C (Φp,q) = p and M̃�(Φp,q) = q, which is intuitive since one of the partial dephasings does not affect
creation respectively detection. In particular, for a symmetric channel Φp,q , i.e., p = q, the measures, and thus the bounds,
reduce to the mixing with a total dephasing map. The performance of the order-finding protocol with Φp,p is therefore also
depicted in Fig. 8.
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Figure 8: Comparison between the success probability with ideal operations subject to dephasing noise and the classical limit,
where p denotes the probability to apply the ideal Hadamard gate for creation and detection. Here we picked a typical

factorization problem (L, r) with L = 100 and r =
√

2L

4 ∼ N/4.
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