
Partition function based analysis of cosmic microwave background maps

J. M. Diego,1;2 E. MartõÂnez-GonzaÂlez,1 J. L. Sanz,1 Silvia Mollerach3;4 and

Vicent J. MartõÂnez3

1Instituto de FõÂsica de Cantabria, Consejo Superior de Investigaciones CientõÂ®cas Universidad de Cantabria, Santander, Spain
2Departamento de FõÂsica Moderna, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
3Departamento de AstronomõÂa y AstrofõÂsica, Universitat de ValeÁncia, 46100 Burjassot, Valencia, Spain
4Departamento de FõÂsica, Universidad Nacional de La Plata, c.c. 67, 1900 La Plata, Argentina

Accepted 1999 February 4. Received 1999 February 3; in original form 1998 October 23

A B S T R A C T

We present an alternative method to analyse cosmic microwave background (CMB) maps. We

base our analysis on the study of the partition function. This function is used to examine the

CMB maps, making use of the different information embedded at different scales and

moments.

Using the partition function in a likelihood analysis in two dimensions (QrmsÿPS,n), we ®nd

the best-®tting model to the best data available at present (the COBE±DMR 4 years data set).

By means of this analysis we ®nd a maximum in the likelihood function for n � 1:8�0:35
ÿ0:65 and

QrmsÿPS � 10�3
ÿ2:5 mK (95 per cent con®dence level) in agreement with the results of other

similar analyses [Smoot et al. (1 yr), Bennet et al. (4 yr)].

Also making use of the partition function we perform a multifractal analysis and study the

possible fractal nature of the CMB sky. We ®nd that the measure used in the analysis is not a

fractal. Finally, we use the partition function for testing the statistical distribution of the

COBE±DMR data set. We conclude that no evidence of non-Gaussianity can be found by

means of this method.

Key words: methods: data analysis ± cosmic microwave background.

1 I N T R O D U C T I O N

In a few years the forthcoming CMB data sets from the MAP

(NASA) and PLANCK (ESA) missions will offer us a much better

image of the young Universe than ever before. The CMB represents

a view of the Universe when it was about 0.002 per cent of its

present age. CMB anisotropies provide a link between theoretical

predictions and observational data. Undoubtedly these data will

constrain more accurately the fundamental cosmological para-

meters. In recent years several groups have been very active in

the study of the CMB anisotropies. Many statistical methods have

been adapted to the analysis of the future CMB maps, and others are

being developed.

There are many methods that can give relatively accurate values

for the parameters of the cosmological models. For example, the

power spectrum is considered to be the best discriminator between

different models (Bond, Efstathiou & Tegmark 1997; Hinshaw et al.

1996a; Wright et al. 1996; Tegmark 1996). Related through a

Legendre expansion to the power spectrum, the two-point correla-

tion function is also a useful discriminator (CayoÂn et al 1996;

Hinshaw et al 1996b). These analyses, based on the power spec-

trum, are considered as classical but there are many other methods

that do not make use of the power spectrum. The quality of the

CMB maps demands for other statistics to supplement the power

spectrum, looking for instance at morphological or topological

characteristics of the data. For example, the one-dimensional

analysis is a geometrical method useful for one-dimensional

scans of CMB data and is based on the study of regions above or

below a certain level (GutieÂrrez et al. 1994). The peak analyses,

similar to the previous one but for two-dimensional data, deal with

the number of spots above a given threshold (Fabbri & Torres 1995)

or with other geometrical properties like the Gaussian curvature or

excentritity of the maxima (Barreiro et al. 1997). Other approaches

are the genus (Smoot et al. 1994; Torres et al. 1995), Minkowski

functionals, which relate several geometrical aspects at the same

time (Schmalzing & GoÂrski 1997; Winitzki & Kosowsky 1997),

wavelet-based techniques (Pando, Valls-Gabaud & Fang 1998;

Hobson, Jones & Lasenby 1998) who have shown wavelets to be

very effective at detecting non-Gaussianity in the CMB, and

fractality (Pompilio et al. 1995; De Gouveia dal Pino et al. 1995;

Mollerach et al. 1998).

In this paper we present an alternative method to analyse CMB

maps based on the partition function. This function contains useful

information about the temperature anisotropies at the different scales

and moments. The method presented here is related to the one used by

Smoot et al. (1994) based on moments at different smoothing angles.

