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Abstract
We elaborate on the deviation of the Jordan structures of two linear relations that are
finite-dimensional perturbations of each other. We compare their number of Jordan
chains of length at least n. In the operator case, it was recently proved that the difference
of these numbers is independent of n and is at most the defect between the operators.
One of the main results of this paper shows that in the case of linear relations this
number has to be multiplied by n + 1 and that this bound is sharp. The reason for this
behavior is the existence of singular chains. We apply our results to one-dimensional
perturbations of singular and regular matrix pencils. This is done by representing
matrix pencils via linear relations. This technique allows for both proving known
results for regular pencils as well as new results for singular ones.
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1 Introduction

Given a pair of matrices E, F ∈ C
d×d , the associated matrix pencil is defined by

P(s) := sE − F . (1.1)

The theory ofmatrix pencils occupies an increasingly important place in linear algebra,
due to its numerous applications. For instance, they appear in a natural way in the study
of differential-algebraic equations of the form:

Eẋ = Fx, x(0) = x0, (1.2)

which are a generalization of the abstract Cauchy problem, see e.g. [20, Chapter 12,
§7]. Substituting x(t) = x0est into (1.2) leads to

(sE − F)x0 = 0.

Hence, solutions of the above eigenvalue equation for the matrix pencil (1.1) corre-
spond to solutions of the Cauchy problem (1.2).

The matrix pencil P is called regular if det(sE − F) is not identically zero, and
it is called singular otherwise. Perturbation theory for regular matrix pencils P(s) :=
sE − F is a well developed field, we mention here only [14,21,36,45] which is a short
list of papers devoted to this subject. As an example, we describe a well-known result.
Recall that for a matrix pencil P as in (1.1), an ordered family of vectors (xn, . . . , x0)
is a Jordan chain of length n + 1 at λ ∈ C if x0 �= 0 and

(F − λE)x0 = 0, (F − λE)x1 = Ex0, . . . , (F − λE)xn = Exn−1.

Denote by Ll
λ(P) the subspace spanned by the elements of all Jordan chains up to

length l at the eigenvalue λ ∈ C. If l = 0 or if λ is not an eigenvalue of P we define
Ll

λ(P) = {0}. If P(s) is regular and if Q(s) is a rank-one pencil such that (P + Q)(s)
is also regular then for n ∈ N ∪ {0} the following inequality holds:

�
�
�
�
�
dim

Ln+1
λ (P + Q)

Ln
λ(P + Q)

− dim
Ln+1

λ (P)

Ln
λ(P)

�
�
�
�
�
≤ 1.

In this form it can be found in [21], but it is mainly due to [14,45]. The proof of this
inequality, as many other results concerning perturbation theory for regular matrix
pencils, is based on a detailed analysis of the determinant.

Perturbation theory for singular matrix pencils is studied only in a few papers so far.
Roughly speaking, it started with the investigation of the Kronecker canonical form
of a fixed singular matrix pencil P under low rank perturbations in [13]. There, the
generic change in the Kronecker canonical form of a singular pencil under low-rank
perturbations resulting again in a singular pencil is considered. In this case the term
generic refers to the fact that the perturbations are from an open dense subset of the
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set of pencils with fixed sizes and rank, cf. [13, Theorem 3.1]. In [29,38] the effect
of generic regularizing perturbations was considered, i.e. perturbations whose rank is
exactly the difference of full rank and the rank of a singular pencil. While the focus
in [38] is on symmetric rank-one perturbations, [29] contains the general low-rank
case. In [37] the rank-one distance to singularity as the smallest norm of a rank-one
perturbation that makes a given pencil singular is expressed as a quadratic constrained
optimization problem.

Finally, we would like to mention that in a recent manuscript [4] the authors charac-
terize the Kronecker structure of a matrix pencil obtained by a rank-one perturbation
of another matrix pencil in terms of the homogenous invariant factors and the row and
column minimal indices of the original and the perturbed pencil via transforming it in
a matrix pencil completion problem.

Here we develop a different approach to treat finite rank perturbations of singular
matrix pencils. This is done by representingmatrix pencils via linear relations, see also
[6,7,11]. The classical philosophy to treat linear multi-valued mappings or relations
was just to concentrate on the operator part and getting rid of the multi-valued part
by projection. At this place one has to mention the particular contributions of Henk
de Snoo to linear relations, who started, together with many coauthors, a seminal
work on this subject. The publications [17–19] are among the first where the authors
treated linear relations as subspaces in product spaces. Later on, Henk de Snoo was
involved in investigations where linear relations arise in a natural way in extension and
perturbation theory [16,26–28] for many kinds of linear operators or relations, see also
[33,34]. Concerning his contributions to the structure of linear relations, see [40–42].
Of course, this is a non-exhaustive list of Henk de Snoo’s publications about this topic.

Each matrix E ∈ C
d×d is considered as a linear relation via its graph, i.e. the

subspace of Cd × C
d consisting of pairs of the form {x, Ex}, x ∈ C

d . Also, the
inverse E−1 (in the sense of linear relations) of a non-necessarily invertible matrix
E is the subspace of Cd × C

d consisting of pairs of the form {Ex, x}, x ∈ C
d .

Multiplication of linear relations is defined in analogy to multiplication of matrices,
see Sect. 2 for the details. Then, to a matrix pencil P(s) = sE − F we associate the
linear relation E−1F .

There exists a well developed spectral theory for linear relations, see e.g. [1,12,41].
An eigenvector at λ ∈ C of E−1F is a tuple of the form {x, λx} ∈ E−1F , x �= 0.
Jordan chains are defined in a similar way, see Sect. 3 below.

In Sect. 7 we show that (point) spectrum and Jordan chains of E−1F coincide with
(point) spectrum and Jordan chains of the matrix pencil P in (1.1), respectively. This
is the key to translate spectral properties of a matrix pencil to its associated linear
relation and vice versa. The advantage of this approach is that it is applicable not only
to regular matrix pencils, but also to singular matrix pencils.

Given a matrix pencil P as in (1.1), we consider one-dimensional perturbations of
the form

Q(s) = w(su∗ − v∗),

where u, v, w ∈ C
d , (u, v) �= (0, 0) and w �= 0. Then P and P + Q are rank-

one perturbations of each other, which means that they differ by a rank-one matrix
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polynomial. Recall that the rank of a matrix pencil P is the largest r ∈ N such that P ,
viewed as amatrix with polynomial entries, has minors of size r that are not identically
zero [14,20]. As described above, to the matrix pencils P and P +Q there correspond
the linear relations E−1F and (E + wu∗)−1 (F + wv∗), respectively, which turn out
to be one-dimensional perturbations of each other, see Sect. 4. Then, the main result
of this paper is Theorem 7.8 below. It consists of the following perturbation estimates
for singular (and regular) matrix pencils:

(i) If P is regular but P + Q is singular, then

−1 − n ≤ dim
Ln+1

λ (P + Q)

Ln
λ(P + Q)

− dim
Ln+1

λ (P)

Ln
λ(P)

≤ 1.

(ii) If P is singular and P + Q is regular, then

−1 ≤ dim
Ln+1

λ (P + Q)

Ln
λ(P + Q)

− dim
Ln+1

λ (P)

Ln
λ(P)

≤ n + 1.

(iii) If both P and P + Q are singular, then

�
�
�
�
�
dim

Ln+1
λ (P + Q)

Ln
λ(P + Q)

− dim
Ln+1

λ (P)

Ln
λ(P)

�
�
�
�
�
≤ n + 1.

Later, in Sect. 8, we explain how to interpret this result in terms of the Kronecker
invariants associated to the Kronecker canonical forms of the matrix pencils P and
P + Q.

Theorem 7.8 follows from the corresponding result for one-dimensional perturba-
tions of linear relations, which is the secondmain result of this paper. It is the content of
Sects. 3 and 4, which is of independent interest. More precisely, given linear relations
A and B in a linear space X which are one-dimensional perturbations of each other,
we show that N (An+1)/N (An) is finite-dimensional if and only if N (Bn+1)/N (Bn)

is finite-dimensional and, in this case,

�
�
�
�
dim

N (Bn+1)

N (Bn)
− dim

N (An+1)

N (An)

�
�
�
�

≤ n + 1. (1.3)

Here N (A) denotes the kernel of the linear relation A, that is, the set of all x ∈ X such
that {x, 0} ∈ A. If, in addition, A ⊂ B or B ⊂ A, we show that the left-hand side in
(1.3) is bounded by n. However, in Sect. 5 we show that the bound in (1.3) is sharp.
It is worth mentioning that if A and B are linear operators in X the left-hand side in
(1.3) is bounded by 1, see [5].

In Sect. 6 we extend the above result to p-dimensional perturbations. In this case,
we show that the left-hand side in (1.3) is bounded by (n + 1)p. Again, this estimate
improves to np in case that A ⊂ B or B ⊂ A, and to p if A and B are operators, cf.
[5].
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2 Preliminaries

Throughout this paper X denotes a vector space over K, where K stands for the real
field R or the complex field C. Sometimes C is used as a short form of C ∪ {∞}.
Each subspace W of X determines an equivalence relation in X , we say that x ∈ X
is congruent to y ∈ X if x − y ∈ W . Then, we denote by X/W or X

W the set of
all equivalence classes of X with respect to this equivalence relation. X/W is also a
vector space over K, which is called the quotient space of X over W , see e.g. [39].

Elements (pairs) from X × X will be denoted by {x, y}, where x, y ∈ X . A linear
relation in X is a linear subspace of X × X . Linear operators can be treated as linear
relations via their graphs: each linear operator T : D(T ) → X in X , where D(T )

stands for the domain of T , is identified with its graph

�(T ) := {{x, T x} : x ∈ D(T )} .

For the basic notions and properties of linear relations we refer to [1,12,25]. However,
we follow here the above mentioned approach proposed in [17–19].

We denote the domain and the range of a linear relation A in X by D(A) and R(A),
respectively,

D(A) = {x ∈ X : ∃ y : {x, y} ∈ A} and R(A) = {y ∈ X : ∃ x : {x, y} ∈ A} .

Furthermore, N (A) and M(A) denote the kernel and the multivalued part of A,

N (A) = {x ∈ X : {x, 0} ∈ A} and M(A) = {y ∈ X : {0, y} ∈ A} .

