
VI. PERTURBATION THEORY WITHOUT VAVE FUNCTION 

29. 10 11odels· 

We showed in section 9 how the RSPT allows one to obtain the energy 

and the wave function corrections via the resolution of some differen

tial equations. Here we present a method that combines HR and PT and 

has proven to be extremely powerful when it is applied to simple models. 

Since the wave function does not require any explicit evaluation at any 

moment, this procedure is called Perturbation Theory Without Wave Func

tion (PTWWF). 

Let us consider a dimensionless 10 Hamiltonian 

H _!-02 + V(x) 

whose bound states ~i meet the boundary condition 

lim xn~. (x) = 0 
1 

( 1 ) 

(2 ) 

We have deduced in section 5 the way to get a recursion relationship 

for the matrix elements of the x-powers: 

l;-N(N-l) (N-2)<i IxN- 3 Jj> 
2 

N" ·1 N-l l · + >G •• < 1 X J> 
IJ 

,.1 •• 

+ .-!...L • 1 N+l 1 • 0 <I X J> = 
N+l 

N-l N - 2N<x V> - <x V'> 

(3) 

o (4) 

The true recursion is obtained when V can be expanded in an x-power 

series. Supposing the potential V(x) is 

V(x) = !-x2 + 2m ax 

and replacing (5) in (4) we obtain 

2NEAN- 1 + l;-N(N-l) (N-2)AN- 3 - (N+l )AN+1 _ 2(N+m)a.AN+2m- 1 N N 0; A :o<x > 

Since H depends on the parameter a, we can apply the HFT 

(5) 

(6 ) 
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aE/ao. (7) 

Swenson and Danforth [1] showed the convenience of combining Eq. (6) 

with PT. Expanding all the terms in a-power series 

L E L 
s=O s=O 

and resorting to the equal ity 

we can write (6) as follows: 

EO 
n 

n+! 

N-l ~ 2m N-l -1 1l-3 2NEoA + 2N L A A s + W(N-I) (N-2)A11 -
M s=1 s-1 M-s 

(8) 

This last equation can be rearranged in such a manner to obtain a re
N cursion formula to calculate the whole set of AM elements: 

AN+1 2NEo N-l N(N-l) (N-2) N-3 2N M A2m AN-1 -1 
M = N+l AM + --zj"(N+l) AM + N+T L s-1 M-s s 

s=1 

2 (N+m) AN+2m+1 (10) 
\'N+iJ M-l 

Eq. (10) together with the normalization condition 

A~ = 0 when M#O; A~ = 1 for M=O 

solves completely the problem [1]. 

The great advantage offered by this kind of perturbative recursion 

equations is that they can be easily programmed for a computator and 

besides they admit straightforward developments to arrive at analytical 

expressions. 

This powerful method has found, for example, an interesting application 

in rotational-vibrational spectroscopy because it permits the calcula-
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tlon of the matrix elements for the powers of internuclear displace

ments (measured from the equilibrium position) of diatomic molecules in 

a IE state [2-.4]. The numerical results arising from this methodology 

are more exact than other ones obtained by different techniques, as 

demonstrated for H2 , HCI [2,3] and CO [4]. 

30. Central Potential Systems 

The appl icabil ity of the method presented in section 29 is not restric~ 

ed to 10 quantum models, but it may as well be employed to study NO 

systems with central fields. It is due to the well-known fact that, 

after the angular variables are set aside, the resulting radial Schr8-

dlnger equation Is 10. 

The procedure is similar to that described previously. For example, for 

the 3D case we can start from Eq. (]2), section 5: 

E = E nt 

The appl ication of the PTWWV to central potential systems was made for 

the first time by Killingbeck [5]. He studied the spherically symmetric 

states of the hydrogen atom under a perturbation Ar, i.e. 

