

Received April 2022; Accepted Jun 2022; Published July 2022

Relationship between mature software engineering

practices and agility practices

Alvaro Ruiz de Mendarozqueta1, Fabio O. Bustos2 and Pedro E. Colla3

1 aruizdemendarozqueta@gmail.com,

2fabio.oscar.bustos@gmail.com,
3colla.pedro@uader.edu.ar

Universidad Tecnológica Nacional – Regional Córdoba1

Córdoba – Córdoba - Argentina

Abstract. Abstract. This paper reports on research work on Argentinean software

development organizations. The analysis provides insights into the profile of the

companies regarding the usage of agile methods and software engineering prac-

tices trends, their motivations, and drivers. The conclusions can be used to un-

derstand what drivers facilitate the understanding of bonds between both in order

to increase their competitiveness in domestic and off-shore markets.

Keywords: Agile, System Modelling, Software Engineering, Real Option

Value

 Relación entre las prácticas maduras de ingeniería de

software y las prácticas de agilidad

Resumen. Este artículo informa sobre el trabajo de investigación en organizacio-

nes argentinas de desarrollo de software. El análisis proporciona información so-

bre el perfil de las empresas con respecto al uso de métodos ágiles y las tenden-

cias de las prácticas de ingeniería de software, sus motivaciones e impulsores.

Las conclusiones se pueden utilizar para comprender qué impulsores facilitan la

comprensión de los vínculos entre ambos con el fin de aumentar su competitivi-

dad en los mercados nacionales y off-shore.

Palabras clave: Métodos ágiles, Modelado de sistemas, Ingeniería de software,

Valor de opción real

1 Work partially funded by grant PID SIUTNCO0004902

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 79

mailto:fabio.oscar.bustos@gmail.com

Background

In order to achieve their business goals, the organizations need to implement tech-

nologically advanced software-based platforms; often needing to, partially or totally,

develop them to ensure they meet the business requirements as set by the competitive

landscape.

Software development is, to some extent, a low-maturity engineering practice; at

least compared with other branches of the engineering domain. Metrics shown by the

industry, in terms of schedule compliance, cost containment, and ability to meet re-

quirements are in general terms far from what is considered acceptable in other indus-

tries (Jorgensen K. M., 2003).

Over time, good practices emerged, aiming to improve different aspects of the soft-

ware development cycle, which eventually evolved as a cohesive body of knowledge

known today as Software Engineering (Fairley & Bourque, 2014).

In order to avoid subjectivity in the measurement of the organization’s compliance
with recommended practices, different reference models such as CMMI ™ (Team,

2010), COBIT (ISACA, 2018) or even tailored versions of more generic quality frame-

works such as ISO-9000 (ISO, 2020) evolved. Such reference models and standards

were eventually used to objectively compare an organization’s capabilities, and to mit-

igate the software development risks through the deployment and systematic usage of

process practices and goals. The strategy to implement Software Engineering disci-

plines using convergence to reference models was embraced by large industry players,

eager to show up their capabilities to mitigate risks, as a competitive edge compared

with other vendors unable to show the same strength.

A rigorous deployment and institutionalization of a formal process reference model,

and the discipline and costs associated with maintaining it over time, were adopted by

a relatively small number of players willing to do the long-term commitments and in-

vestments required (M. Staples, 2007).

Other organizations, either because of lack of scale, or because software develop-

ment was not within their main domain of competencies, found it difficult to justify the

investments required to embrace a formal process quality framework as their primary

strategy to achieve their business goals. However, at the same time, these organizations

still need to develop software as a crucial component of their competitiveness, or even

their survival; but they identify the formal and rigorous adoption of Software Engineer-

ing premises as way too costly to afford; at the same time, they might be impacted by

cost, time and quality issues derived from using a less rigorous methodological ap-

proach.

Agile methodologies all of the sudden stormed into the Software Engineering land-

scape as an attractive solution for small and medium businesses, which become able to

achieve reasonable performance into grasping the value out of their software develop-

ment efforts with a relatively small investment and organizational effort to institution-

alize (Cockburn A., 2007). There is no surprise in the huge adoption rate in the industry.

Under a close study, the value proposition of the agile methodologies shows that

their main advantage is coming from introducing some formal and strict development

framework into the project execution. This factor can be further understood when it is

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 80

possible to map that, by using any popular agile methodology, such as SCRUM, most

of the requirements for an organization to demonstrate compliance with CMMI ™ level
3 can be demonstrated (McMahon, 2010). A significant number of organizations can

map the usage of agile methodologies as part of their roadmap to achieve higher levels

such as CMMI ™ Level 5 (McMahon, 2010) (Maller, C.Ochoa, & Silva, 2004). This

is confirmed by the professional experience of the authors applying agile methodolo-

gies on environments operating at SEI-CMMI Level 5 maturity level, and seeing no

contradiction whatsoever among them.

Besides the benefits from a more rigorous project execution being introduced into

the development process, the flexibility to quickly align and adapt the software devel-

opment activities to the business priorities; that seamless decision capability also yield

value to the project and can be successfully modeled using a financial instrument called

“real options” which assess the value gained by the organization by continuously decide
ways to optimize their outcomes. When this evaluation is made, a significant increment

in the project value emerges from this factor ((Beck & Boehm, Agility through Disci-

pline: a debate, 2003)) (Colla P., 2012) (Colla P. , 2016).

The additional value proposition is not coming without some problems on their own,

as a key understanding and strict adoption of the methodologies involved are still re-

quired. Different authors (Ismail, 2016) (Bhasin, 2012) (Miller, 2013) (Caballero,

Calvo-Manzano, & Feliu, 2011) discuss problems faced by agile methodologies in

terms of delays, additional costs, and product quality issues, as well as the existence of

significant product backlogs. These are, basically, the issues Software Engineering has

historically evolved to address.

In the professional experience of the authors, the association between agile method-

ologies and Software Engineering practices is often rejected by agile practitioners as

not compatible, even further, in plain contradiction. Especially when the overall per-

ception leads to the notion that most of the flexibility provided by agile methodologies

can be lost if paired with Software Engineering concepts.

The authors will address in this article the intuition that a strong, albeit sometimes

hidden, bond does exist between Software Engineering practices and agile methodolo-

gies, using SCRUM as the reference methodology for such analysis.