Obviously, a linear relation A is the graph of an operator if and only if M(A) = {0}.
The inverse A−1 of a linear relation A always exists and is given by

A−1 = {{y, x} ∈ X × X : {x, y} ∈ A} . (2.1)

We recall that the product of two linear relations A and B in X is defined as

AB = {{x, z} : {y, z} ∈ A and {x, y} ∈ B for some y ∈ X} .

As for operators the product of linear relations is an associative operation. We denote
A0 := I , where I denotes the identity operator in X , and for n = 1, 2, . . . the n-th
power of A is defined recursively by

An := AAn−1.

Thus, we have {xn, x0} ∈ An if and only if there exist x1, . . . , xn−1 ∈ X such that

{xn, xn−1}, {xn−1, xn−2}, . . . , {x1, x0} ∈ A. (2.2)

In this case, (2.2) is called a chain of A. We also use the shorter notation (xn, . . . , x0).
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For a linear relation T in X and m ∈ N, consider the vector space of m-tuples of
elements in T :

T (m) := T × T × · · · × T
� �� �

m times

,

and also the space of m-tuples of elements in T which are chains of T :

ST
m := �

({xm, xm−1}, . . . , {x1, x0}) : (xm, xm−1, . . . , x0) is a chain of T
�

. (2.3)

Clearly, ST
m is a subspace of T (m).

Lemma 2.1 Let A andC be linear relations in X such that C ⊂ A and dim(A/C) = 1.
Then for each m ∈ N the following inequality holds:

dim(S A
m/SC

m ) ≤ m. (2.4)

Proof We make use of Lemma 2.2 in [3] which states that whenever M0, N0, M1, N1
are subspaces of a linear space X such that M0 ⊂ M1 and N0 ⊂ N1, then

dim
M1 ∩ N1

M0 ∩ N0
≤ dim

M1

M0
+ dim

N1

N0
.

With this lemma the proof of (2.4) is straightforward. Indeed, since SC
m = S A

m ∩C (m),
we obtain from the lemma and from dim(A/C) = 1 that

dim(S A
m/SC

m ) = dim
S A
m ∩ A(m)

S A
m ∩ C (m)

≤ dim(A(m)/C (m)) = m,

which is (2.4). �
For relations A and B in X the operator-like sum A + B is the relation defined by

A + B = {{x, y + z} : {x, y} ∈ A, {x, z} ∈ B} .

The notions of eigenvalue, root manifolds and point spectrum also apply to linear
relations. Given λ ∈ C, A − λ stands for the linear relation A − λI :

A − λ = {{x, y − λx} : {x, y} ∈ A} .

Then, λ ∈ C is an eigenvalue of A if N (A− λ) �= {0}. On the other hand, we say that
A has an eigenvalue at ∞ if M(A) �= {0}. The point spectrum of A is the set σp(A)

consisting of the eigenvalues λ ∈ C ∪ {∞} of A.
A chain (xn, . . . , x0) of A is called a quasi-Jordan chain of A at zero (or simply a

quasi-Jordan chain of A if x0 ∈ N (A). If (xn, . . . , x0) is a quasi-Jordan chain of A,
then x j ∈ N (A j+1) for j = 0, . . . , n. If, in addition, xn ∈ M(A) and (xn, . . . , x0) �=
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(0, . . . , 0), then the chain is called a singular chain of A. The tuple (xn, . . . , x0) is
called a quasi-Jordan chain of A at λ ∈ C, if (xn, . . . , x0) is a quasi-Jordan chain of
the linear relation A−λ. The tuple (xn, . . . , x0) is called a quasi-Jordan chain of A at
∞, if (xn, . . . , x0) is a quasi-Jordan chain at zero of A−1. Note that we admit linear
dependence (and even zeros) within the elements of a quasi-Jordan chain.

We reserve the notion of a Jordan chain of a linear relation for a particular situation
which is discussed in the next section.

3 Linear Independence of Quasi-Jordan Chains

In what follows only quasi-Jordan chains at zero are considered, so we call them
simply quasi-Jordan chains. Assume that T is a linear operator in X and consider
x0, . . . , xn ∈ D(T ) such that

T x0 = 0 and T x j = x j−1, for all 1 ≤ j ≤ n.

Then {xn, xn−1}, {xn−1, xn−2}, . . . , {x0, 0} ∈ �(T ). So, if we consider T also as a
linear relation via its graph, (xn, . . . , x0) is a quasi-Jordan chain of T .

As T is a linear operator, it is well-known that the following facts are equivalent:

(i) x0 �= 0.
(ii) The set of vectors {xn, . . . , x0} is linearly independent in X .
(iii) [xn] �= 0, where [xn] is the equivalence class in N (T n+1)/N (T n).
(iv) [x j ] �= 0 for all 1 ≤ j ≤ n,where [x j ] is the equivalence class in N (T j+1)/N (T j ).

Therefore, if T is a linear operator and x0 �= 0, (xn, . . . , x0) is a quasi-Jordan chain of
the linear relation �(T ) if and only if it is a Jordan chain at zero of the linear operator
T in the usual sense.

However, the four statements above are no longer equivalent for linear relations
which contain singular chains, see the following example.

Example 3.1 Let x0 and x1 be two linearly independent elements of X and let

A := span {{0, x0}, {x0, 0}, {x1, x0}} .

Then x0 �= 0 but (0, x0) is a quasi-Jordan chain with linear dependent entries, hence
the equivalence of (i) and (ii) from above does not hold.

Moreover, (x1, x0) is a quasi-Jordan chain with linearly independent entries. But, as
{x1, x0} and {0, x0} are both elements of A, due to linearity, also {x1, 0} is an element of
A and, hence, [x1] = 0 in N (A2)/N (A), i.e. (iii) is not satisfied. Therefore, conditions
(ii) and (iii) are neither equivalent for linear relations.

As it was mentioned before, the situation shown in the example is a consequence
of the existence of singular chains in the relation A, or equivalently, the presence of
vectors in the intersection of the kernel of A and the multivalued part of An for some
n ∈ N. For arbitrary linear relations we have the following equivalence.



37 Page 8 of 37 L. Leben et al.

Proposition 3.2 Let A be a linear relation in X and (xn, . . . , x0) be a quasi-Jordan
chain of A. Then the following statements are equivalent:

(i) x0 /∈ M(An).
(ii) [xn] �= 0, where [xn] is the equivalence class in N (An+1)/N (An).
(iii) [x j ] �= 0 for all 1 ≤ j ≤ n, where [x j ] is the equivalence class in

N (A j+1)/N (A j ).

In particular, if any of the three equivalent statements holds, then the vectors x0, . . . , xn
are linearly independent in X.

Proof Since (xn, . . . , x0) is a quasi-Jordan chain of A, we have that

{xn, xn−1}, . . . , {x1, x0}, {x0, 0} ∈ A. (3.1)

We show that (i) and (ii) are equivalent. If x0 ∈ M(An), then there exist y1, . . . , yn−1 ∈
X such that

{0, yn−1}, . . . , {y2, y1}, {y1, x0} ∈ A.

Subtracting this chain from the one in (3.1) we end with

{xn, xn−1 − yn−1}, . . . , {x2 − y2, x1 − y1}, {x1 − y1, 0} ∈ A.

Thus, xn ∈ N (An), or equivalently, [xn] = 0. Conversely, if [xn] = 0 then xn ∈
N (An). Hence, there exist u1, . . . , un−1 ∈ X such that

{xn, un−1}, . . . , {u2, u1}, {u1, 0} ∈ A.

Taking the difference of (3.1) and the chain above we obtain

{0, xn−1 − un−1}, . . . , {x2 − u2, x1 − u1}, {x1 − u1, x0} ∈ A,

i.e. x0 ∈ M(An).
Now we show that (ii) and (iii) are equivalent. Obviously (iii) implies (ii). Hence,

assume [xn] �= 0. Then, by (i), x0 /∈ M(An). But as M(A j ) ⊂ M(An) for all
1 ≤ j ≤ n, we have x0 /∈ M(A j ) for all 1 ≤ j ≤ n. Applying (ii) to every [x j ] we
obtain (iii).

It remains to show the additional statement concerning the linear independence of
the vectors x0, . . . , xn . This is the case if the equation

	n
j=0 α j x j = 0 implies that

all α j , j = 0, . . . , n, are equal to 0. By (iii) we see that all x j are non-zero. If not all
α j are equal to 0, let n0 be the largest index j with α j �= 0. It follows that

xn0 = −α−1
n0

n0−1



j=0

α j x j ∈ N (An0),

hence [xn0 ] = 0, in contradiction to (iii). �
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The above considerations lead to the following definition of a Jordan chain for a
linear relation.

Definition 3.3 Let (xn, . . . , x0) be a quasi-Jordan chain of a linear relation A in X .
We call it a Jordan chain at zero of length n + 1 in A if

[xn] �= 0 in N (An+1)/N (An).

Moreover, (xn, . . . , x0) is called a Jordan chain at λ ∈ C of length n + 1 in A if it is
a Jordan chain at zero of A − λ and a Jordan chain at ∞ of length n + 1 in A if it is
a Jordan chain at zero of A−1.

We remark that our Definition 3.3 is equivalent to the definition formulated in [41]
but different from the one used in [11], where the term Jordan chain was used for an
object which is here called quasi-Jordan chain together with the assumption that all
elements of the quasi-Jordan chain are linearly independent.

In the sequel we will make use of the following lemma.

Lemma 3.4 Let A be a linear relation in X and let (xk,n, . . . , xk,0), k = 1, . . . ,m, be
m quasi-Jordan chains of A. Then

dim span{[x1,n], . . . , [xm,n]} = dim
L

L ∩ M(An)
,

where L := span{x1,0, . . . , xm,0}.
Proof Given m quasi-Jordan chains of A as in the statement, consider the following
linear transformations

T : Km → N (An+1)

N (An)
, Tu :=

m



k=1

uk[xk,n], u = (u1, . . . , um) ∈ K
m, and

S : Km → N (A), Su :=
m



k=1

ukxk,0, u = (u1, . . . , um) ∈ K
m .

On one hand, observe that R(T ) = span{[x1,n], . . . , [xm,n]} and R(S) = L. On the
other hand, we have that

N (T ) = �

u ∈ K
m : Su ∈ M(An)

�

Indeed, u = (u1, . . . , um) ∈ N (T ) if and only if
�	m

k=1 ukxk,n
� = 0 which, by

Proposition 3.2, is equivalent to Su = 	m
k=1 ukxk,0 ∈ M(An).