VCr) = _r- 1 + Ar • (12) 

The replacement of (12) in (11) (with t=O) gives 

kN(N-l) (N-2)AN- 3 + 2NEAN- 1 + (2N-l)AN- 2 - (2N+l)AAN = 0 ( 1 3) 

where 

The expansion of AN and E in A-power series plus the application of the 

HFT as described in section 29, gives: 
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This last equation together with the initial conditions 

1 EO = _(2n 2 )-1 ; n 

permits us to solve completely the problem. 

The energy corrections are calculated with the relation 

ME (M) = Al 
M-l 

that arises from the HFT. 

(14) 

(15) 

(16) 

Grant and Lai [6] appl ied this procedure to study screened Coulomb 

potentials 

(17 ) 

These authors derived an analytic energy formula corrected up to the 

sixth-order, and with computer calculations, up to the twentieth-order, 

showing in a conclusive manner that whenever possible, this method is 

better than the RSPT and the analytical PT. 

It is necessary and convenient to remember that the val idity of all 

previous expressions in this section require the fulfillment of the 

limit condition 

lim rnlj! = 0 (18) 
r+ oo 

31. 10 Systems with Periodic Potentials 

The examples given before to apply PTWWF are referred to infinite spatial 

systems, where the wave functions corresponding to bound states tend to 

zero in an exponential manner when the coordinates tend towards infini

te (Eqs. (2), (18». 
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Here we will show how it is possible to extend such a methodology for 

periodic systems. In particular, we will pay special attention to two 

belonging to the fiela of Theoretic~1 Chemistry: 

a) Rotation of atomic groups in polyatomic molecules and crystals; 

b) Electrons in metals. 

a) Periodic boundary conditions appear in a natural manner in several 

fields of the Theoretical Chemistry and the following examples are 

representative. 

Considering the diatomic molecules in a crystal as hindered rotators 

Paul ing [71 showed theoretically that if the intermolecular forces and 

inertia moments are large enough, such molecules behave as an oscil

lator while in the case these quantities are sma", the molecules re

semble a free rotator. Later on, Stern [8] continued Pauling's analysis 

in a deeper way with the purpose to obtain a better information about 

the statistical weights for the first quantum states. Some molecules 

have two or more polar groups incapable to rotate freely owing to the 

electric fields produced by such groups. 

Lennard-Jones [9] studied the dipolar moments of this kind of molecules 

with the aim to determine the interaction among these polar groups. 

Periodic potentials 31so appear when studying the internal rotation of 

a group of atoms in a molecule [10]. For example, Koehler and Dennison 

[11] discussed the OH hindered rotation problem in the methanol molecu

le with the help of the hindered rotor model for the periodic potential 

V(x) = !H(l-cos 3x). 

Kilb et al. [lZ] proposed a similar potential function to study the 

energy levels associated to the internal torsion in molecules such as 

CH 3 CHO, CD 3 CHO, CHZDCHO, CH 3SiH ZD, CH30H, etc. 

Other excellent contributions have been publ ished on this field [13-Z0] 

which show clearly the attention paid by theoretical chemists to the 

phenomena of internal rotation in molecules. 

Some of these works have been mentioned previously, i.e. [15-171 in 

section 19. References [19,ZO] present a detailed account on this theme. 
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The basic problem may be stated as 

H = _!-02 + V(x) ( 1 9) 

where V(x) is a periodic potential describing the rotation 

V(x+p) V(x) (20) 

Among all the H-eigenfunctions the only acceptable ones are those that 

have the same periodicity as the potential function, i.e. 

Iji. (x+p) = Iji. (x) 
I I 

( 21) 

In order to be valid the HT presented in this first part, it is neces

sary that the HO satisfy the equation 

<Iji. I Hwlji. > 
I J 

<HIji. I wlji. > 
I J 

(22) 

Taking into account that 

(23) 

then we see that (22) impl ies 

o (24) 

The simplest way to meet this requisite is to choose the HO w such that 

wljij has a period p. 