Agile and Software Engineering relationship at a fundamental level

The traditional approach has been that software is a tool for organizations to improve

their internal productivity through automation efforts. The current competitive land-

scape drives the need for a platform to improve or even be part of the value chain to

produce their income, and therefore being subject to continuous competitive pressure

to innovate in very short times. This is a very volatile context where the development

methodology has to support very fast development cycle times.

Ever since Ken Beck developed the ground rules of the agile methodologies, till their

current massive adoption level, the bibliography proliferated with platforms, usage

guidelines, strategies to implement, and practical examples in different industries (Rico,

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 81

2008) (Cohen, et al., 2004) (Pikkarainen & Passoja, 2005)(Pikkarainen & Mantyniemi,

2006) (Rico, s.f.) (Favaro, 2003) (Favaro, 2004).

The agile approach, which is contained as part of the Agile Manifesto (Beck, et al.,

2001) (Duncan, 2019) prioritizes individual actions and their interactions over process

and tools, leverage the software as documentation, cooperation, and close teamwork

with the customer (product owner) above negotiation and, perhaps the most significant

component, incorporate change into the methodology rather than opposing it following

a pre-defined plan.

“We are uncovering better ways of developing software by doing it and helping oth-

ers do it. Through this work we have come to value:
● Individuals and interactions over processes and tools
● Working software over comprehensive documentation
● Customer collaboration over contract negotiation
● Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left

more. "

Figure 1 Agile conceptual modeling (Morse, 2012)

Given the known problems of traditional software development such as massive de-

lays, products that did not fulfill their purpose adequately after years of development,

and cost overruns, a group of pioneers thought of a radical paradigm shift. The tradi-

tional paradigm tries to establish the requirements comprehensively at the beginning of

the project, whose duration is fixed, and then to estimate, based on the development

plan, the effort, the necessary resources, and the schedule to be fulfilled.

There are multiple examples of failure, delays, and problems in such a paradigm. In

the new paradigm (Cockburn A. , 2007), as shown in Figure 1 Agile conceptual mod-

eling , a fixed time window is established, a small team of developers is organized and

functionality is continuously evaluated, with the permanent help of the "owner" of the

requirements providing the necessary sponsorship.

 The manifesto is complemented by 12 principles that highlight some fundamental

ground rules such as customer integration in the development process, ownership by

the entire team of everything that is produced, and a sustainable pace of work.

In brief, the dominant principles are:

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 82

1. Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software.

2. Welcome changing requirements, even late in development. Agile processes har-

ness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and sup-

port they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity --the art of maximizing the amount of work not done-- is essential.

11. The best architectures, requirements, and designs emerge from self-organizing

teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.

Efforts have been made to establish a structured time retrospective on the evolution

of agile disciplines and software engineering practices (Agile Alliance, 2020), but we

have preferred a more holistic approach based on a group of relevant bibliographic ref-

erences in the judgment of the authors.

It comes as not a surprise the manifesto is solidly supported by the practices and

principles of software engineering. Albert Endres and Dieter Rombach (Endres &

Rombach, 2003) say that ‘Requirement deficiencies are the prime source of project
failures’ so interactions and customer collaboration are critical for project success. This
statement is covering principles 1 and 4.

Gerald Weinberg (Weinberg, 1992), reviewing different definitions of quality con-

clude that ‘Quality is value for some person’, covering principle 1. It is also related to
principle 4 because delivering working software soon is the way of adding value to the

customers which, far from being a surprise, is strongly supported by value management

financial principles involving time and risk as to the main contributors or detractors for

it (Brealey & Myers, 2016)

In a classic paper Davis (Davis, Bersoff, & Comer, 1988) remarks that ‘For every
application beyond the trivial, user needs are constantly evolving. Thus, the system

being constructed is always aiming at a moving target’. This statement not only sup-

ports the manifesto values but also addresses principle 2. Another source for supporting

principle 2 comes from the very CMM foundation as Watts Humphrey (Humphrey,

1989) says that trying to have stable requirements is a misconception: ‘We must start
with firm requirements’ he remarks as an usual mistake. .

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 83

Deliver software to customers as fast as possible is referenced by Alan Davis (Davis

A. , 1994); Mary and Tom Poppendieck (Poppendieck & Poppendieck, 2003) say that

‘Rapid delivery is an operational practice that provides a strong competitive advantage’
addressing principle 3.

Not fulfilling what is stated in principle 4 is mentioned by Steve McConnell

(McConnell S. , 1996) as one of the project's classic mistakes.

Robert L. Glass (Glass, 2002) collects facts and fallacies of software engineering,

one of the facts is a classic one: ‘Requirements errors are the most expensive to fix
when found during production but the cheapest to fix early in development’ that is re-
lated to principles, 1, 3 and, 4. This topic is the main theoretical foundation on why the

contention of defects needs to be performed on a given cycle avoiding them to cascade

into the following.

Principle 5 is referred to and addressed by many authors, Boehm (Boehm, Improving

Software Productivity, 1987) stated ‘Management of people. The next most significant
influence by far is that of the selection, motivation, and management of the people in-

volved in the software process’. Steve McConnell (McConnell S. , 1996) referred to the

lack of motivation as one of the project’s classic mistakes. He says ‘Undermined moti-
vation. Study after study has shown that motivation ably has a larger effect on produc-

tivity and quality than any other factor’ and refers to (Boehm, Improving Software

Productivity, 1987). Tom DeMarco and Tim Lister (DeMarco & Lister, 1987) strongly

state the importance of productive teams. Alistair Cockburn and Jim Highsmith (Cock-

burn & Highsmith, 2001) stress individual competence as a critical factor in project

success and identifies the emphasis on people skills as a key factor underlying all Agile

methodologies.

Regarding principle 6, Tom DeMarco and Tim Lister (DeMarco & Lister, 1987)

addressed different problems in order to develop productive teams including commu-

nication. Luke Hohmann devoted a full chapter (Communication) (Hohmann, 1997)

proposing a communication framework to get the best communication possible. Daniel

Coleman (Coleman, 2015) stated that ‘Interpersonal and group communication must
travel multiple dimensions and optimal performance enabling the connection between

two brains in the field of leadership goes through ways to improve emotional intelli-

gence itself’ and focuses on the way we communicate as a key issue to improve perfor-

mance.