However, our method is more general and powerful because it works

with any moment, not only with positive and integer ones.
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The structure of the paper is as follows. In Section 2 we present

the partition function and discuss its main characteristics. In the

same section three different analyses based on that function are

introduced: a likelihood analysis, a multifractal analysis and a test

of Gaussianity. The likelihood analysis uses the partition function to

search for the parameters (QrmsÿPS and n) that best ®t a given data

set. The multifractal analysis searches for scaling laws and fractal

behaviour of the data. There are theoretical reasons (Sachs±Wolfe

effect) to expect scaling in the data. Here we present the generalized

fractal dimensions and the scaling exponents and also comment on

the possible multifractality of the CMB sky. In a recent paper,

Ferreira, Magueijo & GoÂrski (1998) found evidence of non-

Gaussianity in COBE±DMR data at the 99 per cent con®dence

level. We show that the partition function can be used to study this

property. There is a clear relation between the partition function and

the cumulant function, the last one having a speci®c form for a

Gaussian signal. In Section 3 we apply the results of the previous

sections to the COBE±DMR 4 years data set and we compare this

with other results. We conclude in Section 4.

2 T H E PA RT I T I O N F U N C T I O N

Let us start directly with the de®nition,

Z�q; d� �
XNboxes�d�

i�1

mi�d�
q

�1�

where Z�q; d� is the partition function. The quantity mi�d� is called

the measure, it is a function of d which is the size or scale of the

boxes used to cover the sample. The boxes are labelled by i, and

Nboxes�d� is the number of boxes (or cells) needed to cover the map

when the grid with resolution d is used. The exponent q is a

continuous real parameter that plays the role of the order of the

moment of the measure.

Let us consider a map of N pixels. Now the map is divided in

boxes of size d ´ d pixels and the measure mi�d� is computed in each

one of the resulting boxes. Changing both, q and d, one calculates

the function Z�q; d�. We would like to emphasize that the calculation

of Z�q; d� is O�N�.

One is free to make any choice of the measure m�d� provided that

several conditions are satis®ed, the most restrictive being mi�d� $ 0.

There are no general rules to decide which is the best choice. For

CMB maps, we use the most natural measure de®ned as follows:

mi�d� �
1

T�

X
pixj[boxi

Tpixj
: �2�

Thus the measure in the box i is the sum of the absolute tempera-

tures Tpix of the pixels inside the box in units of Kelvin. This is a

very natural measure comparable to the measure used in the study of

galaxies or clusters distribution (MartõÂnez et al. 1990, see Borgani

1995 for a review), where the measure is taken as the total mass (or

the total number of galaxies/clusters) contained in the box. The

constant T� is a normalization constant. The measures are inter-

preted as probabilities and they have to be normalized, i.eP
i mi � 1. So T� is simply the sum of the absolute temperatures

over all pixels and therefore is a constant for all boxes and scales.

The temperature in the pixels is almost the same everywhere

because of the homogeneity of the signal, and one expects that

different models will behave in a very similar way, making dif®cult

the task of distinguishing them. We shall show how the partition

function overcomes this problem.

Alternatively, Pompilio et al. (1995), in a multifractal analysis of

string-induced CMB anisotropies (one-dimensional scans) used as

a measure

mi�d� �
Xj�i�Md=2

j�iÿMd=2

�Dj ÿ Dj�1�
2; �3�

where Dj denotes the ¯uctuation of the temperature in pixel j with

respect to the mean. Here M is the total number of points in the data

set, and �i ÿ Md=2� and �i � Md=2� are the lower and upper edges of

the ith segment with M ´ d points, centred on the ith point of the

scan. The scale d runs between 1=M for the smallest segment and 1

for the whole segment. However, this measure is not sensitive to the

sign of the temperature ¯uctuations because of the square in its

de®nition. As a result of this fact the full information of the

¯uctuations is not conveniently considered. In addition, the general-

ization of this measure to 2D maps is not unique. Using the measure

proposed in this paper, the differences between two-temperature

data sets appear when high values of the exponent q are considered.

The method is able to differentiate between two very close models

with a q range of �ÿ2:5 ´ 105;�2:5 ´ 105
�. This range for q is in

agreement with the level of inhomogeneity. We are using absolute

temperatures, that is, we have inhomogeneities of order 10ÿ5 with

respect to the mean value and the signal is almost ¯at. One can

consider q as a powerful microscope, able to enhance the smallest

differences of two very similar maps. Furthermore, q is a selective

parameter. Choosing large values of q in the partition function,

favours contributions from cells with relatively high values of mi�d�

since m
q
i q m

q
j for mi > mj, if q q 0. Conversely, q p 0 favours the

cells with relatively low values of the measure. This is the role

played by the moments, changing q one explores the different parts

of the measure probability distribution. The other parameter, d, acts

like a ®lter. Choosing large values of d is similar to apply a large-

scale ®lter to the map. One looks at different scales when the

parameter d is changed.