In particular,

dim N (T ) = dim
�

u ∈ K
m : Su ∈ M(An)

� = dim N (S) + dimL ∩ M(An),

and the rank-nullity theorem yields

dim span{[x1,n], . . . , [xm,n]} = dim R(T ) = m − dim N (T )
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= m − (dim N (S) + dimL ∩ M(An))

= dimL − dimL ∩ M(An) = dim
L

L ∩ M(An)
,

where we have used that R(S) = L. �
In the following we will study linear independence of quasi-Jordan chains.

Lemma 3.5 Let (xk,n, . . . , xk,0), k = 1, . . . ,m, be m quasi-Jordan chains of a linear
relation A in X. Consider the following statements:

(i) The set {[x1,n], . . . , [xm,n]} is linearly independent in N (An+1)/N (An).
(ii) The set {xk, j : k = 1, . . . ,m, j = 0, . . . , n} is linearly independent in X.
(iii) The set of pairs

{{xk, j , xk, j−1} : k = 1, . . . ,m, j = 1, . . . , n} ∪ {{xk,0, 0} : k = 1, . . . ,m}

is linearly independent in A.

Then the following implications hold: (i) �⇒ (ii) �⇒ (iii). If, in addition,

span{x1,0, . . . , xm,0} ∩ M(An) = {0},

holds, then the three conditions (i), (ii), and (iii) are equivalent.

Proof The implication (ii)⇒(iii) is straightforwardbyuseof the linear independenceof
the first components of the pairs in (iii). Let us prove the implication (i)⇒(ii). Assume
that {[x1,n], . . . , [xm,n]} is linearly independent. Let αk, j ∈ K, j = 0, . . . , n, k =
1, . . . ,m, such that

n



j=0

m



k=1

αk, j xk, j = 0. (3.2)

It is easily seen that the following tuple is a quasi-Jordan chain of A:

⎛

⎝

n



j=0

m



k=1

αk, j xk, j ,
n



j=1

m



k=1

αk, j xk, j−1, . . . ,

n



j=n−1

m



k=1

αk, j xk, j−n+1,

m



k=1

αk,nxk,0

⎞

⎠ .

From this and (3.2) it follows that
	m

k=1 αk,nxk,0 ∈ M(An), which, by Proposition
3.2, implies for equivalence classes in N (An+1)/N (An)

⎡

⎣

n



j=0

m



k=1

αk, j xk, j

⎤

⎦ =
m



k=1

αk,n[xk,n] = 0.
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Hence, αk,n = 0 for k = 1, . . . ,m and (3.2) reads as

n−1



j=0

m



k=1

αk, j xk, j = 0. (3.3)

Now one can construct a quasi-Jordan chain as above starting with the sum in (3.3).
Repeating the above argument showsαk,n−1 = 0 for k = 1, . . . ,m. Proceeding further
in this manner yields (ii), since all αk, j in (3.2) are equal to zero.

Now assume that span{x1,0, . . . , xm,0} ∩ M(An) = {0}. By Lemma 3.4,

dim span{[x1,n], . . . , [xm,n]} = dim span{x1,0, . . . , xm,0}.

We have to show that in this case (iii) implies (i). But if we assume (iii), in particular
we have that {x1,0, . . . , xm,0} is linearly independent. Therefore, {[x1,n], . . . , [xm,n]}
is also linearly independent, completing the proof. �

4 One-Dimensional Perturbations

The following definition, taken from [2], specifies the idea of a one-dimensional per-
turbation for linear relations.

Definition 4.1 Let A and B be linear relations in X . Then B is called an one-
dimensional perturbation of A (and vice versa) if

max

�

dim
A

A ∩ B
, dim

B

A ∩ B

�

= 1.

In particular, A is called a one-dimensional extension of B if B ⊂ A and dim(A/B) =
1.

The next lemma describes inwhichway (quasi-)Jordan chains of a one-dimensional
extension A of a linear relation C can be linearly combined to become (quasi-)Jordan
chains of C . The proof is based on the following simple principle: If M is a subspace
of N and dim(N/M) = 1, then whenever x, y ∈ N , y /∈ M , there exists some λ ∈ K

such that x − λy ∈ M .

Lemma 4.2 Let A andC be linear relations in X such that C ⊂ A and dim(A/C) = 1.
If (xk,n, . . . , xk,0), k = 1, . . . ,m, arem quasi-Jordan chains of A, then after a possible
reordering, there exist m − 1 quasi-Jordan chains (yk,n, . . . , yk,0), k = 1, . . . ,m − 1,
of C such that

yk, j ∈ xk, j + span{xm,� : � = 0, . . . , j}, k = 1, . . . ,m − 1, j = 0, . . . , n.

Moreover, if {[x1,n], . . . , [xm,n]} is linearly independent in N (An+1)/N (An) then the
set {[y1,n], . . . , [ym−1,n]} is linearly independent in N (Cn+1)/N (Cn).
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On the other hand, if the set {xk, j : k = 1, . . . ,m, j = 0, . . . , n} is linearly
independent in X then the set {yk, j : k = 1, . . . ,m − 1, j = 0, . . . , n} is linearly
independent in X.

Proof For any quasi-Jordan chain (zn, zn−1, . . . , z0) of A we agree to write ẑ j =
{z j , z j−1} for j = 1, . . . , n and ẑ0 = {z0, 0}. Consider the set

J := {(k, j) ∈ {1, . . . ,m} × {0, . . . , n} : x̂k, j /∈ C}.

If J = ∅ then allm quasi-Jordan chains are inC and the proof is completed. Therefore,
assume J �= ∅. Set

h := min
�

j ∈ {0, . . . , n} : (k, j) ∈ J for some k ∈ {1, . . . ,m}}.

Choose some κ ∈ {1, . . . ,m} such that (κ, h) ∈ J . After a reordering of the indices
we can assume that κ = m.

Since x̂m,h /∈ C , there exist αk,h ∈ K, k = 1, . . .m − 1, such that

x̂k,h − αk,h x̂m,h ∈ C

for k = 1, . . .m − 1. If h = n, we stop here. Otherwise, there exist αk,h+1 ∈ K,
k = 1, . . .m − 1, such that

x̂k,h+1 − αk,h x̂m,h+1 − αk,h+1 x̂m,h ∈ C

for k = 1, . . .m − 1. If h = n − 1, the process terminates. Otherwise, there exist
αk,h+2 ∈ K such that

x̂k,h+2 − αk,h x̂m,h+2 − αk,h+1 x̂m,h+1 − αk,h+2 x̂m,h ∈ C

for k = 1, . . .m − 1. We continue with this procedure up to n, where in the last step
we find αk,n ∈ K such that

x̂k,n − αk,h x̂m,n − αk,h+1 x̂m,n−1 − . . . − αk,n−1 x̂m,h+1 − αk,n x̂m,h ∈ C

for k = 1, . . .m − 1. Summarizing, we obtain numbers αk, j ∈ K, k = 1, . . . ,m − 1,
j = h, . . . , n, such that

ûk, j := x̂k, j −
j




i=h

αk,i x̂m, j+h−i ∈ C

for all k = 1, . . . ,m − 1, j = h, . . . , n. We now define

yk, j := xk, j −
min{ j+h,n}




i=h

αk,i xm, j+h−i ,
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for k = 1, . . .m − 1 and j = 0, . . . , n. For 0 ≤ j < h (if possible, i.e., h > 0),

ŷk, j = x̂k, j −
min{ j+h,n}




i=h

αk,i x̂m, j+h−i ∈ C

is a consequence of the definition of h, whereas for j ≥ h we also have

ŷk, j = ûk, j −
min{ j+h,n}




i= j+1

αk,i x̂m, j+h−i ∈ C .

This shows that (yk,n, . . . , yk,0) is a quasi-Jordan chain ofC for each k = 1, . . . ,m−1.
From the definition of yk, j we also see that yk, j ∈ xk, j + span{xm, j , . . . , xm,0} for all
j = 0, . . . , n and k = 1, . . . ,m − 1.
Now, assuming the linear independence of {[x1,n], . . . , [xm,n]} in N (An+1)/N (An),

we prove the linear independence of {[y1,n], . . . , [ym−1,n]} in N (Cn+1)/N (Cn).
Since yk,0 = xk,0 − αk,hxm,0 for k = 1, . . . ,m − 1, the linear independence of
{y1,0, . . . , ym−1,0} in X easily follows from that of {x1,0, . . . , xm,0}. Furthermore,

span{y1,0, . . . , ym−1,0} ∩ M(Cn) ⊂ span{x1,0, . . . , xm,0} ∩ M(An),

and the claim follows from Lemma 3.4.
Finally, assume that the set {xk, j : k = 1, . . . ,m, j = 0, . . . , n} is linearly

independent. Also, let βk, j ∈ K, k = 1, . . . ,m − 1, j = 0, . . . , n, such that
	m−1

k=1
	n

j=0 βk, j yk, j = 0. Then

0 =
m−1



k=1

n



j=0

βk, j

⎛

⎝xk, j −
min{ j+h,n}




i=h

αk,i xm, j+h−i

⎞

⎠

=
m−1



k=1

n



j=0

βk, j xk, j −
n



j=0

min{ j+h,n}



i=h

�
m−1



k=1

βk, jαk,i

�

xm, j+h−i

From this, we see that βk, j = 0 for k = 1, . . . ,m − 1 and j = 0, . . . , n. Therefore,
the set {yk, j : k = 1, . . . ,m − 1, j = 0, . . . , n} is linearly independent in X . �

In the main result of this section, Theorem 4.5 below, we will compare the dimen-
sions of N (An+1)/N (An) and N (Bn+1)/N (Bn) for two linear relations A and B
that are one-dimensional perturbations of each other. To formulate it, we define the
following value for two linear relations A and B in X and n ∈ N ∪ {0}:

sn(A, B) :=max
�

dim(L ∩ M(An)) : L is a subspace of N (A ∩ B) ∩ R((A ∩ B)n),

L ∩ M((A ∩ B)n) = {0}�. (4.1)

The quantity sn(A, B) can be interpreted as the number of (linearly independent)
singular chains of A of length n which are not singular chains of A ∩ B. To justify
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this statement, assume that sn(A, B) = r . Then, denoting C = A ∩ B, there exists a
subspace L of N (C)∩ R(Cn) such that dim(L∩ M(An)) = r and L∩ M(Cn) = {0}.
On one hand, if {x1,0, . . . , xr ,0} is a basis of L∩M(An), then each xk,0, k = 1, . . . , r ,
determines a quasi-Jordan chain (xk,n, . . . , xk,1, xk,0) of C , because L ⊆ N (C) ∩
R(Cn). Also, since L ∩ M(Cn) = {0}, Lemma 3.5 implies that {[x1,n], . . . , [xr ,n]}
is linearly independent in N (Cn+1)/N (Cn). In particular, the quasi-Jordan chains
(xk,n, . . . , xk,1, xk,0) are not singular chains of C . On the other hand, each xk,0, k =
1, . . . , r , determines a singular chain of A of length n because xk,0 ∈ M(An)∩ N (A).