The meaning of what is a working software is fully covered in the traditional books

of Software and Quality Engineering [(Sommerville, 2015), (Weinberg, 1992), (Fair-

ley & Bourque, 2014), (McConnell S. , 1996), (Martin R. , 2012) among others]. Tom

Gilb, (Gilb, 1988) developed an entire framework called ‘Evolutionary Delivery’ that
includes several elements of the Agile Manifesto and the Scrum Framework. Some of

the elements and definitions of the method are: ‘Early, frequent iteration’, ‘Complete
analysis, design, build and test at each step’, ‘Result orientation, not software develop-
ment process orientation’, ‘On not knowing, and keeping it small and simple’, covering
principles 3, 7, 8 and 10.

In our understanding, the lack of quality and poor design leads to rework and thus a

high Cost of Poor Quality (CoPQ), which disables the possibility to deliver value in a

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 84

fast manner and introduces wasted effort, is, therefore, one of the most counterproduc-

tive factors for team motivation (Ruiz de Mendarozqueta, Bustos, & Colla, 2019). Tra-

ditional books of Software and Quality Engineering (Sommerville, 2015), (Weinberg,

1992), (Fairley & Bourque, 2014), (McConnell S. , 1996), (Martin R. , 2012) among

others, covered the topic and it is straightforward to see how the poor quality erodes the

fast delivery of value.

‘Requirements gold-plating and ‘Developers gold-plating’, are mentioned by Steve

MacConnell (McConnell S. , 1996) as project classic mistakes; Mary and Tom Pop-

pendieck (Poppendieck & Poppendieck, 2003) stated ‘Eliminate Waste’ as one of the
fundamental principles explained as avoiding rework and not developing unnecessary

functionality. All these references pointed out simplicity, the main component of prin-

ciple 10.

Principle 11 is anchored to the definition of a system as a ‘set of elements, dynami-
cally related, that interact by exchanging information and energy to obtain a result

providing information and energy’ (Meadows, 2008); it is easy to apply the definition

to the software. Systems theory states that the behavior of the system is determined by

its structure (Meadows, 2008). The structure of the system is determined by the archi-

tecture and design (Sommerville, 2015), (Endres & Rombach, 2003), (Fairley & Bour-

que, 2014), (McConnell S. , Code Complete, 1993). The architecture is assumed to

emerge. as the result of refining an initial proposal, or intentional result, with the feed-

back of the developers in each iteration, verifying the quality of the design and code.

The Scrum “embrace, inspect and adapt” (Institute) philosophy implements principle

12. This principle addresses the very well-known software engineering principle for

continuous improvement (Humphrey, 1989), (Sommerville, 2015).

Relationship between Agility, Scrum and Software Engineering

In the previous section, we made a strong case that all basic agile premises are well

established Software Engineering practices, which would lead to a reasonable conclu-

sion that agile methodologies are a well-integrated corpus of practices that represents

just another way to address requirements under the umbrella of the Software Engineer-

ing domain.

To further support our views, the authors selected a small sample of bibliography on

agility, without any attempt to avoid any skewness but aiming to have a fair coverage

of the bibliography and by no means exhaustive but often cited on academic efforts and

as part of the daily professional exercise, and reviewing that small corpus sample with

a focus on frameworks such as Scrum and XP. An immediate observation shows there

is a noticeable scarcity of direct references for implementing software engineering prac-

tices. In the Table 1, we summarize a sample of a group of references and their rela-

tionship to software engineering practices and vice-versa.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 85

Table 1 Software Engineering Bibliographical cross-reference

Software engineering bibliography, on the other hand, often considers agile method-

ologies as part of their body of knowledge. A lack of symmetry is observed as most of

the available bibliography for agile methodologies avoid to reference their recommen-

dation and practices as the actual implementation of different disciplines proposed by

Software Engineering sources.

It is worth mentioning that, at the dawn of the agile methodologies (Cohen, Lindvall,

& Costa, 2004), they emerged to overcome the drawbacks presented by the waterfall

style lifecycle. From that perspective, agile practitioners saw little value in adopting

well-defined processes which they perceived as rigid and value detractors while, at the

same time, high maturity organizations working in compliance with SEI-CMMI™
based reference models identified that agile methods addressed most of the intermediate

maturity requirements (Paulk, 2002). This trend seems to have been widespread as agile

methodologies became mainstream since their inception.

A systematic bibliography review, presented in Table 2, shows that over a sample

deemed relevant of 20 papers on agile topics; only 6 papers (30%) contain explicit ref-

erences to Software Engineering principles and/or practices, 4 papers (20%) contain

indirect references, and 10 papers (50%) contain no reference at all. This is taken as an

Reference References between agile and software

engineering
(Shore & Warden, S., 2008) Brief reference to software design

(Cohn, Succeding with Agile, 2010) Brief reference to software design and code refactor

(Beck & Boehm, Agility through Discipline: a
debate, 2003)

Referencing size of projects using XP

(Lan & Balasubramaniam, 2007) No references

(SCRUMstudy, 2013) No references

(Deemer, Benefield, Larman, & Vodde, 2012) No references

(Schwaber & Sutherland, The Scrum Guide,
2017)

No references

(Boehm & Turner, Management Challenges to

Implementing Agile Processes in Traditional
Development Organizations, 2005)

Minor references

(Martin R. , 2012) Code design and code quality in detail.

No reference to agile methods nor Scrum.

(Sommerville, 2015) Scrum and XP introduction but there is no relation
with the other topics of software engineering

(O’Regan, 2017) No references

(Schwaber, A CIO’s Playbook for Adopting the
Scrum Method of Achieving Software Agility,
2005)

It does not prescribe software engineering practices.

Recommend to keep it simple and to let the team de-
cides

(Duncan, 2019) Minor references to design

(Poppendieck & Poppendieck, 2003) Some general references to design approaches

(Cohn, Essential Scrum, 2012) Minor references

(McConnell S. , More Effective Agile: A
Roadmap for Software Leaders, 2019)

Minor references to code quality

(Martin R. , 2019) A chapter with coding practices

(Stellman, 2014) No references

(Fairley & Bourque, 2014) Reference to Agile as a Method in Software Engi-

neering Models and Methods chapter

(Johnson & Sims, 2012) No references

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 86

indicator that agile sources do a weak bridge between the concepts they describe which

present correspondences with Software Engineering methods and principles.