But we made precisely this choice in section 5, obtaining the equations 

k2 w2 
ik {n - ~ - n2m}<nlf 1m> 

s nm 'I k s 

f (x) 
s 

s 

exp(ik x) 
s 

k 
s 

- 2 i k <n I f V 1m> - <n I f V I 1m> = 0 s s s 

-1 2nsp 

(25) 

(26) 

Since the potential is periodic, it can be expanded as a Fourier power 

series: 

+00 
V (x) = l: 

5=-00 

-!- -1 C p exp(2nisxp ) 
s 

V f (x) 
s s 

( 2]) 
5=-00 
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where V = p-!C 
s s 

-1 P P ! V(x)f (x)dx. o s 

The substitution of (27) in (25) gives an equation that relates the fs 

matrix elements among themselves: 

k2 w2 co 

k{n -i- - n2m}<nlflm> - L V (2k+k)<nlf Im>=O 
s nm k s t=-co t s t s+t 

s 

When n=m Eq. (28) simpl ifies to 

k 2 
k (2E - 2)A s -

s 4 

The expansion of the real function p(x) 

-1 P P ! p(x)f (x)dx o s 

shows clearly that 

Iwl 2 in Fourier series 

-1 s 
P A 

Then, all the calculations can be reduced to the case s.;;.O. 

(28) 

(29) 

(0) 

The expansion of the periodic potential (usually unknown) in Fourier 

series is the procedure usually employed to solve Eq. (19) [7,9,11-20]. 

In many cases one retain~ just one term of the complete expansion. 

For simplicity sake here we use a periodic potential such that Vs 0 

when s > 1 and p = n: 

V(x) = V (1 + 2V 1V- 1 cos 2x) o 0 
(32) 

This kind of potential is widely used [7,9,18-20] and leads us to the 

Mathieu equation [21]. Usually this equation is written in one of the 

following equivalent forms: 

-!w" + wacos 2x = £w 03a) 

w" + (a - 2a cos 2x)w o (33b) 

2 w" + (b - S cos x)w = 0 (Bc) 

where 
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e: = E - Vo;a 5 4a b 2e: + 5/2 (34) 

As stated at the beginning of this section, our interest is to apply 

the PTWWF for periodic problems. Eq. (33a) is the more appropriate 

for our needs, so we get the relationships: 

2 

{n - s2 - wnm}<nlf 1m> = ~<nlf 11m> 
nm 4s2 s s s+ 

2s-1 I I + --s-- a<n f s- 1 m> (35) 

(36 ) 

The expansion of E and AS in a-power series and the posterior equal iza

tion of the polynomial coefficients in (36) yields: 

2 
M t s 2 L E AH_ t - s A~ 

t=O 

2s+1 As+1 2s-1 s-l -zs- M-l + -zs- AM_1 (37) 

The application of the HFT permits that Eq. (37) may be written in 

terms of the elements A~: 

(38 ) 

Finally, the substitution of (39) in (3]) gives 

1 s 
2 2 1 1 2 11M At - 1 A~I-t 

(2EO-s )A~ = ~: A~~l + ~~ A~=l - 2 tIl t (40) 

In order to use the recursion formula (40) it is necessary to know the 

zero order solutions (a=O). In this actual case, they are the free rotor 

eigenfunctions and eigenvalues 

(41) 

Every zero-order level is doubly degenerate. On the other hand, it is 

known that there are not two different eigenfunctions of the Mathieu 

equation corresponding to the same eigenvalue [21]. These properties 

assure us that when using PT the degeneracy must be broken. However, 

considering the equality 

<nlcos 2xln> =fTfcos ex dx 
o 

o (42 ) 
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we conclude that the degeneration is spl it when the corrections of 

orders higher than 1 are calculated. This property was not taken into 

account by some authQrs [22], but later on it was recognized [23,24]. 

The PT as presented in Appendix IV is useful to treat this problem and 

it shows easily that when calculating the second-order correction only 

the first excited state degeneration is broken [23,24]. 