To summarize, Z�q; d� contains information at different scales

and moments. The multi-scale information gives an idea of the

correlations in the map, meanwhile the moments are sensitive to

possible asymmetries in the data, as well as some deviations from

Gaussianity. In what follows we show the power of the partition

function to extract useful information from CMB data. Three

different analyses are used for this purpose.

2.1 Likelihood analysis

We shall use the partition function to encode the information of a

given map. We compute it both for the experimental data and for

simulated ones corresponding to different models. In this process

we are comparing the data and the models at several scales and

using different moments. If there are some differences at some scale

or moment, then the partition function should make it evident. The

likelihood function will have a maximum for the best-®tting model

to the data. For the CMB maps analyses, we consider models

corresponding to different values of the spectral index n and the

normalization QrmsÿPS.

The likelihood is de®ned in the usual way [assuming a Gaussian

distribution for ln Z�q; d�]. We work with Z � ln Z�q; d� instead of

Z�q; d� because of the large values of q, which make imposible to

compute directly Z�q; d�,

L�QrmsÿPS; n� �
1

�2p�n=2�detM�1=2
exp ÿ

1

2
x2

� �
; �4�
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where,

x2
�
XNp

i�1

XNp

j�1

�hZ�i�i ÿ ZD�i��M
ÿ1
ij �hZ�j�i ÿ ZD�j��; �5�

and hZ�i�i is the average of the Z for the Nea realizations of the

model at bin i. The index i de®nes pairs of values (q,d) and runs from

1 to Nq ´ Nd. That is, i runs from 1 to the total number of points Np

where Z�q; d� is de®ned.

ZD�i� is the value of Z for the experimental data at bin i. Mij is the

covariance matrix calculated with Monte Carlo realizations:

Mij �
1

Nea

XNea

k�1

�Zk�i� ÿ hZ�i�i��Zk�j� ÿ hZ�j�i�: �6�

Zk�i� denotes the value of Z at bin i for the k realization.

We tried different number of realizations Nea but the results

appear to be stable for Nea > 2000 per value of QrmsÿPS and n.

We have two possibilities to perform a best ®t to the data. The ®rst

one is to minimize x2 and take the values of QrmsÿPS and n at the

minimum of the x2 surface as the best-®tting values. The second

possibility is to work with the likelihood L looking for the

maximum. We tested the two possibilities using simulated CMB

maps derived from a given pair of parameters (QrmsÿPS, n) and then

using these maps as the data maps. Owing to cosmic variance

we obtain a set of maxima in the likelihood and of minima in the

x2. The conclusion is that the likelihood is somewhat better

than the x2 as expected. For instance with 2000 input realizations

with QrmsÿPS � 14 mK and n � 1:3 the distribution of maximun

likelihood values ®nds a maximum at QrmsÿPS � 13�3
ÿ4:25 mK and

n � 1:2�0:8
ÿ0:15 while the x2 renders a minimum in QrmsÿPS � 17�5

ÿ4 mK

and n � 1:0�0:45
ÿ0:35. The errors are marginalized at the 68 per cent

con®dence level and are similar to those obtained with the standard

methods based on the power spectrum (see for instance Wright et al.

1996).

2.2 Multifractal analysis

The notion of multifractal measure was ®rst introduced by

Mandelbrot (Mandelbrot 1974) in order to study different aspects

of the intermittency of turbulence (see also Sreenivasan & Menevau

1988). The multifractal formalism was further developed by many

other authors and today it is a standard tool applied in almost all

®elds of science: molecular physics, biology, geology, astronomy,

etc . In the context of the description of the large-scale structure of

the Universe it was ®rst introduced by Jones et al. (1988).