Table 2: Agile Methodologies Papers Bibliographical cross-reference

The very same factors that erode into the value on typical non-agile software devel-

opment projects are observed on projects using agile methodologies; it is not difficult

to observe that these factors are often not addressed as systemic problems, approach

which hinders the capability to address them. Factors such as defect fallback from one

cycle (sprint) to the next, rework effort, the increased effort devoted to addressing the

technical debt on the product backlog and the need to rigorously validate & verify the

developed components. are observed with enough frequency to be self-evident. In this

sense, statistics from Chaos Standish Group (Liebert, 2019), shows that “agile project
success rates are two times higher than success rates of waterfall projects. However, it

also states that over 50% of evaluated projects have failed to meet all requirements of

project constraints — time, budget and scope”. Those figures reveal a poor performance
record, even for the most successful software development methodology applied in the

industry today.

Systemic modeling of the agile methodologies value

In his landmark book (Weinberg, 1992), Gerald Weinberg states that a systemic view

and system modeling for software management and steering patterns is needed for cop-

ing with the traditional software development problems.

A previously developed line of work exploring the value of SCRUM (Colla P. ,

2012) (Colla P. , 2016) followed by the exploration of typical software development

issues and how they are expressed on typical agile projects (Ruiz de Mendarozqueta,

Reference Agile and Software Engineering
(Bustard, Wilikie, & Greer, 2013) (Hoda, Salleh,
& Grundy, 2018) (Cohen, Lindvall, & Costa,

2004) (Kuhrmann, et al., 2019)

(Ebert & Paasivaara, 2017) (Harvie & Agah,
2016)

Papers on Agile methodologies that contain explicit
references to Software Engineering. In general, the ag-

ile process which considers SW Engineering practices

are different SCRUM flavors, particularly when done
at-scale. The emergence of hybrid development flavors

(water-scrum-fall) is also observed.

(Vijayasarathy & Butler, 2016) (Mohan, Ramesh,
& Sugumaran, 2010)

(Falessi, et al., 2010)

 (Karlstrom, 2005)

Papers on Agile methodologies that contain indirect
references to Software Engineering. In general the ref-

erences appear in connection with SW architecture or

overarching product management practices.

(Mantovani Fontana, Reinehr, & Malucelli,
2015)

 (Vallon, Strobl, Bernhart, Prikladnicki, &

Grechenig, 2016) (Dingsøyr, Fægri, Dybå,
Haugset, & Lindsjørn, 2016)

 (Chora, et al., 2020)

 (Bick, Spohrer, Hoda, Scheerer, & Heinzl, 2018)
 (Jorgensen M. , 2019)

 (Kersten, 2018)

 (Cockburn & Highsmith, 2001) (Akbar, 2019)
 (Telemaco, Oliveira, Alencar, & Cowan, 2020)

Papers on Agile methodologies that do not contain ref-
erences to Software Engineering. It is observed that

some of these papers discuss well-known development

issues (e.g. coordination among teams, need of a ma-
turity model for agile, requirements management, need

of metrics to evaluate performance, etc.), without re-

verting to the well-established practice base provided
by the SW Engineering to address them.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 87

Bustos, & Colla, 2019) show that without great care to manage the main parameters of

the software development cycle, an agile approach provides some extra protection of

the project ultimate value, but at some point might end up eroding on that value. Soft-

ware processes do not usually introduce restrictions to apply any given methodology of

choice, only to deploy the controls to ensure no inviolate is overridden.

Simulation means seems to be the handiest tool to evaluate the relationship between

depending variables of the system with their independent counterparts, as well as to

explore the potential relationship and the degree of independence among variables. Any

evaluation made based on simulation requires a fair estimation of the values assigned

to different parameters and their assumed distributions; not much more than an advance

to stronger quantitative methods based on field information.

The adoption of mature and well-proven as effective Software Engineering practices

preserves the value of the project, by minimizing deviation from the business scenarios

in terms of cost and calendar. This aims to achieve the overall balance of income and

expenditure as well as optimizing other organizational and intangible factors typically

factored into the opportunity cost used to discount cash flows, in this way the value can

be measured by using the Net Present Value (NPV) of the project flows. The analysis

tries to grasp the value for the organization from an investment standpoint, as it consid-

ers the cash flow and the risk to materialize it from a given a-priori point of view.

Simultaneously, the possibility to prioritize requirements over time, in a way that

enhances almost continuously the value proposition of the organization, configures op-

tions, which can be valued using the Real Option Valuation methods (Brealey & Myers,

2016) (Mun, 2002).

The overall relationship among systemic variables can be expressed as a cause-effect

model (Ruiz de Mendarozqueta, Bustos, & Colla, 2019) where the two main contribu-

tors to the overall value, the Net Present Value (NPV) and the Option Price Value

(OPV) are established as dependent variables of several independent variables defined

by the industry and organizational context as well as the decisions taken and results

obtained during the project execution, being the sum of both values named the extended

net present value of the project (eNPV) The resulting cause-effect model used represent

independent variables defined by the organization outside the scope to manage from

within the project, whilst other organizational factors are represented by some assumed

distribution, and, finally, with intermediate variables with some systemic relation with

the rest to express, understand, simulate, and extract conclusions from the systemic

overall behavior into the dependent variables of interest.

From that approach, the main interest is to evaluate mainly factors that erode the

total value of the project, which, in turn, is represented by the net present value defined

by cash flows involved on it, plus the option values introduced by the agile methodol-

ogy itself. The details of the analysis can be obtained in the referenced bibliography

and will not be reproduced here due to of lack of space. But, as a summary, when pro-

jects with typical organizational values and intermediate variables distributions deemed

as reasonable or supported by the bibliography are evaluated, some conclusions can be

obtained as a further insight on the factors involved in the value erosion.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 88

Figure 2 Sensitivity of total value with manageable factors and influence of main

contributors ((Ruiz de Mendarozqueta, Bustos, & Colla, 2019)

From the identified contributors to the project extended net present value on agile

projects, the most relevant is the CoPQ followed by some expression of the Phase Con-

tainment of Errors (PCE) which measures how much of the quality issues of one sprint

is carried to the incoming as “technical debt”. This effect can be rationalized consider-
ing the defects a value waste and the carry-over to be affected by a cost increase factor

(K), as part of the value-added nature of activities on subsequent sprints and thus rep-

resenting to the project net productivity hit if that happens. Agile methodologies do

introduce additional sources of value, which creates buffers to manage deviations prob-

ably better than other methodologies; this can be seen as a qualitative confirmation on

the reason why organizations prefer agile over other methods.