Note that we always have s0(A, B) = s0(B, A) = 0. On the other hand, for n ∈ N

usually we have sn(A, B) �= sn(B, A). For example, if B ⊂ A then sn(B, A) = 0,
while sn(A, B) might be positive. Therefore, we also introduce the number

sn[A, B] := max{sn(A, B), sn(B, A)}.

The next proposition shows that this number is bounded by n.

Proposition 4.3 Let A and B be linear relations in X such that B is a one-dimensional
perturbation of A. Then for n ∈ N ∪ {0} we have

sn[A, B] ≤ n.

Proof The claim is clear for n = 0. Let n ≥ 1. It obviously suffices to prove that
sn(A, B) ≤ n. If A ⊂ B then sn(A, B) = 0 and the desired inequality holds. Hence,
let us assume that dim(A/A ∩ B) = 1 and set C := A ∩ B.

Let L be a subspace of N (C) ∩ R(Cn) such that L ∩ M(Cn) = {0}. Towards a
contradiction, suppose that dim(L∩M(An)) > n. So, there exist linearly independent
vectors x1,0, . . . , xn+1,0 ∈ L ∩ M(An). Then there exist n + 1 singular chains of A
of the form

Xk = (0, xk,n−1, . . . , xk,0), k = 1, . . . , n + 1,

and {X1, . . . , Xn+1} is linearly independent in S A
n , c.f. (2.3).

By Lemma 2.1, dim(S A
n /SC

n ) ≤ n. Thus, there exists a non-trivial Y ∈ SC
n such

that Y ∈ span{X1, . . . , Xn+1}, i.e. there exist α1, . . . , αn+1 ∈ K (not all zero) such
that Y = 	n+1

k=1 αk Xk .
So, Y is a non-trivial singular chain ofC of the form Y = (0, yn−1, . . . , y0), where

y j =
n+1



k=1

αk xk, j , j = 0, 1, . . . , n − 1.

In particular, y0 = 	n+1
k=1 αk xk,0 �= 0 because {x1,0, . . . , xn+1,0} is linearly indepen-

dent. Now, since x1,0, . . . , xn+1,0 ∈ L, also y0 ∈ L and hence y0 ∈ L ∩ M(Cn),
which is the desired contradiction. �

We now present our first generalization of Theorem 2.2 in [5]. In this case we
assume that one of the two relations is a one-dimensional extension of the other.
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Theorem 4.4 Let A and B be linear relations in X such that A ⊂ B anddim(B/A) = 1
and let n ∈ N ∪ {0}. Then the following holds:

(i) N (An+1)/N (An) is finite-dimensional if and only if N (Bn+1)/N (Bn) is finite-
dimensional. Moreover,

−sn(B, A) ≤ dim
N (Bn+1)

N (Bn)
− dim

N (An+1)

N (An)
≤ 1.

In particular, for n ≥ 1 we have

�
�
�
�
dim

N (Bn+1)

N (Bn)
− dim

N (An+1)

N (An)

�
�
�
�

≤ max{1, sn(B, A)} ≤ n. (4.2)

(ii) N (An) is finite-dimensional if and only if N (Bn) is finite-dimensional. Moreover,
for n ≥ 1,

�
�dim N (Bn) − dim N (An)

�
� ≤

n−1



k=0

max {1, sk(B, A)} ≤ (n − 1)n

2
+ 1.

Proof To prove the lower bound in item (i), suppose that there are

m := dim
N (Bn+1)

N (Bn)
+ sn(B, A) + 1

linearly independent vectors [x1,n], . . . , [xm,n] in N (An+1)/N (An) and consider cor-
responding Jordan chains (xk,n, . . . , xk,0) of length n + 1 of A, k = 1, . . . ,m.
By Lemma 3.4, the vectors x1,0, . . . , xm,0 are linearly independent and, if L0 :=
span{x1,0, . . . , xm,0} then

L0 ∩ M(An) = {0}.

Denote the cosets of the vectors xk,n in N (Bn+1)/N (Bn) by [xk,n]B , k = 1, . . . ,m.
Since

sn(B, A) = max
�

dim(L ∩ M(Bn)) : L ⊂ N (A) ∩ R(An) subspace, L ∩ M(An) = {0}� ,

Lemma 3.4 implies that

dim span{[x1,n]B, . . . , [xm,n]B} = m − dim(L0 ∩ M(Bn))

≥ m − sn(B, A) = dim
N (Bn+1)

N (Bn)
+ 1,

which is a contradiction.
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On the other hand, assume that there are

p := dim
N (An+1)

N (An)
+ 2

linearly independent vectors [y1,n]B, . . . , [yp,n]B in N (Bn+1)
N (Bn)

and consider corre-
sponding Jordan chains (yk,n, . . . , yk,0) of length n + 1 of B, for k = 1, . . . , p.
By Lemma 3.4, the vectors y1,0, . . . , yp,0 are linearly independent and, if LY :=
span{y1,0, . . . , yp,0}, then

LY ∩ M(Bn) = {0}.

Now, applying Lemma 4.2, we obtain p − 1 Jordan chains (zk,n, . . . , zk,0) of length
n + 1 of A, k = 1, . . . , p − 1, such that (after a possible reordering)

zk, j ∈ yk, j + span{yp,l : l = 0, . . . , j} for k = 1, . . . , p − 1, j = 0, . . . , n.

In particular, for each k = 1, . . . , p − 1 there exists αk ∈ K such that zk,0 = yk,0 +
αk yp,0.

Hence, if LZ := span{z1,0, . . . , z p−1,0} it is easy to see that

LZ ∩ M(An) = {0},

because LZ ⊆ LY , M(An) ⊆ M(Bn) and LY ∩ M(Bn) = {0}. Thus, by Lemma 3.4,

dim span{[z1,n], . . . , [z p−1,n]} = dimLZ = p − 1 = dim
N (An+1)

N (An)
+ 1,

which is a contradiction.
In order to prove item (ii), note that for a linear relation T we have

N (T n) = N (T ) ⊕ W1 ⊕ · · · ⊕ Wn−1,

whereWj is a subspace of N (T n) isomorphic to N (T j+1)

N (T j )
for j = 1, . . . , n−1. This fact

follows easily by induction on n. Hence, from item (i) we infer that dim N (An) < ∞
if and only if dim N (Bn) < ∞. Also, as a consequence of (4.2) and Proposition 4.3,

�
�dim N (Bn) − dim N (An)

�
� =

�
�
�
�
�

n−1



k=0

dim
N (Bk+1)

N (Bk)
−

n−1



k=0

dim
N (Ak+1)

N (Ak)

�
�
�
�
�

≤
n−1



k=0

�
�
�
�
dim

N (Bk+1)

N (Bk)
− dim

N (Ak+1)

N (Ak)

�
�
�
�

≤
n−1



k=0

max{1, sk(B, A)} = 1 +
n−1



k=1

k
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≤ 1 + (n − 1)n

2
.

This concludes the proof of the theorem. �
The next theorem is themain result of this section. It states that the estimate obtained

in [5, Theorem 2.2] for operators have to be adjusted when considering arbitrary linear
relations. Note that sn[A, B] = 0 for operators A and B.

Theorem 4.5 Let A and B be linear relations in X such that B is a one-dimensional
perturbation of A and n ∈ N ∪ {0}. Then the following hold:

(i) N (An+1)/N (An) is finite-dimensional if and only if N (Bn+1)/N (Bn) is finite-
dimensional. Moreover,

−1 − sn(B, A) ≤ dim
N (Bn+1)

N (Bn)
− dim

N (An+1)

N (An)
≤ 1 + sn(A, B).

In particular,

�
�
�
�
dim

N (Bn+1)

N (Bn)
− dim

N (An+1)

N (An)

�
�
�
�

≤ 1 + sn[A, B] ≤ n + 1. (4.3)

(ii) N (An) is finite-dimensional if and only if N (Bn) is finite-dimensional. Moreover,

�
�dim N (Bn) − dim N (An)

�
� ≤ n +

n−1



k=0

sk[A, B] ≤ n(n + 1)

2
.

Proof Define C := A ∩ B. Then C ⊂ A and C ⊂ B as well as dim(A/C) ≤ 1 and
dim(B/C) ≤ 1. Moreover, note that

sn(A, B) = sn(A,C) and sn(B, A) = sn(B,C).

Therefore, using the notation Dn(T ) = dim N (T n+1)
N (T n)

for a relation T in X , from
Theorem 4.4 we obtain

Dn(B) − Dn(A) = (Dn(B) − Dn(C)) − (Dn(A) − Dn(C)) ≤ 1 + sn(A, B)

Exchanging the roles of A and B leads to Dn(A) − Dn(B) ≤ 1 + sn(B, A). This
proves (i).

The proof of statement (ii) is analogous to the proof of its counterpart in Theo-
rem 4.4. In this case, as a consequence of (4.3),

�
�dim N (Bn) − dim N (An)

�
� ≤

n−1



k=0

|Dk(A) − Dk(B)| ≤
n−1



k=0

(1 + sk [A, B]) ≤ n(n + 1)

2
,

and the theorem is proved. �
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In Sect. 5 below we prove that the bound n + 1 in (4.3) of Theorem 4.5 is in fact
sharp, meaning that there are examples of linear relations A and B which are one-
dimensional perturbations of each other where the quantity on the left hand side of
(4.3) coincides with n + 1.

The following corollary dealswith linear relationswithout singular chains. If neither
A nor B has singular chains then we recover the bounds from the operator case, see
Theorem 2.2 in [5].