Some authors (Pietronero, Montuori & Sylos-Labini 1997)

suggest that the distribution of matter in the Universe is fractal

with dimensionality D2 . 2. They defend that the scaling remains

up to the larger scales probed by the currently available redshift

catalogues. Many other authors, however, have found enough

evidence of homogeneity at large scales (Davis 1997; Guzzo

1997; Scaramella et al. 1998) in the analysis of the same data

sets. One of the basic tenets of the standard cosmology is that at very

large scales the distribution of matter is homogeneous. The homo-

geneity and isotropy of the CMB support this overwhelming

evidence, indicating that there exists a continuous transition

between scale invariant clustering at small scales and homogeneity

at large scales (MartõÂnez et al. 1998; Wu, Lahav & Rees 1998).

At large angular scales, the CMB anisotropies DT=T generated

from a scale-free density perturbation power spectrum in a ¯at

Q � 1 universe can be described by a fractional Brownian

fractal (as shown in Mollerach et al. 1998). In particular, both

in¯ationary and defect models predict an approximately scale

invariant Harrison±Zel'dovich spectrum on large angular scales

showing the scaling predicted by the Sachs±Wolfe effect. At small

angular scales �0:2± # v # 1±
� the predictions of in¯ation and

topological defects models are different (Durrer et al. 1997) allow-

ing to differentiate them. It is then interesting to study the possible

fractality of the CMB anisotropies, since the seeds or ¯uctuations

that are supposed to be the precursors of the largest structures

observed today, are yet unperturbed by evolutionary phenomena.

Several works follow this kind of analysis. In the paper by De

Gouveia dal Pino et al. (1995), the authors based their analysis in the

study of the perimeter-area relation of the isocontours of tempera-

ture at a given threshold. They used the COBE±DMR 1 year data set

and only the 53-GHz channel. They found evidence for a fractal

structure in the COBE±DMR data with dimension D � 1:43

suggesting that the CMB could not be homogeneous. Apart from

the fact that these data have a low signal-to-noise ratio, this does not

necessarily mean that the CMB is not homogeneous. This dimen-

sion corresponds to the temperature isocontours, and not to the

temperature itself. Other works use multifractal analysis with CMB.

Pompilio et al. (1995) apply the multifractal analysis to simulated

string-induced CMB scans searching for the non-Gaussian

behaviour induced by cosmic strings. More recently, Mollerach et

al. (1998) have applied a fractal analysis in order to study the

roughness of the last scattering surface and used this technique to

search for the model that best ®ts the COBE±DMR 4yr data.

These authors show the capabilities of this method for the analysis

of future data, in particular for those experiments with high

signal-to-noise ratio. In this section we will use the partition

function to study the possible multifractality of the CMB sky,

using as measure the absolute temperature (see equation 2). The

multifractal analysis has been presented in several versions but the

most popular is from Frisch & Parisi (1985), Jensen et al. (1985)

and Halsey et al. (1996), where the spectrum of singularities f �a�

was introduced. We will give here a brief description of the

multifractal approach. A presentation of the method can be found

in Feder (1988), Schuster (1989), Vicsek (1989) and more

formally in Falconer (1990).

The multifractal formalism has as its starting point the partition

function. The generalized or Renyi dimensions are de®ned by the

asymptotic behaviour (as the scale d tends to zero) of the ratio

between ln Z�q; d� and ln d,

D�q� � lim
d!0

1

q ÿ 1

ln Z�q; d�

ln d
: �7�

It is easy to see that for q � 0 we obtain the box-counting or

capacity dimension,

D�0� � lim
d!0

ln Nboxes�d�

ln�1=d�
: �8�

For q � 1, D�1� is the information dimension, which is obtained

from equation (7) by applying L'HoÃpital's rule. For q � 2, D�2� is

the correlation dimension (see Schuster 1989 for other alternative

de®nitions and the relation between them). A simple fractal or

monofractal is de®ned by a constant D�q�. Dependence of D on q

de®nes a multifractal. In most of the practical applications of the

multifractal analysis, the limit in equation (7) cannot be calculated,

either because we do not have information for small distances (as it

happens in this case) or because below a minimum physical length

no scaling can exist at all (for example the size of a galaxy in the

multifractal nature of the galaxy distribution). This problem

is usually overcome by ®nding a scaling range �d1; d2� where a
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power-law can be ®tted to the behaviour of the partition function