However, at the same time, a conclusion is that if no attention is paid to structural

process variables, such as the ones traditionally watched by Software Engineering dis-

ciplines, eventually, the value is eroded to a point that, even with the added value of

agile methodologies, the results turn against the organization. The conclusions of prior

work suggest that CoPQ can be in the neighbor of 18% as the upper acceptable limit,

and 80% as the lower limit for PCE for this effect to be noticeable. It comes as no

surprise that these values are in the neighbor of those achieved by organizations in their

early effort of applying structured methodologies traditionally recommended by tradi-

tional Software Engineering sources and matched values reported by the bibliography

(Sandu & Salceanu, 2018) as obtained on successful typical agile projects; therefore,

even minimal deviations might push the project beyond profitability, evidencing a link,

somewhat hidden in the bibliography, between agile methodologies and Software En-

gineering practices. The results of the simulation, although preliminary, seem to be in

line with some of the flow items of software value streams, namely defects and debt,

identified by Kersten (Kersten, 2018).

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

e
N

P
V

[%
]

Factor within range for dependent variable outcome

eNPV=f(CoPQ,PCE)

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 89

Business perception of the agile methodologies value

A research effort has been carried out ((Ruiz de Mendarozqueta, Bustos, & Colla,

Agile in practice, a systemic approach, 2019) aiming to understand how organizations

perceive the relation between agile methodologies and traditional software engineering

practices. As part of it, a field experiment was designed starting with a data-gathering

among software organizations in Argentina. The analysis of the collected data throws

some additional light on the subject. In these software organizations, activities are held

mainly towards the development of standard products and customized implementa-

tions, update and maintenance of existing products, as well as embedded applications

for electronic devices.

Research questions

Our research questions were:

• Data Source

The scope of the collected survey attempts to include a group representing a variety

of software organizations in Argentina. It is composed of few questions related to sev-

eral organizational characteristics, context factors, and the usage of both agile methods

and software engineering practices. A combination of Yes/No, Multichoice, and 5-Lik-

ert categorical values are captured through the questions. The survey went public thru

different social media and professional network channels. Collecting enough answers

to meet the confidence required by the design of the experiment is an ongoing activity.

However, it is possible to preliminary explore, with a reduced number of answers,

some initial results accepting a modest precision of the conclusions. Being a subject

with little or no previous research efforts, some initial results bring some value in the

authors´ perspective, and therefore they are shared in this paper. Further work will

continue to collect enough data points to significantly improve the precision of the con-

clusions.

• ¿Are the adoption of Agile methodologies and the embracement of software

engineering practices perceived as related by the organizations?

• ¿How the adoption of agile methodologies and deployment of software engi-

neering practices are related to the organizational size and age?

• ¿What is the influence on the adoption of agile methodologies and/or software

engineering practices related to the markets the organizations participate in,

the deployment of formal quality models evaluation and the operation under

incentive programs? ¿In particular how both correlate to de Argentina´s soft-

ware promotion law (Ley 25922)?

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 90

Analysis Framework

The organization size, measured as the direct software development resources, is

mapped as a token of the organization’s strength in terms of scale, at the moment to

decide whether or not to perform investments on improving their performance. The

organization age is used as a direct indicator for the room to collect feedback from

customers, experience, and actual results, into the need to introduce structural compli-

ance with software process methodologies.

Light needs to be thrown over some factors which subject to decisions being made

by the management, whose relationship to the agile and/or software engineering prac-

tices would benefit from being evaluated. Among these factors, the actual core business

and the nature of the markets served might define the need for the organization to raise

the level of software development performance. Other parameters are the management

decision to embrace formal quality-related evaluations and the affiliation to external

programs that might be related to the fulfillment or adoption of industry frameworks.

Pedro Colla (Colla & Montagna, 2008) referred a research made that predicts a signif-

icant relationship between the organization size (N) and the likelihood of embracing

formal quality models. Intuitive as it might seem, this notion had received little atten-

tion in published papers in terms of validation.

Finally, the analysis includes as a factor assumed to operate as facilitator of the for-

mal adoption of quality systems, the adherence to the Argentina’s Software Law
(agencia.mincyt.) (Ley 25922) which is incorporated also as a parameter whose rela-

tionship needs to be explored.

Design of experiment

Although a full census would be desirable to understand the full research scope, this

is deemed impractical as a source of information about the factors addressed by this

paper. Many organizations would refuse to go public with their internal data in fear of

exposing competitive information of internal nature. Because of that, a sample survey

has been attempted with a pre-defined level of representation of the target organizations

which derives on a measurable confidence interval on the results. The sample could be

considered, in broad terms and not completely void of skew factors, a random one as

the call for answers was made public and no individual answers were solicited. After

saying that, the affiliation and personal network of the authors play a role that might

skew to some extent the results. However, the resulting dataset collected is deemed

acceptable as it reaches the sampling error as preliminary acceptable at this stage of the

experiment.

For the analysis's sake, generalizations would be made with the collected infor-

mation assuming a random sample data has been collected and understanding the threat

to validity this factor might introduce.

According to the data made available by CESSI (OPSSI, 2016) close to 650 organi-

zations are involved in the software development business in Argentina, delivering to

different segments and capabilities. This probably would be a very conservative num-

ber as many organizations might not be truly devoted to software development but other

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 91

activities of the value chain of the software industry, however, assuming a larger-than-

needed number, would make the results stronger in terms of the confidence level.

In order to identify what would be the minimum sample size to achieve a given sig-

nificance of the results is needed, this factor defines both the precision and the confi-

dence interval of the results. It is a judgment call of the authors to balance the precision

achieved with the realistic resources available to perform the data collection.