Eq. (23) of Appendix IV allows us to deduce that a non-zero second-order 

correction requires that the following matrix elements 

<nlcos 2xlm><mlcos 2xl-n> m~n 

must be non-vanishing, and it is possible only when 

m - n and -n-m ~1 (43) 

The only states satisfying (43) are n=O and n=l, but since n=O is non

degenerate, the unique level capable to spl it in the second-order cor

rection is, as stated before, the first excited state. 

Consequently, it is supposed that the remaining levels are split for 

higher-order correction. This possibility poses a problem to employ 

PTWWF not found before. However, the solution is straightforward: since 

the even potential cos 2x demands even or odd solutions, we just have 

to combine the functions ~~ in such a manner that the resulting linear 

combinations possess a definite parity: 

(44) 

(45) 

Having solved this difficulty for the zero-order solution we can proceed 

with the procedure: 

M = 0 

o 

AS = 0 for s ~ 2n. 
o 

-1 11 
2 J exp(4 

o 
(211) -IJ 11 (2 

o 

.){ -1+ 02 + 02}d Inx 211 - ~ - ~ x 
n - n 

exp(4 inx) ~ exp(8 inx) ~ l)dx 

(46) 
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2n ) 1 ¥ n; A (n 
o 

2- 1 for n even; A2n {n) = _2- 1 for n odd. {4]} 
o 

M = 1 

2s+1 As+1 2s-1 As-1 
~ 0 +~ 0 

(48) 

Here we have several possibilities, so that it is convenient to write 

between parenthesis the state involved (for example A~{n». 
a) n I- 1 

a 1 ) s = 2n-l 

A2n - 1 (n) = 1 A2n 
1 2{2n-l) 0 

b) 

Al 
1 

2 2{4n -1) 

n = 1 

1.{1 A2 + 
3 2 0 

A O 

o 

1 
2" 

A 0) 
0 

:t 1 (4 9) 
4 (2n-l) 

(50) 

( 51) 

Al 
1 5/12 ( 1 even) 

Al 
(52) 

1 -1/12 ( 1 odd) 

These results show in a nice and simple way that the symmetric fitting 

of the zero-order functions avoids the degeneracy problems and the le

vels split occurs naturally 

E2 
1 5/24 (I e) E2 

1 
= -1/24 (I 0) (53) 

M = 2 

(4n 2 _s2)A s 2s+1 As +1 2s-1 s-1 AlAs +-- Al -2 s 1 s 1 0 
(54) 

a) n l- I 
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. E3 = 0 , n (55) 

When s=2n, the coefficient of A;n(n) is zero and it avoids its calcu

lation. 

A; (n) = _---:::--=:3_---:::--_ 
32 (n 2_1) (4n 2-1) 

b) n=1 

(56) 

The coefficient of A; makes null, so it is not possible to calculate 

such element. 

o ; o (57) 

(58) 

a) n=1 

The calculation of A;(l) implies the evaluation of E{, and in turn this 

requires to know A;. But this term cannot be determined, so that it 

brings about the interruption of the procedure for the first excited 

state. 

b) n;o!l 

2 2 3 64(n -1)(4n -1) 

2 2 3 256(n -1)(4n -1) 

b ) s=2n-l 
2 

(59) 

(60 ) 
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2n-l 2n The element A3 (n) cannot be calculated because we do not know A2 (n). 

5 n ,;. 2 (61) 
2 2 64 (4n -9)(4n -1) 

(62) 

It can be seen that as we go on towards the calculation of higher per

turbation orders, the number of terms that we are incapable to determi

ne increases and it stops the procedure. 

The only level that offers no trouble at all is the ground level, so 

that we pass to study it in a separate fashion. 

Ground State 

2s+1 As+1 + 2s-1 s-1 _ 2 
s M-l s AM- 1 (63) 

From Eq. (63) we conclude that no one coefficient of the elements A~ is 

zero (except, obviously, for s=O; but this fact does not hinder the 

procedure because we know all the AM values). 