Corollary 4.6 Let A and B be linear relations in X without singular chains such that
B is a one-dimensional perturbation of A. Then the following statements hold:

(i) N (An+1)/N (An) is finite dimensional if and only if N (Bn+1)/N (Bn) is finite
dimensional. Moreover,

�
�
�
�
dim

N (An+1)

N (An)
− dim

N (Bn+1)

N (Bn)

�
�
�
�

≤ 1.

(ii) N (An) is finite dimensional if and only if N (Bn) is finite dimensional. Moreover,

�
�dim N (An) − dim N (Bn)

�
� ≤ n.

(iii) N (A)∩ R(An) is finite dimensional if and only if N (B)∩ R(Bn) is finite dimen-
sional. Moreover,

�
�dim(N (A) ∩ R(An)) − dim(N (B) ∩ R(Bn))

�
� ≤ 1.

Proof If A and B are linear relations in X without singular chains, then sn[A, B] = 0
for each n ∈ N. Therefore, items (i) and (ii) follow directly from items (i) and (ii) in
Theorem 4.5. Finally, recall that for a linear relation T in X without singular chains we
have N (T n+1)/N (T n) ∼= N (T ) ∩ R(T n), c.f. [42, Lemma 4.4]. Hence, (iii) follows
from (i). �

5 Sharpness of the Bound in Theorem 4.5

In this sectionwe present an example which shows that the bound n+1 in Theorem 4.5
can indeed be achieved and is therefore sharp. This is easy to see in the cases n = 0
and n = 1.

Example 5.1 (a) Let n = 2, and let x0, x1, x2, z0, z1, z2, y1, y2, y3 be linearly inde-
pendent vectors in X . Define the linear relations

A = span
�{x2, x1}, {x1, x0}, {x0, 0},
{z2, z1}, {z1, z0}, {z0, 0},
{y3,x2 − y2}, {x2 − y2, y1}, {y1, 0},
{z2, y2}

�
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and

B = span
�{x2, x1}, {x1, x0}, {x0, 0},
{z2, z1}, {z1, z0}, {z0, 0},
{x2 − y2, y1}, {y1, 0},
{z2, y2}, { y2,0}

�

.

All pairs are contained in both A and B except for the two pairs {y3,x2 − y2} and
{y2,0} which are printed here in bold face. Therefore, A and B are one-dimensional
perturbations of each other. It is easy to see that M(A2) = span{y2 − z1, x1 −
y1 − z0} and thus M(A2) ∩ span{x0, z0, y1} = {0}. By Lemma 3.5, it follows
that [x2]A, [z2]A, [y3]A are linearly independent in N (A3)/N (A2). As N (B2) =
span{x0, x1, x2, z0, z1, z2, y1, y2} it is clear that N (B3) = N (B2), hence

dim
N (A3)

N (A2)
− dim

N (B3)

N (B2)
= 3 − 0 = 3 = n + 1.

(b) Let n ∈ N, n > 2. For our examplewe need (n+1)2 linearly independent vectors in
the linear space X , say xi, j for i = 1, . . . , n and j = 0, . . . , n as well as y1, . . . , yn+1.
Let us consider the linear relation

A = span
��{xk,n, xk,n−1}, . . . , {xk,1, xk,0}, {xk,0, 0} : k = 1, . . . , n

�

∪ {yn+1, x1,n − yn} ∪ �{xk,n − yn−k+1, xk+1,n − yn−k} : k = 1, . . . , n − 2
�

∪ {xn−1,n − y2, y1} ∪ {y1, 0} ∪ {xn,n, yn} ∪ �{yl , yl−1} : l = 3, . . . , n
��

.

Notice that

N (A) = span{x1,0, . . . , xn,0, y1}.

In the following we compute the multivalued part of Ak for k = 1, . . . , n. Assume
that x ∈ M(A) ⊂ R(A). Then {0, x} ∈ A and there exist scalars αi, j , βk, γl ∈ K such
that

x =
n



i=1

n



j=1

αi, j xi, j−1 +
n−2



k=1

γk(xk+1,n − yn−k) + γn−1y1 + γn yn + βn(x1,n − yn) +
n−1



l=2

βl yl

and

0 =
n



i=1

n



j=1

αi, j xi, j +
n−2



k=1

γk(xk,n − yn−k+1) + γn−1(xn−1,n − y2) + γnxn,n +
n



l=2

βl yl+1

=
n



i=1

(αi,n + γi )xi,n +
n



i=1

n−1



j=1

αi, j xi, j + βn yn+1 +
n−2



k=1

(βn−k − γk)yn−k+1 − γn−1y2.
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Therefore,

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αi,n + γi = 0 for i = 1, . . . , n,

αi, j = 0 for i = 1, . . . , n, j = 1, . . . , n − 1,
βn = 0 ,

γk − βn−k = 0 for k = 1, . . . , n − 2,
γn−1 = 0 .

Hence, we can rewrite the vector x as

x =
n−2



i=1

αi,nxi,n−1 + αn,nxn,n−1 +
n−2



k=1

γk(xk+1,n − yn−k) + γn yn +
n−1



l=2

βl yl

=
n−2



k=1

γk(xk+1,n − xk,n−1) + γn(yn − xn,n−1).

Thus,

M(A) = span
�{yn − xn,n−1} ∪ �

xk+1,n − xk,n−1 : k = 1, . . . , n − 2
��

.

If x ∈ M(A2), then there exists y ∈ M(A) such that {y, x} ∈ A. Hence, if y =
	n−2

k=1 αk(xk+1,n − xk,n−1) + αn−1(yn − xn,n−1) then

x −
n−2



k=1

αk(xk+1,n−1 − xk,n−2) − αn−1(yn−1 − xn,n−2) ∈ M(A).

Therefore,

M(A2) = span
�{yn − xn,n−1} ∪ �

xk+1,n − xk,n−1 : k = 1, . . . , n − 2
�

∪ {yn−1 − xn,n−2} ∪ �

xk+1,n−1 − xk,n−2 : k = 1, . . . , n − 2
��

.

Following the same arguments it can be shown that

M(An−1) = span
��

xk+1,n− j − xk,n− j−1 : k = 1, . . . , n − 2, j = 0, . . . , n − 2
�

∪ {yn− j − xn,n− j−1 : j = 0, . . . , n − 2
��

.

and

M(An) = span
��

xk+1,n− j − xk,n− j−1 : k = 1, . . . , n − 2, j = 0, . . . , n − 1
�

∪ {yn− j − xn,n− j−1 : j = 0, . . . , n − 2
� ∪ {xn−1,n−1 − y1 − xn,0}

�

.

From this it follows that

span{x1,0, . . . , xn,0, y1} ∩ M(An) = {0}. (5.1)
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Indeed, if x is a vector contained in the set on the left hand side of (5.1), then

x = α1x1,0 + · · · + αnxn,0 + αn+1y1 =
n−2



k=1

βk(xk+1,1 − xk,0) + γ (xn−1,n−1 − y1 − xn,0),

where α j , βk, γ ∈ K for j = 1, . . . , n + 1 and k = 1, . . . , n − 2. This implies

n−2



k=1

(αk + βk)xk,0 + αn−1xn−1,0 + (αn + γ )xn,0 + (αn+1 + γ )y1

−
n−2



k=1

βk xk+1,1 − γ xn−1,n−1 = 0.

Since all the vectors involved are by assumption linearly independent, it follows that
γ = 0 and also βk = 0 for k = 1, . . . , n − 2 and thus also α j = 0 for all j =
1, . . . , n + 1. That is, x = 0.

Now, it follows from (5.1) and Lemma 3.5 that [x1,n]A, . . . , [xn,n]A, [yn+1]A are
linearly independent in N (An+1)/N (An). On the other hand, if we consider the linear
relation

B = span
��{xk, j , xk, j−1} : k = 1, . . . , n, j = 1, . . . , n

� ∪ �{xk,0, 0} : k = 1, . . . , n
�

∪ �{xk,n − yn−k+1, xk+1,n − yn−k} : k = 1, . . . , n − 2
� ∪ {xn−1,n − y2, y1} ∪ {y1, 0}

∪�{xn,n, yn}, {yn, yn−1}, . . . , {y3, y2} ∪ {y2, 0}
��

,

A and B are one-dimensional perturbations of each other. Also, it is straightforward
to verify that D(B) = N (Bn). In particular, N (Bn+1) = N (Bn) so that

dim
N (An+1)

N (An)
− dim

N (Bn+1)

N (Bn)
= n + 1 − 0 = n + 1,

which shows that the worst possible bound is indeed achieved in this example.

6 Finite-Dimensional Perturbations

A linear relation B is a finite dimensional perturbation of another linear relation A
if both differ by finitely many dimensions from their intersection. Following [2], we
formalize this idea as follows.

Definition 6.1 Let A and B be linear relations in X and p ∈ N. Then B is called a
p-dimensional perturbation of A (and vice versa) if

max

�

dim
A

A ∩ B
, dim

B

A ∩ B

�

= p.



37 Page 22 of 37 L. Leben et al.

Remark 6.2 Let A and B be linear relations in X which are p-dimensional per-
turbations of each other, p > 1. Then it is possible to construct a sequence
of one-dimensional perturbations, starting in A and ending in B. Indeed, choose
{�f1, . . . , �f p} and {�g1, . . . ,�gp} in X × X such that

A = (A ∩ B) � span{�f1, . . . , �f p} and B = (A ∩ B) � span{�g1, . . . ,�gp}.

Observe that {�f1, . . . , �f p} is linearly independent if and only if dim A
A∩B = p. Oth-

erwise, some of the elements of {�f1, . . . , �f p} can be chosen as zero. An analogous
statement holds for {�g1, . . . ,�gp}. Define C0 := A , Cp := B, and

Ck := (A ∩ B) � span{�f1, . . . , �f p−k,�gp−k+1, . . . ,�gp}, k = 1, . . . , p − 1.

Obviously, Ck+1 is a one-dimensional perturbation of Ck , k = 0, . . . , p − 1. If, in
addition, A ⊂ B is satisfied, then �f j = 0 for all j = 1, . . . , p holds and we obtain

A ⊂ C j ⊂ C j+1 ⊂ B for j = 1, . . . , p − 1.