Cochran (Cochran, 1977) recommends a sample size (n0) for a very large popula-

tion:

2

2

0
e

qpZ
n

=

Ecuación 1

Where the normalized random variable (Z) represents the value at the confidence

level assuming a normal distribution, using a value of 1.96 to achieve 95% confidence

level. The assumed proportion of the population with a given attribute (p) and the lack

of it (q) is assumed in the worst case by assigning the same value to both (0.5). At this

point with over 30 valid and unique responses available the analysis is carried out with

an accepted error level of 20%.

Yamane (Yamane, 1967) provides a criterion to define the sample size for small

populations, when the sample size might be comparable to the total population or in

any case, it cannot be considered as much larger, the result of the analysis yield similar

conclusions in terms of the precision obtained with the available data points.

 The overall assumed accepted error level might look a little high, but consideration

needs to be given to the fact this research is aimed to obtain preliminary insights on a

previously unexplored subject, and the authors consider this sort of precision a reason-

able balance between the available resources and the robustness of the conclusions

made possible.

Survey design

Two factors represent the dependent variables under study, the degree of agile de-

ployment (AGILE, Y1) and the degree of software engineering practices deployment

(SWE,Y2). Both are captured as categorical variables represented using a 5-Likert scale

where the minimum level is little or no implementation and the maximum full adoption

whereas the mid-scale represents the awareness and some fair level of usage. Both

scales are designed to represent a similar depth of adoption per level.

Organizational characteristics are assigned as independent variables. Organizational

size (X1), Organizational age (X2) are both assigned with 5-Likert categorical values.

For the size, the CESSI (OPSSI, 2016) usual categorical scale is used, while for the

organizational age an experimental sequence is adopted.

The main goal of the organization is based on development type performed, markets

served, quality accreditations achieved and technology focus are also captured with

multi-choice options that can be manipulated as different kinds of discrete answers with

convenient grouping.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 92

Survey Design and distribution

As design criteria, the total survey was created as a “one-pager” in order to increase
the likelihood of being answered (Mardsen & Wright, 2010). A small operating defini-

tion is attached to each question and general instructions for fulfilling and returning are

provided as well. A confidential statement ensures the participant that no individual

answer will be used or published, and all the results would be statistical aggregates

characterizing the sample in order to understand the whole population. Fulfillment

helps are provided in terms of drop lists and checkboxes to uniform the answers pro-

vided within the defined categories. Google Forms (Ruiz de Mendarozqueta, Goggle

Forms) has been used to implement the survey form and several validation and verifi-

cation tests were performed by the authors to ensure the functionality of different op-

tions.

The survey was published on the LinkedIn account (Ruiz de Mendarozqueta,

Linkedin) and other social media platforms for all the authors. A fair amount of bounc-

ing from direct network professionals was observed allowing the survey to reach a

larger audience resulting in the request to reach several hundred individual practitioners

at the end of the diffusion process.

Survey Analysis

A total of 30 valid and unique responses were provided as collected by the Google

Forms tool. The distribution of organizational size and age is given by Figure 3.

Figure 3 Organization size and age

The technology area where the organizations perform and the markets they serve is

represented by Figure 4.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 93

Figure 4 Organization technology area and markets served

The organization type and the formal quality system under which the organizations

were evaluated are described by Figure 5.

Figure 5 Organization type and formal quality system

As per the subject of interest for the survey, the agile adoption and the deployment

of software engineering practices were found to be distributed as shown by Figure 6.

Figure 6 Organization adoption of agile methodologies and deployment of software engineering
practices

Evaluation of dependent variables

The main tools for statistically analyzing a dataset differ depending on whether the

distribution of the data follows a normal distribution or not. For non-normal distribu-

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 94

tions, "non-parametric" tools are used, which, in general, are less powerful and versa-

tile. It is therefore an accepted practice, to use tools aimed at normal distributions even

in cases where the distribution differs from it to a lesser extent.

The organization size is found not to follow a normal distribution since the Ander-

son-Darling normality test has a p-value=0.005. The organization age (AGE) normality

test has also a p-value=0.005 and does not follow a normal distribution either.

Assumed both dependent variables represent equivalent levels of implementation for

both agile practices and software engineering practices, the Mann-Whitney test com-

pares the sample medians to be equal vs. not equal, resulting in a p=0,7958 therefore

the null hypothesis cannot be rejected and both populations can be considered as having

the same median value. The paired t-test needs to be used with caution because of the

lack of normal distribution on both variables but it yields a T-Test of mean difference

= 0 (vs ≠ 0): P-Value = 0,889 therefore the null hypothesis of no mean difference cannot

be rejected.

Using Ordinal Logistic Regression (Kruskal, 1954), an evaluation on the relation

between the dependent variables with both organizational size (N) and organizational

age (AGE) is made, a result of p>0.05 means there is insufficient evidence to claim the

model does not fit the data adequately, and therefore the variables are related as seen in

Table 3.

 Y (AGILE) Y(SWE)

N 0.435 0.183

AGE 0.12 0.948

GLOBAL 0.062 0.244

SPI 0.604 0.007

EXT 0.104 0.322
Table 3 Ordinal Logistic Regression analysis (Goodman-Kruskal)

The impact of parameters such as the market being served (GLOBAL), the adoption

of quality systems certification/assessments (SPI), and the operation under external pro-

gram (EXT) is evaluated in terms of the dependency of the agile or software engineer-

ing practices adoption with them using a Chi-Square method (Table 4).

Source p-value

N 0.667

AGE 0.032

GLOBAL 0.473

SPI 0.199

EXT 0.270

Source p-value

N 0.060

AGE 0.487

GLOBAL 0.877

SPI 0.079

EXT 0.474

Table 4 Relation between parameters and dependent variables using the Chi-Square method

Using a Generalized Linear Model regression between the independent variables and

parameters and the adoption of agile methodologies can be also seen in Table 4, where

a p-value of less than 0.1 means a dependency was found, whilst a larger p-value indi-

cates the independence (null hypothesis) cannot be rejected.