Z�q; d� ~ dt�q� for d1 # d # d2: �9�

The scaling exponents t�q� are related with the generalized dimen-

sions by

t�q� � �q ÿ 1�D�q�: �10�

Other quantity, commonly used in the characterization of multi-

fractals, is the so-called f �a� spectrum. If for a given box (labelled

by j) the measure scales as

mj�d� , daj ; �11�

then, the exponent a, which depends in principle on the position is

known as crowding index or HoÈlder exponent. If all the points have

the same scaling, then all the exponents a will be the same and this

corresponds to a monofractal. Otherwise, if we have boxes with

different scaling, what we have is a mixture of monofractals. This

set is known as a multifractal (each monofractal formed by the

points with the same scaling and therefore with the same exponent

a). The exponent a is used to label the boxes covering the set

supporting a measure, thereby allowing a separate counting for

each value of a. In a multifractal set a can take different values

within a certain range, corresponding to the different strength of

the measure (Halsey et al. 1996). The subset formed by the boxes

with the same a will be denoted Sa. This subset has Na�d�

elements (boxes) and in general, for a multifractal set, this

number varies with the scale d as

Na�d� , dÿf �a�: �12�

Comparing this expression with the de®nition of the box-counting

dimension, equation (8), the quantity f �a� can be interpreted as the

fractal dimension of the subset Sa. However, this physical meaning

of the function f �a� is not always true (Grassberger, Badii & Politi

1988; Falconer 1990).

It can be shown (Halsey et al. 1996; MartõÂnez et al. 1990) that the

quantities q and t�q� can be related through a Legendre transforma-

tion with a and f �a�. These relations are:

a�q� �
dt�q�

dq
; �13�

f �a� � qa�q� ÿ t�q�: �14�

To illustrate this section we use the well-known multiplicative

multifractal cascade (Meakin 1987; MartõÂnez et al. 1990). The

construction of this multifractal is as follows. A square is divided

into four equal square pieces and a probability pi, �i � 1; . . . ; 4�,

such that
P4

i�1 pi � 1, is assigned to each one. Each piece is again

subdivided in four small squares, allocating again a value pi

randomly permuted to each one. The measure assigned to each

one of the new subsquares is the product of this value of pi and the

corresponding value of its parent square. The subdivision process is

continued recursively. In Fig. 1 we show a realization of this
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multifractal on a grid of 256 ´ 256 pixels for the values of the

probabilities p1 � 0:18, p2 � 0:23, p3 � 0:28 and p4 � 0:31. We

can easily calculate the theoretical values of the multifractal

functions D�q� and f �a� for this illustrative example (MartõÂnez et

al. 1990). With the multiplicative multifractal we tested the power

of the method to recover the true dimensions. In Fig. 2 we show the

generalized dimensions D�q� and the corresponding spectrum of

fractal dimensions f �a�. These curves match perfectly the theo-

retically expected ones. Note that a single monofractal should

render a straight line for D�q� and a single point for f �a�.

2.3 Testing Gaussianity

A Gaussian distribution of CMB temperature ¯uctuations is a

generic prediction of in¯ation. Forthcoming high-resolution maps

of the CMB will allow detailed tests of Gaussianity down to small

angular scales, providing a crucial test of in¯ation. Most of the

works that analyse CMB maps assume Gaussian initial ¯uctuations.

Kogut et al. (1996) ®nd that the genus, three-point correlation

function, and two-point correlation function of temperature

maxima and minima are all in good agreement with the hypothesis

that the CMB anisotropy on angular scales larger than 7± represents

a random-phase Gaussian ®eld. Other alternative methods are

proposed, like the angular-Fourier transform (Lewin, Albrecht &

Magueijo 1998), Minkowski functionals (Schmalzing & GoÂrsky

1998), correlation of excursion sets (Barreiro et al. 1998), and the

bispectrum (Heavens 1998). In an analysis of the 4-year COBE±

DMR data based on the bispectrum Ferreira et al. (1998) have found

that Gaussianity is ruled out at a con®dence level in excess of 99 per

cent near the multipole of order l � 16.

In this section we will test the Gaussianity of the CMB data using

an alternative method. The idea is to use the relation between the

partition function and the generating function, the last one de®ned

as,

Gx�t� � hetx
i: �15�

If we know that x is Gaussian distributed then, solving the integral

corresponding to the mean value of the previous de®nition, results:

GGauss
x �t� � ethxi�

t2j2
x

2 : �16�

It follows from the last expression that the cumulant function F is

F�t� � ln G�t� � thxi �
t2j2

x

2
: �17�

Finally, the function

H�t� � F�t� ÿ thxi ÿ
t2j2

x

2
�18�

should be zero for all t for a Gaussian ®eld.