Theorem 6.3 Let A and B be linear relations in X such that B is a p-dimensional
perturbation of A, p ≥ 1, and n ∈ N ∪ {0}. Then the following conditions hold:

(i) N (An+1)/N (An) is finite-dimensional if and only if N (Bn+1)/N (Bn) is finite-
dimensional. Moreover,

�
�
�
�
dim

N (An+1)

N (An)
− dim

N (Bn+1)

N (Bn)

�
�
�
�

≤ (n + 1)p.

(ii) If, in addition in item (i), A ⊂ B is satisfied, then we have for n ≥ 1

�
�
�
�
dim

N (An+1)

N (An)
− dim

N (Bn+1)

N (Bn)

�
�
�
�

≤ np.

(iii) N (An) is finite-dimensional if andonly if N (Bn) is finite-dimensional.Moreover,

�
�dim N (An) − dim N (Bn)

�
� ≤ n(n + 1)

2
p.

(iv) If, in addition in item (iii), A ⊂ B is satisfied, then we have for n ≥ 1

�
�dim N (An) − dim N (Bn)

�
� ≤ n(n − 1)

2
p + p.

Proof By Remark 6.2 there exist linear relations C0, . . . ,Cp in X with C0 = A and
Cp = B such that Ck+1 is a one-dimensional perturbation of Ck , k = 0, . . . , p − 1.
Hence, applying item (i) in Theorem 4.5 repeatedly, we obtain

�
�
�
�
dim

N (Bn+1)

N (Bn)
− dim

N (An+1)

N (An)

�
�
�
�
≤

p−1



k=0

�
�
�
�
�
dim

N (Cn+1
k+1 )

N (Cn
k+1)

− dim
N (Cn+1

k )

N (Cn
k )

�
�
�
�
�

≤ (n + 1)p.
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Also, applying item (ii) in Theorem 4.5 repeatedly,

�
�dim N (An) − dim N (Bn)

�
� ≤

p−1



k=0

�
�dim N (Cn

k+1) − dim N (Cn
k )
�
� ≤ n(n + 1)

2
p,

which shows (iii). The statements (ii) and (iv) in the case A ⊂ B follows in the same
way from Remark 6.2 and Theorem 4.4. �

For linear relations A and B without singular chains we obtain the same (sharp)
estimates as for operators, see [5].

Corollary 6.4 Let A and B be linear relations in X without singular chains such that
B is a p-dimensional perturbation of A, p ≥ 1. Then the following conditions hold:

(i) N (An+1)/N (An) is finite-dimensional if and only if N (Bn+1)/N (Bn) is finite-
dimensional. Moreover,

�
�
�
�
dim

N (An+1)

N (An)
− dim

N (Bn+1)

N (Bn)

�
�
�
�

≤ p.

(ii) N (An) is finite-dimensional if and only if N (Bn) is finite-dimensional.Moreover,

�
�dim N (An) − dim N (Bn)

�
� ≤ np.

(iii) N (A) ∩ R(An) is finite-dimensional if and only if N (B) ∩ R(Bn) is finite-
dimensional. Moreover,

�
�dim(N (A) ∩ R(An)) − dim(N (B) ∩ R(Bn))

�
� ≤ p.

Proof The claims follow immediately applying repeatedly the results in Corollary 4.6
to the finite sequence of one-dimensional prturbations A = C0,C1, . . . ,Cp = B. �

7 Rank-One Perturbations of Matrix Pencils

In this section we apply our results to matrix pencils P of the form

P(s) := sE − F,

where s ∈ C and E , F are square matrices in C
d×d . We will estimate the change of

the number of Jordan chains of P under a perturbation with a rank-one matrix pencil.
We do not assume E to be invertible. Nevertheless, if we identify E with the linear

relation given by the graph of E then we have an inverse E−1 of E in the sense of
linear relations, see (2.1). Also, we have that

E−1F =
 

{x, y} ∈ C
d × C

d : Fx = Ey
!

= N [F − E].
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Recall that λ ∈ C is an eigenvalue of P(s) = sE − F if zero is an eigenvalue of
P(λ), and ∞ is an eigenvalue of P if zero is an eigenvalue of the dual matrix pencil
(rev P)(s) = sF−E . In the following we recall the notion of Jordan chains for matrix
pencils, see e.g. [24, Section 1.4], [30], or [35, §11.2].

Definition 7.1 An ordered set (xn, . . . , x0) in Cd is a Jordan chain of length n + 1 at
λ ∈ C := C ∪ {∞} (for the matrix pencil P(s)) if x0 �= 0 and

λ ∈ C : (F − λE)x0 = 0, (F − λE)x1 = Ex0, . . . , (F − λE)xn = Exn−1,

λ = ∞ : Ex0 = 0, Ex1 = Fx0, . . . , Exn = Fxn−1.

Moreover, we denote by Ll
λ(P) the subspace spanned by the vectors of all Jordan

chains up to length l ≥ 1 at λ ∈ C. If l = 0 or if λ is not an eigenvalue of P we define
Ll

λ(P) = {0}.
Remark 7.2 As mentioned above, Definition 7.1 is inspired by the definition of eigen-
values of pencils introduced in 1951 by M.V. Keldysh who used this concept in his
study of operator pencils, see [30,35]. This definition fits to the definition of eigenval-
ues of linear relations and in that way to the purpose of this paper.

The authors are aware of the fact that inmany recent publications in thematrix pencil
community, see for instance [4,13–15,37,44], a different definition for eigenvalues of
matrix pencils is used which is based on changes in the rank of P(s). What in our
paper is called an eigenvalue is there sometimes called a singular point. However, this
concept is not used in the community of linear relations, so we apologize and warn
for possible misunderstandings.

Given a matrix pencil P(s), the aim of this section is to obtain lower and upper
bounds for the difference

dim
Ln+1

λ (P + Q)

Ln
λ(P + Q)

− dim
Ln+1

λ (P)

Ln
λ(P)

,

where Q is a rank-one matrix pencil, n ∈ N ∪ {0} and λ ∈ C.
We start with a simple lemma, which follows directly from the definitions. It allows

us to reduce the study of Jordan chains at some λ ∈ C to Jordan chains at zero.

Lemma 7.3 Given a matrix pencil P(s) = sE − F, the following statements hold:

(i) (xn, . . . , x0) is a Jordan chain of P at λ ∈ C if and only if it is a Jordan chain of
the matrix pencil P̃(s) := sE − (F − λE) at zero.

(ii) (xn, . . . , x0) is a Jordan chain of P(s) at ∞ if and only if it is a Jordan chain of
the dual matrix pencil (rev P)(s) := sF − E at zero.

The following proposition shows that the Jordan chains of the matrix pencil P(s)
coincide with the Jordan chains of the linear relation E−1F . As the proof is simple
and straightforward, we omit it.
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Proposition 7.4 For n ∈ N ∪ {0} and λ ∈ C the following two statements are equiva-
lent.

(i) (xn, . . . , x0) is a Jordan chain of P at λ.
(ii) (xn, . . . , x0) is a quasi-Jordan chain of E−1F at λ.

In particular, for λ ∈ C we have

Ln
λ(P) = N ((E−1F − λ)n).

Note that the quasi-Jordan chains of a linear relation A at ∞ are the same as the
quasi-Jordan chains of the inverse linear relation A−1 at zero. Moreover, it is easy to
see that E−1F = (F−1E)−1. Therefore,

Corollary 7.5 (xn, . . . , x0) is a Jordan chain of P(s) = sE − F at ∞ if and only if
(xn, . . . , x0) is a quasi-Jordan chain of F−1E at zero. In particular,

Ln∞(P) = M((E−1F)n) = (N ((F−1E)n) = Ln
0(rev P).

Due to Proposition 7.4, for n ∈ N ∪ {0} and λ ∈ C we have

dim
Ln+1

λ (P)

Ln
λ(P)

= dim
N ((E−1F − λ)n+1)

N ((E−1F − λ)n)
.

On the other hand, Corollary 7.5 implies that

dim
Ln+1∞ (P)

Ln∞(P)
= dim

N ((F−1E)n+1)

N ((F−1E)n)
.

For a given matrix pencil P(s) = sE − F we now consider perturbations of the
form

Q(s) = w(su∗ − v∗), (7.1)

where u, v, w ∈ C
d , (u, v) �= (0, 0) and w �= 0. These are rank-one matrix pencils.

Recall that the rank of a matrix pencil Q is the largest r ∈ N such that Q, viewed
as a matrix with polynomial entries, has minors of size r that are not identically zero
[14,20]. Then, P and P + Q are rank-one perturbations of each other, in the sense
that they differ by (at most) a rank-one matrix pencil.

Lemma 7.6 Given P(s) = sE − F, let Q be a rank-one matrix pencil as in (7.1).
Then, the linear relations

E−1F and
�

E + wu∗�−1
(F + wv∗)

either coincide or they are one-dimensional perturbations of each other in the sense
of Definition 6.1.
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Proof Obviously, for M := E−1F ∩ (E + wu∗)−1 (F + wv∗) we have

M =
 

{x, y} ∈ C
d × C

d : Fx = Ey and (F + wv∗)x = (E + wu∗)y
!

.

That is,

M = E−1F ∩ {v,−u}⊥ = �

E + wu∗�−1
(F + wv∗) ∩ {v,−u}⊥.

This implies

dim
E−1F

M ≤ 1 and dim
(E + wu∗)−1 (F + wv∗)

M ≤ 1,

which proves the claim. �
Matrix pencils as in (7.1) do not cover the set of all rank-one matrix pencils in Cd .

The remaining rank-one matrix pencils can be written as

Q(s) = (su − v)w∗, (7.2)

where u, v, w ∈ C
d are such that (u, v) �= (0, 0) and w �= 0. Given P(s) = sE − F

and a rank-one pencil Q of the form (7.2), the associated linear relations E−1F and
(E + uw∗)−1(F + vw∗) can be two-dimensional perturbations of each other. Hence,
the statements in Lemma 7.6 are not valid for rank-one matrix pencils of the form
(7.2).

On the other hand, the linear relations FE−1 and (F + vw∗)(E + uw∗)−1 are (at
most) one-dimensional perturbations of each other in the sense of Definition 6.1. A
deeper analysis of the correspondence between matrix pencils and their representing
linear relations will be provided in the forthcoming manuscript [22], where the Segre
and Weyr characteristics for linear relations are introduced. The results will then
give rise to sharp estimates on similar quantities as above for (all) one-dimensional
perturbations.