Repeating the analysis, but now with the implementation of software engineering

practices, can be seen at Table 4 as well.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 95

Finally, the discretized responses representing agile methodologies and software en-

gineering practices adoptions are related to the adoption of Argentina´s software pro-

motion law as a discrete (binary) variable. The Chi-Square analysis between SWE and

LEY yield p=0.033 so a dependency has been found while the relation between AGILE

and LEY yield p=0.783 and a dependency has not been found.

Discussion

The adoption of agile and software engineering methodologies are similar in organ-

izations, the higher the one, the other correlates as higher too. This is a hint that organ-

izations apply stricter agile methods as they are aware of the need to deploy software

engineering practices as well. Organization size dominates the adoption of agile meth-

odologies in a stronger way than the adoption of software engineering practices, whilst

the opposite is suggested for software engineering practices.

The operation servicing global markets is related to the adoption of agile methodol-

ogies whilst the adoption of strict, committed or certified, quality frameworks is related

to the adoption of software engineering practices, surprisingly the usage of external

incentive programs seems to relate stronger with agile than the adoption of software

engineering practices. The operation under the benefits of Argentina’s Software Law
drives the adoption of software engineering practices but it is not related to the usage

of agile methodologies within the statistical margin assumed.

ISO 9001 as a quality framework for software development

Mentions were made through this article about the need for some organizations to

have references to implement their internal practices, either because of the need to ob-

jectively guide software process improvement efforts in search of increase their com-

petitiveness or because of competitive pressure to show some token of capabilities. The

ISO 9001 standard is very well-known in the industry at large. According to the Amer-

ican Society for Quality (ASQ), organizations use the standard to demonstrate the abil-

ity to consistently provide products and services that meet customer and regulatory re-

quirements. It is the most popular standard in the ISO 9000 series and the only standard

in the series to which organizations can certify.’. The ISO 9001 is not industry-specific

and can be applied to organizations of any size. Software companies, like any other

industry, can use the standard, and there is a guideline (ISO 90003, 2018) that provides

guidance for software organizations in the application of ISO 9001:2008.

In Argentina, the ISO 9001 standard is widely accepted by software development

companies. In the 2019 annual survey among members of the CESSI chamber, over

60% of the respondents indicated as having an ISO 9001 certification. The main reason

for this percentage is likely the incentives yield by the so-called Ley de Economía del

Conocimiento (Ley 27506), which provides tax reductions, among other benefits, for

those companies achieving a quality certification among other requisites.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 96

Relationship between Agility, Scrum and ISO 9001 requisites

A case about the extension of Software Engineering principles to agile practices can

be made by using a rigorous approach to measure it. Stålhane and Hanssen (Stålhane,

2008) outlined a map between the ISO 9001 requirements and agile practices, showing

that a very good fit can be identified, and also performing a preliminary overview of

items that need a further and deeper analysis for a full ISO 9001 compatibility. The

experience paper (Ruiz de Mendarozqueta A. &., 2016) comments on two implemen-

tations of agile concepts and Scrum at two companies as their strategy for obtaining

their ISO 9001 certificates; their approach was using a high-level map between ISO

requirements to fulfill agility and SCRUM requirements.

Map between Agility, Scrum, and ISO 9001 requisites

The research question is to explore up to which extent agile principles and Scrum

have strong and comprehensive coverage of ISO 9001 requisites. In order to achieve

that, a high-level map between Agile principles and Scrum compared with the ISO

9001:2015 document sections will be performed. An actual ISO 9001 certification will

require additional activities and proof of institutionalization mechanisms, therefore

such a map is not a guarantee for getting an ISO 9001 certification nor is it an exhaus-

tive mapping between possible relationships, it is meant to be a help to create a roadmap

in that direction.

Agile Manifesto as a policy

The Agile Manifesto previously discussed is aiming at deconstructing the excessive

rigid formalisms and focus on customer needs instead. Formal evaluation frameworks

requires formal policy to be outlined which is sometimes regarded as a rigid view op-

posed to the degrees of freedom required to successfully deply agile practices. How-

ever, We believe it’s quite the opposite. The Agile Manifesto can be considered as the
policy for establishing agile. In particular, this paper focuses on Scrum as the agile

methodology of choice given the widespread acceptance by Argentina’s organizations
as confirmed by previous research activities performed.

The Scrum approach institutionalizes activities using 5 key ceremonies which are:

● Backlog grooming (product backlog refinement)

● Sprint planning.

● Daily scrum.

● Sprint review.

● Sprint retrospective.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 97

ISO requirements to Agile principles map

Follows an analysis between sections of the ISO 9001 framework where a stronger

relationship with Agile and SCRUM can be found as compared with the Agile Mani-

festo. Only sections that refer to requirements for operationalization are considered, in

that regard sections 0 to 4 are deemed as infrastructure needs of the standard and thus

constitute a non-functional statute. The high-level mapping can be seen at Table 5.

Development Area ISO9001:2015 Section Agile principle

Leadership 5.1 Leadership and commitment Management participation

Leadership key to agile success

5.1.2 Customer Focus Agile principle 1 to 4

5.2 Policy Clear statement of policy (12 principles)

5.3 Organizational roles, responsibili-

ties, and authorities

Overall agile management approach

Planning 6.1 Actions to manage risks and oppor-

tunities

5 key ceremonies

6.2 Quality goals

6.3 Change management planning

Support 7.1 Resources Agile principles 5 and 6

Operational planning

and control

8.1 Operational planning and control Scrum master cycle & ceremonies

Requirements for

products and services

8.2.1 Customer communication Agile principle 1 et al.

8.2.2 Determining the requirements re-

lated to products and services

Product owner participation

Scrum ceremonies

8.2.3 Review of requirements

8.2.4 Changes for products and services Backlog prioritization

Agile principle 2

Design and develop-

ment

8.3 Design and development of products

and services

Agile principle 9 to 11

Performance 9.1 Measurement, analysis and evalua-

tion

5 Scrum ceremonies, some additional

activities might be required.