Let us consider the de®nition of Z�q; d�. If the measure is de®ned

as

m�
i �d� � emi�d�; �19�

with mi�d� the same as in Section 2. Then the partition function is

Z�q; d� �
XNboxes�d�

i�1

eqmi�d�; �20�

or equivalently,

Z�q; d� � Nboxes�d�he
qm
i � Nboxes�d�Gm�q�: �21�

This relation between Z�q; d� and Gm�q� allows us to construct the

function H�q� which, for a Gaussian measure m, should be zero for

all q at each scale d. This is a simple way to ®nd non-Gaussian

signals. The function H�q� represents the contribution of all the

moments larger than 2. This contribution should be zero only for a

Gaussian ®eld. A plot of this function indicates directly the

deviations from Gaussianity.

3 R E S U LT S : A P P L I C AT I O N T O C O B E ± D M R

DATA

As a practical use of the methods presented we will apply them to

the 4-year COBE±DMR data.

3.1 Description of the data

We use the COBE±DMR 4-year 53 � 90 GHz maps combination,

which is the choice with the largest signal-to-noise ratio (Bennet et

al. 1996). These data are in the `Quad-Cube' pixelization with a

pixel size of , 28: 6 and the resulting number of pixels is 6144. The

data in each pixel represents DT in units of mK. The dipole

has already been subtracted. Assigned to each pixel there is an
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additional information, the number of times that this part of the sky

was explored by the antenna. This information is relevant for the

estimation of the instrumental noise.

Part of the data is contaminated by Galactic emission. There is a

strip between , 6 20± (in galactic coordinates) in which the

Galactic emission dominates the CMB signal. This strip should

not be included in the analysis in order to avoid spurious signals. In

addition to this strip there are two patches in the sky (one near Orion

and the other one in Ophiucus) that show a strong Galactic emission

at mm wavelengths (CayoÂn & Smoot 1995), and should therefore

also be removed from the analysis. When this mask is applied, the

number of surviving pixels reduces to 3881 from the original 6144.

3.2 Likelihood analysis

In order to determine which are the values of the quadrupole

normalization QrmsÿPS and the spectral index n that best ®t the

COBE data, we perform Monte Carlo simulations of the CMB maps

for a scale-free model with a power spectrum given by P�k� ~ kn,

which has variance in the alm multipoles given by (Bond &

Efstathiou 1987):

Cl �
4p

5
Q2

rmsÿPS

G�l � �n ÿ 1�=2�G��9 ÿ n�=2�

G�l � �5 ÿ n�=2�G��3 � n�=2�
: �22�

We consider different values for QrmsÿPS and the n ranging from

QrmsÿPS � 4 mK to QrmsÿPS � 35 mK and from n � 0:3 to 2.3. We

add instrumental noise based on the number of data collected by

COBE±DMR at each pixel. Furthermore, there is another effect that

must be taken into account, the cosmic variance. To treat conve-

niently this effect we perform a large number of simulations

($2000 ) for each pair of values (QrmsÿPS, n) and then we compare

the average Z � ln Z�q; d� values of these simulations with the Z
corresponding to the COBE±DMR data (the used values for q and d

were q � ÿ120 000;ÿ40 000; 72 000; 152 000 and d � 3; 4; 8; 16

pixel). The choice for q and d values is based on the test described

in the last part of Section 2.1. The size of the Z�q; d� grid, Nq ´ Nd is

not critical and what is now relevant is the q values considered. In

particular, high-order moments (i.e. large q) are very sensitive to the

tail of the distribution and therefore the results obtained with those

high values on the parameter estimates are not stable. The combi-

nation of q and d values, was one of the combinations for which the

recovered parameters Qrms and n were closer to the input parameters

and with smaller error bars. As mentioned in Section 2, q should

take values of order 105 in order to distinguish between models with

temperature ¯uctuations of order 10ÿ5. The values of q where

chosen to be asymmetric in an attempt to consider possible

asymmetries that could exist between the negative and positive

temperature ¯uctuations. The range for d runs from 2 pixels

(approximately the antenna size) to 24 pixels which is the largest

box size required to have at least 8 boxes. Using a maximum

likelihood method one can determine which are the best-®tting

parameter values of the simulations (signal + noise) to the COBE±

DMR data.