Remark 7.7 Applying Lemma 7.6 to the dualmatrix pencils rev P and rev Q, it follows
that

F−1E and (F + wv∗)−1(E + wu∗)

either coincide or they are one-dimensional perturbations of each other in the sense
of Definition 6.1.

The following theorem is the second main result of this article. We consider here
all possible situations of regular/singular matrix pencils P and P + Q. Recall that a
matrix pencil P(s) = sE − F is called regular if det(sE − F) is not identically zero.
Otherwise, P is called singular.
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Theorem 7.8 Given P(s) = sE − F, let Q be a rank-one matrix pencil as in (7.1).
For λ ∈ C and n ∈ N ∪ {0}, the following statements hold:
(i) If both pencils P and P + Q are regular, then

�
�
�
�
�
dim

Ln+1
λ (P + Q)

Ln
λ(P + Q)

− dim
Ln+1

λ (P)

Ln
λ(P)

�
�
�
�
�
≤ 1.

(ii) If P is regular but P + Q is singular, then

−1 − n ≤ dim
Ln+1

λ (P + Q)

Ln
λ(P + Q)

− dim
Ln+1

λ (P)

Ln
λ(P)

≤ 1.

(iii) If P is singular and P + Q is regular, then

−1 ≤ dim
Ln+1

λ (P + Q)

Ln
λ(P + Q)

− dim
Ln+1

λ (P)

Ln
λ(P)

≤ n + 1.

(iv) If both P and P + Q are singular, then

�
�
�
�
�
dim

Ln+1
λ (P + Q)

Ln
λ(P + Q)

− dim
Ln+1

λ (P)

Ln
λ(P)

�
�
�
�
�
≤ n + 1.

Proof According to Lemma 7.3, if λ ∈ C we may assume λ = 0. By Proposition 7.4,
for n ∈ N ∪ {0} we have that

Ln
0(P) = N

�

(E−1F)n
�

and Ln
0(P + Q) = N (Bn),

where B := (E + wu∗)−1(F + wv∗). Due to Lemma 7.6 the linear relations E−1F
and B are (at most) one-dimensional perturbations of each other and, by Theorem 4.5,

−1 − sn(B, E−1F) ≤ dim
Ln+1
0 (P + Q)

Ln
0(P + Q)

− dim
Ln+1
0 (P)

Ln
0(P)

≤ 1 + sn(E
−1F, B).

Then, Proposition 4.3 implies statement (iv). If the pencil P is regular then, by defi-
nition, not every complex number is an eigenvalue of P . Hence, by Proposition 7.4,
those numbers are neither eigenvalues of E−1F . From [41] it follows that, in this case,
E−1F has no singular chains and we conclude that

sn(E
−1F, B) = 0,

see (4.1). Similarly, if P + Q is regular we obtain sn(B, E−1F) = 0, which shows
the remaining statements (i)–(iii).

For λ = ∞ similar arguments can be used using F−1E andC := (F+wv∗)−1(E+
wu∗) instead of E−1F and B, see Corollary 7.5 and Remark 7.7. �
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Note that the estimate in item (i) of Theorem 7.8 is already known. It was shown
in [14, Lemma 2.1] with the help of a result for polynomials, see also [45, Theorem
1]. The remaining estimates in Theorem 7.8 are new.

Example 7.9 In this and the following section we focus on matrix pencils, but most of
the statements remain true if we consider operator pencils of the form

Z(s) := sE − F,

where E and F are linear and bounded operators in some Hilbert space X . If E and
F are compact operators, then Z(s) is a Keldysh pencil, see [30].

Assume that E and F are bounded operators. One defines eigenvalues and Jordan
chains as in Definition 7.1 and it is easily seen that also Lemma 7.3, Proposition 7.4,
Corollary 7.5 and Lemma 7.6 hold, as they are based on algebraic properties only,
where Q(s) for some vectors u, v, w in X with (u, v) �= (0, 0) and w �= 0 is defined
as

Q(s)x = w(s�x, u� − �x, v�), x ∈ X .

Here �· , ·� stands for the Hilbert space scalar product in X . Then a straight-forward
application of Theorem 4.5 (see also Theorem 7.8) gives for λ ∈ C

�
�
�
�
�
dim

Ln+1
λ (Z + Q)

Ln
λ(Z + Q)

− dim
Ln+1

λ (Z)

Ln
λ(Z)

�
�
�
�
�
≤ n + 1, (7.3)

if
Ln+1

λ (Z)

Ln
λ(Z)

is of finite dimension. The estimate in (7.3) seems to be new for operator

pencils. Moreover, in this setting also essential spectrum may exist. We are not going
into details here, but the above setting also allows to treat the essential spectrum. We
refer to [23] for related considerations.

Remark 7.10 In the following we present estimates for so-called Wong sequences,
which have their origin in [46]. Recently, Wong sequences have been used to prove
the Kronecker canonical form, see [8–10]. For E, F ∈ C

d×d the Wong sequence of
the second kind of the pencil P(s) := sE − F is defined as the sequence of subspaces
(Wi (P))i∈N given by

W0(P) = {0}, Wi+1(P) =
 

x ∈ C
d : Ex ∈ FWi (P)

!

, i ∈ N ∪ {0}.

It is easily seen by induction that for n ∈ N we have

Wn(P) = N
�

(F−1E)n
�

.

Theorem 4.5 now yields the following statements on the behavior of the Wong
sequences of the second kind under rank-one perturbations of the type (7.1):
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(i) If both pencils P and P + Q are regular, then

�
�
�
�
dim

Wn+1(P + Q)

Wn(P + Q)
− dim

Wn+1(P)

Wn(P)

�
�
�
�
≤ 1.

(ii) If P is regular but P + Q is singular, then

−1 − n ≤ dim
Wn+1(P + Q)

Wn(P + Q)
− dim

Wn+1(P)

Wn(P)
≤ 1.

(iii) If P is singular and P + Q is regular, then

−1 ≤ dim
Wn+1(P + Q)

Wn(P + Q)
− dim

Wn+1(P)

Wn(P)
≤ n + 1.

(iv) If both P and P + Q are singular, then

�
�
�
�
dim

Wn+1(P + Q)

Wn(P + Q)
− dim

Wn+1(P)

Wn(P)

�
�
�
�
≤ n + 1.

8 Perturbations of the Kronecker Canonical Form

Recall that every pencil P(s) = sE − F can be transformed into the Kronecker
canonical form, see e.g. [9,10,20]. To introduce this form, define for k ∈ N the
matrices

Nk :=

⎡

⎢
⎢
⎢
⎣

0
1 0

. . .
. . .

1 0

⎤

⎥
⎥
⎥
⎦

∈ C
k×k,

and for a multi-index α = (α1, . . . , αl) ∈ N
l , l ≥ 1, with absolute value |α| =

	l
i=1 αi let

Nα := diag(Nα1 , . . . , Nαl ) ∈ C
|α|×|α|.

If k ≥ 1, the following rectangular matrices are defined as

Kk :=
⎡

⎢
⎣

1 0
. . .

. . .

1 0

⎤

⎥
⎦ , Lk :=

⎡

⎢
⎣

0 1
. . .

. . .

0 1

⎤

⎥
⎦ ∈ C

k×(k+1),

and, if k = 0,

K0 = L0 := 00×1.
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If E, F ∈ C
d×d , the expression 00×1 means that there is a 0-column (0, . . . , 0)� ∈

C
d×1 in the matrix (8.1) below, and 0�

0×1 means that there is a 0-row (0, . . . , 0) ∈
C
1×d in (8.1) at the corresponding block. The notation 00×1 indicates that there is no

contribution to the number of rows in (8.1), whereas 0�
0×1 gives no contribution to the

number of columns. For a multi-index ε = (ε1, . . . , εl) ∈ (N ∪ {0})l we define

Kε := diag(Kε1 , . . . , Kεl ), Lε := diag(Lε1, . . . , Lεl ) ∈ C
|ε|×(|ε|+l).

According to Kronecker [31], there exist invertible matrices S, T ∈ C
d×d such that

S(sE − F)T has a block diagonal form

⎡

⎢
⎢
⎣

s In0 − A0 0 0 0
0 sNα − I|α| 0 0
0 0 sKε − Lε 0
0 0 0 sK�

η − L�
η

⎤

⎥
⎥
⎦

(8.1)

for some A0 ∈ C
n0×n0 in Jordan canonical form, which is unique up to a permutation

of its Jordan blocks, and multi-indices α ∈ N
nα , ε ∈ (N ∪ {0})nε , η ∈ (N ∪ {0})nη

which are unique up to a permutation of their entries, see also [20, Chapter XII] or
[32]. Let (σ1(λ), . . . , σr (λ)) denote the sizes of the Jordan blocks in a non-increasing
order associated to an eigenvalue λ of A0. These numbers are also called the Segre
characteristic of the eigenvalue λ of A0. The numbers αi , i = 1, . . . , nα are called
the infinite elementary divisors of P(s), the numbers εi , i = 1, . . . , nε are called the
column minimal indices of P(s), and the numbers η j , j = 1, . . . , nη are known as the
row minimal indices of P(s), see e.g. [13,20]. It is assumed that they are indexed in
non-increasing order, i.e.

α1 ≥ · · · ≥ αnα ≥ 1, ε1 ≥ · · · ≥ εnε ≥ 0 and η1 ≥ · · · ≥ ηnη ≥ 0. (8.2)

The sequences of numbers in (8.2) are also called the Segre characteristics of the
infinite elementary divisors, the column minimal indices and the row minimal indices
of the pencil P(s). Note that the Segre characteristic in [13] was defined in a slightly
different way, namely without the numbers stemming from the minimal indices.

For λ ∈ C the Weyr characteristic of A0 is defined for each j ∈ N as

w j (λ) = #{i : σi (λ) ≥ j}, j = 1, . . . , σ1(λ), w j (λ) = 0, j > σ1(λ), (8.3)

i.e., w j (λ) is the number of Jordan blocks of size at least j of the eigenvalue λ of A0.
If λ is not an eigenvalue of A0 we define w j (λ) = 0, j ∈ N. Note that

w j (λ) = dim
N ((A0 − λ) j )

N ((A0 − λ) j−1)
.