The results are: 

M = 1 

Al 
1 = 1/2 E2 

0 
-1/4 (64) 

M = 2 

A2 = 3/32 E3 0 (65) 2 0 

M = 3 

Al = 7/64 E4 7/256 A3 -5/576 (66) 
3 0 3 

M = 4 

E5 = 0 A2 -272/9216 A4 -35/393216 (67) 
0 4 4 
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A~ = -696/18432 ; E: = -696/110592 (68) 

The combination of these results enables us to obtain the energy expre~ 

sions for the different levels: 

E 
1 2 7 4 696 6 

- - 1j a + ill a 
110592 

a 
0 

(69) 

El 2 + 5 2 
(even) - 211 a 

(70) 

E2 2 - 1 2 (odd) - 24 a 

2 
2 (20n 2 

+71a 
4 

E 2n a 
nil - + 2 + 2 2 3 n 4(4n - 1 ) 256(n -1)(4n -1) 

(71 ) 

Although the method does not include the explicit calculation of the 

eigenstates, Eq. (30) permits us to express the probabil ity density 

p(x) = 11jJ(x) 12 expanded in a Fourier power series 

p(x) = n- 1 + 2n- 1 I AS cos 2sx = 11- 1 + 2n- 1 

s=l 

\' (\' S ) t L L At cos 2sx a 
t=O s=l 

Eq. (72) yields the following results for the different states: 

( -1 -1 3 2 3 -1 {7 
Po x) ~ n - an cos 2x + 16n a cos 4x + a 11 32 cos 2x -

5 } 4 -1 272 35 } 
- 288 cos 6x -a n {4608 cos 4x + 196608 cos 8x 

p 1 (x) 
-1 -1 

cos 4x + 
-1 5 12 -1 6x} (even) - 11 + n 2an {12 cos 2x - cos 

Pl (x) 
-1 -1 -1 1 12 -1 cos 6x} (odd) - n - 11 cos 4x + 2an {- 12 cos 2x 

P (x) 
n 

-1 -1 2n -1 1 2n-l 
- n + 211 Ao (n)cos 4nx + 2an {A1 (n)cos 2x + Al cos (4n-2)x + 

2n+l } Al cos (4n+2)x 

(72) 

(74 ) 

(75) 

In order to know the degree of accuracy of the expressions (69)-(71), 
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we compare in Table lour present results with the exact values given 

in Ref. [25] for the quantity 

(76 ) 

In 1) and 2) we compare bo and b 3 . The data reveal that the accuracy of 

the perturbation results increases when a decreases and n increases. 

This fact is entirely sound because under such conditions the solutions 

resemble to those of the free rotator model (a ~ 0). 

Since formula (63) is easily programmed for a computer calculation, the 

b computation (a=l, S=4) for 10,20,30,40 and 50 perturbative terms 
o 

is reported here (see 3) in Table I). The computer program for an HP 

1000 minicomputer is given (Program VII, Appendix XI) and the results 

are exact up to the seventh decimal place. 

The method may be appl ied for any periodic potential if an enough num

ber of terms in the Fourier series are considered. This procedure could 

be useful to calculate torsional energies in polyatomic molecules, and 

in a general case, for any hindered rotator. Notwithstanding this, one 

has to take into account that only the ground state energy can be deter 

mined up to any desired degree of accuracy. 

When the a-value is large enough, the rotation turns to be a vibration 

[21] hence it is also possible to use the method, but as presented in 

section 29, so that it is only necessary to expand cos 2x in a power 

series [18]. 

b) As mentioned earlier, PH/WF is applicable to the electron within a 

crystal lattice model, when the potential is periodic. 

In order to perform the proper comparison with wei I-known solutions, 

we introduce here in a brief way one of the Slater's results [26]. 

Let us consider a cubic lattice with period L, and let {e 1 ,e 2 ,e 3 } be an 

orthogonal basis for R3 , whose vectors are along the edge of a cube in 

the reticule. Then (see Appendix VIII) 

~ 

a. 
I 

b. 
I 

-1 
L e. 