In Fig. 3 we show a contour plot of the likelihood obtained for the

COBE±DMR data. The maximum is at QrmsÿPS � 10�3
ÿ2:5 mK and

n � 1:8�0:35
ÿ0:65 (95 per cent marginalized errors) and the contour level

at 68 per cent is compatible with the assumed standard value

QrmsÿPS � 18 6 3 mK for the Einstein±de Sitter model with a

scale invariant primordial spectrum of density perturbations,

n � 1. The various analysis of the 4-year COBE data when

combined give as the best-®tting parameters

QrmsÿPS � 15:3�3:8
ÿ2:8 mK and n � 1:2 6 0:3. The result presented

here predicts larger values of n and smaller values of QrmsÿPS

than the result indicated above (although always inside the antic-

orrelation law for the two parameters). This result is in agreement

with the one found by Smoot et al. (1994), using a similar approach.

Smoot et al. (1994) found for the best ®t, QrmsÿPS � 13:2 6 2:5 mK

and n � 1:7�0:3
ÿ0:6. A possible explanation for the discrepancy

between our results and those obtained with the standard methods

could be a bias present in the likelihood estimator. In the tests of our

algorithm we found a systematic bias in the marginalized likelihood

functions both for Qrms and n with typical values of dn , �0:2 and
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Figure 3. Contour con®dence levels (68, 95 and 99 per cent) for the likelihood distribution. The maximum is at Qrms � 10 mK and n � 1:8.
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dQrms , ÿ2 which could explain part of our discrepancy. The

reason for this bias can be the difference between the assumed

Gaussian form for the likelihood of the partition function in

equation (4) and the real non-Gaussian distribution. The probability

distribution of the Z at each �q; d� obtained from simulations is

similar to a Gaussian probability distribution but with a longer tail

for high values. We also think that maybe the noise can contribute to

that bias. The high-order moments (large q) of the partition function

are very sensitive to the tails of the distribution of the temperature

¯uctuations. A low signal-to-noise ratio (as is the case for the

COBE±DMR data) could raise the parameter n that best ®t the

COBE±DMR data. We did some tests in this direction and appar-

ently the noise can increase the value of n (and consequently can

produce a lower value of Qrms).

3.3 Multifractal analysis

We apply the formalism of Section 2.2 to the simulations and to the

COBE±DMR data. In Fig. 4 we plot D�q� and f �a� for the COBE±

DMR and for one model (QrmsÿPS � 15 mK, n � 1:2) inside the

QrmsÿPS ±n degeneration with its error bars. The D�q� curve has been

obtained by ®tting a power law to the partition function in the range

of scales 2 # d # 24 pixels, following equations (9) and (10) . Note

that the value of D�0� is not 2 as it would be expected for a

continuous bidimensional surface. The mask slightly lowers this

value.

By means of a Legendre transform (equations 13 and 14) we have

obtained the corresponding f �a� curve. A narrow f �a� curve means

a very homogeneous data. If the measure associated to the data is

multifractal in nature, these curves should be the same for all the

scale ranges. We have found that this is not the case for the COBE±

DMR data. The multifractal curves corresponding to different scale

ranges do not match each other. CMB simulations without noise

show the same behaviour. The reason for that lies in the fact that a

scaling like that in equation (9) is not present. This can be illustrated

by looking at the behaviour of the local slopes of ln Z�q; d� versus

ln d. In Fig. 5 we show the change in the reduced slopes

(t�q; d�=�q ÿ 1�) as a function of the scale for a ®xed value of the

parameter q for the COBE±DMR data. For this plot the analysis was

performed only in the top and bottom faces of the Quad-Cube which

are not affected by the mask. For a multifractal measure these

curves should be horizontal straight lines. As we can appreciate in

the left panel, this is not the case for the COBE±DMR data. The

result for a simulation without noise is shown in the right panel. In

both cases, we do not see a neat plateau for large absolute values of

q. However it is not clear whether the ¯uctuations of the local

reduced slopes are just due to numerical noise related to the

resolution of the maps (i.e. the limited number of pixels) or, on

the contrary, these ¯uctuations are intrinsic to the measure and,

therefore, prove that the measure is not a multifractal. Although our

result neither support nor contradict this interpretation, it seems

more natural to expect fractal behaviour in the case that one is using
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Figure 4. D�q� (bottom) and f �a� (top) curves for COBE±DMR (dotted line) and for one model with Qrms � 15 mK and n � 1:2.
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Figure 5. Reduced slopes computed between two consecutive scales for the COBE±DMR data (left) and for simulated data (without noise, right). Each curve

corresponds to a ®xed value of q betwen ÿ106 and 106.