In the same way, the Weyr characteristics of the infinite elementary divisors, the
column minimal indices and the row minimal indices are defined as the conjugate
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partitions of α, of ε, and of η. E.g., if ε1 ≥ · · · ≥ εnε ≥ 0 are the column minimal
indices of P(s), then

� j := #{i : εi ≥ j}, j = 0, . . . , ε1, � j = 0, j > ε1, (8.4)

is theWeyr characteristic of the column minimal indices of P(s) i.e.� j is the number
of column minimal indices of P(s) which are larger than or equal to j . The finite
sequences (�1, . . . ,�ε1) and (ε1, . . . , εnε ) are conjugate partitions of |ε|. Note that
the Segre characteristics can be easily derived from the Weyr characteristics. For a
detailed exposition of the Weyr characteristic of matrices we refer to [43].

If the Kronecker canonical form of P is given by (8.1), then

rank(P) = d − nε = d − nη,

i.e. the rank of a pencil is related to the number of column and row minimal indices
of P . In what follows we will investigate the behavior of the Kronecker canonical
form under perturbations. In [13] the unperturbed pencil P has no full rank, and the
perturbation Q is a pencil such that

rank(P + Q) = rank(P) + rank(Q).

This set of perturbations is generic in the sense that it is open and dense in the set of
pencils with given size and rank. For such perturbations Q it is shown that the number
and the dimensions of the Jordan blocks associated to an eigenvalue increase under
perturbations of the above form.

The Theorem 7.8 can be interpreted in terms of the Kronecker invariants.

Theorem 8.1 Given amatrix pencil P(s) = sE−F inKronecker canonical form (8.1),
assume that λ ∈ C is an eigenvalue of P. Then

L j
λ(P) = N

�

(A0 − λ) j
� ⊕ {0} ⊕ N

�

(K−1
ε Lε − λ) j

� ⊕ {0}, (8.5)

where the first {0} in (8.5) is in C|α| and the last {0} is in C|η|.

Note that in Theorem 8.1 K−1
ε Lε has to be interpreted as a linear relation.

Proof of Theorem 8.1 First, assume that (xn, . . . , x0) in Cd is a Jordan chain at λ ∈ C

for the matrix pencil P . According to Lemma 7.3 it is no restriction to assume λ = 0.
Since Nα is in block diagonal form it is assumed without restriction that α has only
one entry. Let ε and η be multi-indices with k and l zeros. We decompose the vectors
xn, . . . , x0 according to the decomposition C

d = C
n0+α+(|ε|+nε)+|η| = C

n0 ⊕ C
α ⊕

C
|ε|+nε ⊕ C

|η| corresponding to the Kronecker canonical form,

x j = (x j,1, x j,2, x j,3, x j,4)
� ∈ C

n0+α+(|ε|+nε)+|η| for j = 0, . . . , n. (8.6)

Consider the third entry of (8.6). By (8.2), ε has the form

ε = (ε1, . . . , εnε−k, 0, . . . , 0),
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where ε j ≥ 1 for j = 1, . . . , εnε−k . Then Kε and Lε are of the form

Kε =

⎡

⎢
⎢
⎢
⎢
⎣

Kε1 0 · · · 0
Kε2

...
...

. . .
...

...

Kεnε−k 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

and

Lε =

⎡

⎢
⎢
⎢
⎢
⎣

Lε1 0 · · · 0
Lε2

...
...

. . .
...

...

Lεnε−k 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

where the last k columns in Kε and in Lε consist of zeros only. Hence, for i ∈ N,

N
�

(K−1
ε Lε)

i � =
⎛

⎝

nε−k
$

j=1

N
�

(K−1
ε j

Lε j )
i �

⎞

⎠ ⊕ C
k,

and for the third entry of (8.6) one finds

x j,3 ∈ N
�

(K−1
ε Lε)

j+1� for j = 0, . . . , n.

This shows that it is sufficient to consider the case that nε = 1,
Now the fourth entry of (8.6) is considered. By (8.2), η has the form

η = (η1, . . . , ηnη−l , 0, . . . , 0),

where η j ≥ 1 for j = 1, . . . , nη − l. Thus K�
η and L�

η are of the form

K�
η =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K�
η1

. . .

K�
ηnη−l

0 . . . 0
...

...

0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, L�
η =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L�
η1

. . .

L�
ηnη−l

0 . . . 0
...

...

0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the last l rows in K�
η and in L�

η consist of zeros only. In order to show that the
vectors x0,4, . . . , xn,4 are zero, it remains to consider the case that nη = 1.
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The considerations above have shown that we can restrict us to the case that nα =
nε = nη = 1. Hence, in (8.1) we have α, ε, η ∈ N with

α ≥ 1, ε ≥ 1, and η ≥ 1.

Since (xn, . . . , x0) is a Jordan chain of P at λ = 0, the following equations are satisfied
for j = 1, . . . , n:

A0x0,1 = 0, A0x j,1 = x j−1,1, (8.7)

Iαx0,2 = 0, Iαx j,2 = Nαx j−1,2, (8.8)

Lεx0,3 = 0, Lεx j,3 = Kεx j−1,3, (8.9)

L�
η x0,4 = 0, L�

η x j,4 = K�
η x j−1,4. (8.10)

Thus, by (8.8), the vectors x0,2, . . . , xn,2 are zero. Similarly, by (8.10), the vectors
x0,4, . . . , xn,4 are zero. Equation (8.7) shows that (xn,1, . . . , x0,1) is a Jordan chain at
zero for the matrix A0. Finally, (8.9) for j = 0, . . . , n gives

x j,3 ∈ N
�

(K−1
ε Lε)

j+1�.

This shows that every vector in the chain (xn, . . . , x0) is an element in the right hand-
side of (8.5). Therefore, Ln

λ(P) is contained in the right hand-side of (8.5).
Conversely, if xn is an element in the right hand-side of (8.5) for j = n + 1, and

decomposing xn as in (8.6), we have xn = (xn,1, 0, xn,3, 0)� with

xn,1 ∈ N
�

An+1
0

�

and xn,3 ∈ N
�

(K−1
ε Lε)

n+1�.

Therefore, for each i = 0, . . . , n − 1 there exist vectors xi,1 and xi,3 which satisfy
equations (8.7) and (8.9). For i = 0, . . . , n − 1, set

xi := (xi,1, 0, xi,3, 0)�.

From this, it is easy to see that (xn, . . . , x0) is a Jordan chain (at λ = 0) for the matrix
pencil P . In particular, xn ∈ Ln+1

λ (P). �
Using the above result, we present an alternative version of Theorem 7.8 in terms

of the Weyr characteristics of the Kronecker canonical form. For simplicity, we state
it here only for finite eigenvalues λ. A similar statement can be shown for λ = ∞
applying Corollary 7.5.

Theorem 8.2 Let λ ∈ C and n ∈ N ∪ {0}. Given P(s) = sE − F in C
d×d , let Q

be a rank-one matrix pencil as in (7.1). Assume that A0 and %A0 are the matrices in
Jordan canonical form appearing in the Kronecker canonical forms (8.1) of P and
P+Q, denote bywn(λ) and&wn(λ) theWeyr characteristics of thematrices A0 and &A0,
according to (8.3) and by �n and &�n the Weyr characteristics of the column minimal
indices of P and P + Q according to (8.4). Then the following statements hold:
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(i) If both pencils P and P + Q are regular, then �n = &�n = 0 and

|&wn+1(λ) − wn+1(λ)| ≤ 1.

(ii) If P is regular and P + Q is singular, then �n = 0 and

−1 − n ≤ &wn+1(λ) − wn+1(λ) ≤ 1 + &�n .

(iii) If P is singular and P + Q is regular, then &�n = 0 and

−1 − �n ≤ &wn+1(λ) − wn+1(λ) ≤ n + 1.

(iv) If both P and P + Q are singular, then

�
�&wn+1(λ) − wn+1(λ) + &�n − �n

�
� ≤ n + 1.

Proof Note that if S and T are invertible matrices and (xn, . . . , x0) is a Jordan chain of
some pencil P(s), the Definition 7.1 immediately implies that (T−1xn, . . . , T−1x0)
is a Jordan chain of the pencil P̂(s) = SP(s)T . Hence dimLn

λ(P) = dimLn
λ(P̂) for

all n ∈ N ∪ {0}. According to Lemma 7.3, if λ ∈ C we may assume λ = 0. As a
consequence of Theorem 8.1,

dim
Ln+1
0 (P)

Ln
0(P)

= dim
N (An+1

0 )

N (An
0)

+ dim
N (K−1

ε Lε)
n+1

N (K−1
ε Lε)n

,

and it is straightforward to see that

dim
N (K−1

ε Lε)
n+1

N (K−1
ε Lε)n

= �n .

The same holds for the pencil P + Q, and we obtain

dim
Ln+1
0 (P + Q)

Ln
0(P + Q)

= dim
N (&An+1

0 )

N (&An
0)

+ &�n .

Then, the result follows immediately from Theorem 7.8. �
Finally, we compare the above result with Section 4 in [13]. A particular case of

Lemma 4.2 in [13] can be restated in the following way. Given a matrix pencil P(s) in
C
d×d with rank(P) = r , assume that λ is an eigenvalue of P with partial multiplicities

0 ≤ m1 ≤ . . . ≤ mr . Let Q(s) be a matrix pencil inCd×d with rank(Q) = 1 and letm
be the partialmultiplicity ofλ relative to Q (m can also be zero). If rank(P+Q) = r+1
and mi < m ≤ mi+1 for some i = 0, 1, . . . , r (where m0 = −1 and mr+1 = ∞),
then the partial multiplicities 0 ≤ m�

1 ≤ . . . ≤ m�
r+1 of λ relative to P + Q satisfy

m�
1 = m1, . . . , m�

i = mi , m�
i+1 ≥ m, m�

i+2 ≥ mi+1, . . . , m�
r+1 ≥ mr .(8.11)
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Given matrix pencils P and Q as in Theorem 8.2, in order to satisfy the conditions
of item (iii) it is necessary that rank(P) = d − 1 and rank(P + Q) = d. Hence, the
hypothesis rank(P + Q) = rank(P) + rank(Q) is fulfilled and Lemma 4.2 in [13]
provides a better estimate. Reversing the roles of P and P + Q, the same happens
with item (ii).

However, if both P and P + Q are singular the result in item (iv) holds, indepen-
dently of the hypothesis rank(P+Q) = rank(P)+ rank(Q). Therefore, Theorem 8.2
gives new information in case that rank(P + Q) �= rank(P) + rank(Q).
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