I 
i =1 ,2,3 

The expansion of the potential as a Fourier series 



174 

for the first terms 

- 1 - 1 - 2V 1{cos 2rrL x + cos 2rrL y + cos 
-1 

2rrL z} 

(78) 

where Vo = Vooo; -V 1 = V±100 = VO±10 = VOO±l' enables us to decouple 
the 5chrodinger equation in three 10 equations 

E1jJ(a); a = x,y,z (80) 

We choose arbitrarily Vo=6V 1 (see Ref. [26]), so that each 1D potential 

transforms into 

(81 ) 

The introduction of the new variable w=rrxL- 1 and the definition of 

a = E = (82) 

reduce the problem to solve the Mathieu equation [21]. We hade discus

sed before this equation, but now we are obliged to consider all the 

solutions [21,27,29] 

(83) 

51 ate r [ 26] use d the f 0 1 1 ow i n 9 de fin i t i on s 

-1! - 1 
e = (2m V 1 ) L E h ; 5 

2 - 2 1 

32mL V1h ; a = e5 2 - 5/2 (84) 

instead of (82). Then, the 5chrodinger equation is 

(85) 

(86) 

The equal ity 

( 87) 

tell s us that the HO 



II.) = exp(i(k'-k)x)f (x); f (x) 
s s 

II.) = ex p ( i (k' - k) x) f (x) 0 s 
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exp(2isx) 

allow the fulfillment of the HR [29] 

(88) 

Obviously, the diagonal case permits us to use the previous HO so that 

Eq. (86) is valid, but the zero order functions are different 

(90) 

The substitution Ek in (40) gives the following perturbation corrections 

A~(k) 3 

16 (k 2-4) (k 2-1) 3 

5 

(91) 

(92) 

(93) 

Then, with the help of these quantities we can calculate the energy 

corrected up to the fourth order: 

(94) 

The substitutions a k 2E k ; a = s/4 lead to the Slater's results [26] 

(5k2+7> s4 

The denominators in both expressions are null when k reaches some of 

the Brillouin zones (k=1,2, ••• ) and in such cases the perturbative 

calculation is no longer possible. 

Recently, Wigneron and Lambin [30] and Killingbeck [31] performed the 

calculation of the 10 energy bands. They chose the Mathieu equation 



176 

2 -0 .,. + 2l}Cos 2x (96) 

In Table II we compare the ground state energy (k=O) calculated via 

the expression 

N N M 
2 E ( .... =1) = L 2E (a=l) (97) 

o M=O 0 

with the results reported in Refs. [30,31]. It can be seen that the 

present results are more exact than the other ones. The program is the 

same as that used in a). 

The method given above seems to be useful to calculate up to a great 

degree of exactness the energies Ek when the wave vector k is far 

apart from the Brillouin's zones. Although the procedure has the same 

I imitations as the PTWWF it is easier to programme for a computer 

machine. 

NUMERICAL RESULTS 

TABLE I. Autovalues for Mathieu's equation 

1 ) 
S 0.2 1.0 2.0 

b a 0.09875 0.46896 0.87822 
°b 0.09875 0.46896 0.87823 b 
0 

2) S 0.5 2.0 
b a 36.25022 37.00357 

3 b 
36.25022 37.00357 b3 

N 10 

b c 1.5457399 
o 

20 30 

1.5448553 1.5448615 

40 

1.5448614 

a: Eqs. (69) and (]1) 

b: Ref. [25] 

c: calculated by means of the computer machine 

4.0 

1.54210 

1.54486 

3.0 

51.81704 

51.82897 

50 

1.5448614 



177 

TABLE II. Ground state of an electron subjected to a periodical poten

tial V(x) = cos 2x 

N 2EN (1 ) N EN a 
N EN b 

0 0 0 
.-.::.-~=........=...::;:~-

10 -0.45426014 50 -0.4556 25 -0.455145 

20 -0.45514472 100 -0.45527 50 -0.455139 

30 -0.45513854 300 -0.455153 -0.455139 

40 -0.45513860 exact -0.455139 

50 -0.45513860 

a: Ref. [30 ] 

b: Ref. [31 ] 
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