Figure 6. H�q� curves for eight different scales. From left to right and from top to bottom. 2 ´ 2 pixels to 24 ´ 24 pixels. The x-axis represents the values of q.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/306/2/427/1002206 by guest on 23 N
ovem

ber 2021



the absolute value of the relative temperature ¯uctuations DT =T as

the measure (Mollerach et al. 1998). As shown in that paper, DT=T

¯uctuations generated by the Sachs±Wolfe effect behave like a

fractional brownian fractal.

3.4 Gaussianity

To test whether the COBE±DMR data are Gaussian distributed, we

compare the H�q� curve for COBE±DMR with those curves arising

from the best-®tting CMB Gaussian models obtained in Section 3.2.

In Fig. 6 we show the plots of H�q� for different grid scales. For each

realization, the measure is rescaled in order to have dispersion equal

to one. This allows to have a small and equal range of q values for all

scales. We would like to point out the deviation of the mean value

from zero when q moves away from zero. This is due to the fact that

we have a ®nite number of pixels (i.e. a cosmic variance effect). The

predicted behaviour of equation (15) is only true when we compute

the mean over in®nite values (or equivalently, solve the integral

between ÿ¥ and �¥). Otherwise H�q� is not zero at large values

(positive and negative) of q. Fig. 7 shows the likelihood distribution

of the 1000 Gaussian realizations (with noise) and the dotted line

corresponds to the COBE value. It is clear that the COBE±DMR is

perfectly compatible with the Gaussian hypothesis.

4 D I S C U S S I O N A N D C O N C L U S I O N S

We have shown in this work the power of the partition function to

describe CMB maps taking into account the information given at

different scales and by different moments. We have also shown the

¯exibility of such a function to be used in various analyses: standard

likelihood, multifractal and Gaussian. We applied these analyses to

the 4-year COBE±DMR data.

Based on the likelihood function we ®nd the best-®tting para-

meters QrmsÿPS � 10�3
ÿ2:5 mK and n � 1:8�0:35

ÿ0:65. It is remarkable the

agreement between our work and the one by Smoot et al. (1994).

The COBE±DMR data (and the simulations of scale-invariant

power spectrum) do not show a fractal behaviour, regarding the

absolute temperature map. On the other hand, recent galaxy surveys

covering large scales (> 100 Mpc) do not show either a fractal

behaviour (Wu et al. 1998). Both results allow to conclude that

neither the mass distribution (assuming a linear bias) nor the

intensity of the CMB show a fractal behaviour on large scales.

The partition function analysis performed shows no evidence for

non-Gaussianity in the COBE±DMR data. This is in agreement

with all the previous analyses of the COBE±DMR data except the

one by Ferreira et al. (1998). Simulations done at higher resolution

have shown the power of this method to discriminate between
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Figure 7. Likelihood distribution for 1000 simulations for the best-®tting model in Section 3.2. The value corresponding to the COBE±DMR data is shown as a

dotted line and is in clear agreement with the Gaussian hypothesis.
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Gaussian and non-Gaussian signals. That analysis will be presented

in a future paper.

Finally, we would like to remark that the likelihood analysis

based on the partition function is computationally intensive.

Actually a non-optimized code applied to the COBE±DMR data

takes a few days (CPU time) to run in an Alpha server 2100 5/250.

Moreover, the computation of the partition function increases with

the number of pixels N as O�N�. This rate should be compared with

the most widely applied method used to compress data and to

estimate cosmological parameters, the power spectrum of the

¯uctuations. The direct computation of the power spectrum goes

like O�N log N� (this behaviour is a result of the FFT). Standard

brute-force approaches used to estimate the power spectrum go like

O�N3
�. The reason for this O�N3

� rate is the matrix inversion and

determinant calculation whose dimension grows as the number of

pixels. On the contrary, in the partition function likelihood analysis

the number of bins (or matrix dimension) of the likelihood is

Nq ´ Nd, being this number usually well below one thousand

(even for high-resolution maps). The number of moments q is an

arbitrary parameter independent of N and the number of scales d

increases as #O�N1=2
�. The process of inverting the correlation

matrix is clearly reduced in the case of the partition function. This

point makes the method useful for forthcoming large data-sets. One

can therefore consider the partition function as an alternative way to

compress large data sets. Furthermore, for the general situation of

non-Gaussian data sets, the partition function is clearly preferable

to the power spectrum since the former contains information on

several moments of the data.
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