 9.2 Internal audit.

9.3 Upper management review.

Continuous Improve-

ment

10.2 Non-conformance correction. 5 Scrum ceremonies in particular daily

scrum and retrospective ceremony 10.3 Continuous improvement

Products and Service

Management

8.5 Production and service provision Agile principle 5

Scrum lifecycle

Sprint Ceremonies

8.6 Release of products and services

8.7 Control of nonconforming
Table 5 Table 5 1 High-level map between ISO9001:2015 and Scrum

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 98

ISO 9001:2015 Sections 0 to 4 are part of the framework infrastructure as non-func-

tional requirements and thus there is no need for a mapping to be performed as are

unrelated to the analysis being performed.

Leadership

In Lean philosophy (Poppendieck & Poppendieck, 2003), managers must apply the

Lean principles and also must be the teachers who educate the staff in the principles of

the Lean philosophy. In turn, they must go to the place where things are done to under-

stand them, in the same place they happen. The Agile manifesto (Beck, et al., 2001) are

the principles that the management must establish and promote in the company. Lead-

ership is a key aspect in agile success (Cohn, Essential Scrum, 2012) (Cohn, Succeding

with Agile, 2010) (Cockburn & Highsmith, 2001) (Cockburn A. , 2007).

Regarding policy, the agile approach prioritizes individual actions and their interac-

tions over process and tools, leverage the software as documentation, cooperation, and

close teamwork with the customer (represented by a product owner) above negotiation

and, perhaps the most significant component, incorporate change into the methodology

rather than opposing it following a pre-defined plan.

Finally, to implement customer focus the Agile Principles number 1 to number 4

(Beck, et al., 2001), stated a strong customer focus to avoid the common pitfalls in

software projects, reduce risk and delivers value and high-quality software.

The organizational roles, responsibilities, and authorities are clearly defined in

Scrum as roles and responsibilities for its execution and performance which satisfies

this requirement (SCRUMstudy, 2013) (Cockburn A. , 2007) (Cohn, Succeding with

Agile, 2010) among other references.

Planning

Planning is performed at a high level in the planning ceremony and daily during the

Scrum meeting, this addresses key principles 1 thru 7 with enough evidence being col-

lected to assess compliance with the planning activities, risk management, and change

planning.

Support

Regarding resources, agile principles 5 and 6 have the same objective as the ISO

9001 7.1 section for providing infrastructure and an adequate environment for the peo-

ple performing the activities.

Operational planning and control

This requirement from ISO 9001 is covered in the Agile paradigm (Cockburn, 2007),

as shown in Figure 1 Agile conceptual modeling (Morse, 2012) because a fixed time

window is established, a small team of developers is organized and functionality is

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109 99

continuously evaluated, with the permanent help of the "owner" of the requirements

providing the necessary sponsorship. The team planned which requirements are going

to be delivered at the end of the time window as discussed in previous sections. Backlog

Planning and Sprint Planning activities inside Scrum (SCRUMstudy, 2013) determine

the planning activities.

Requirements for products and services

Customer communication requirements are addressed by almost all agile principles

starting with number 1 as team communication, empowerment, and feedback is a key

feature of agility and therefore a strong basis for customer communication. Those prin-

ciples are instantiated in Scrum (SCRUMstudy, 2013) (Schwaber & Sutherland,

Scrum.org, 2017) activities and roles such as Product Owner, Sprint Planning, Backlog

Planning, and Sprint Review.

The requirements definition and review are performed during the different ceremo-

nies in Scrum (Schwaber & Sutherland, Scrum.org, 2017) activities for requirements

definitions, management and implementation are clearly stated with artifacts: Product

Backlog, Sprint Backlog, roles: Product Owner and ceremonies: Sprint Planning, Back-

log Planning and Sprint Review.

The critical management of requirement’s changes are stated as part of the agile
principle number 2 (Beck, et al., 2001), is addressing the changes of requirements uti-

lizing Scrum (Schwaber & Sutherland, Scrum.org, 2017) activities for requirements

definitions, management, and implementation such as artifacts: Product Backlog,

Sprint Backlog, roles: Product Owner and ceremonies: Sprint Planning, Backlog Plan-

ning and Sprint Review.

Design and development of products and services

The critical technical activities involved with the design and development are ad-

dressed at a high level by agile principles number 9, 10, and 11.. Software architecture

and design determine software behavior. The behavior must satisfy the customer's re-

quirements including quality attributes. Agility aims to eliminate waste (Poppendieck

& Poppendieck, 2003) considering waste things like partially done work, extra features,

task switching, defects because they add no value. A good design minimizes defects so

enhance value and lead to working software as stated by Agile Principle number 1

Product and service management

In Scrum (Schwaber & Sutherland, Scrum.org, 2017) there is an activity called

Sprint Review where the Scrum Team and stakeholders collaborate about what was

done in the Sprint. The done criteria are checked and the finished work is analyzed for

potential release. If an item shows failures or is not conforming to what is expected by

the stakeholders, the Product Backlog and Sprint Backlog are modified in order to cope

with those nonconformities.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109100

The Agile Principles number 5 is strong guidance for assuring that the product or

service implements requirements, fulfills the done criteria and avoids nonconformity.

Performance

As part of the 5 key ceremonies (Schwaber & Sutherland, Scrum.org, 2017), in par-

ticular, the retrospective based activities opportunities to collect and analyze perfor-

mance data is given to the team, learning from metrics collected, issues managed and

key performance metrics are collected, in particular information related to the team

capabilities expressed as the velocity to fulfill requirements.

However in order to fulfill the requirements expressed in section 9.2 (internal audit)

which usually requires an independent view that isn’t explicitly contained in the Scrum
methodology and needs to be instantiated separately. In this sense, previous work

(Gislén, 2016) shows that it can be achieved by having internal and external auditors

participate in ceremonies, and by tailoring ISO terminology within the meetings, albeit

not in the audit reports (e.g. Hit/Miss for ISO 9001 terminology Major/Minor Non-

Conformity, Observation or Noteworthy efforts)

A similar situation happens with section 9.3 (upper management review) as the

scrum defines the team as self-contained where the maximum authority is the product

owner, different organizations might be structured around higher management layers

than the product owner, it is implicit these levels are informed but in fact, this is not

explicitly required by agile requirements and therefore needs to be instantiated to sat-

isfy requirements from ISO9001. A reasonable means to achieve that is by having the

product owner act as a proxy for the upper management, we believe that this role is

well suited for the task because it has a clear notion regarding the degree up to which

the customer requirements are satisfied as the product evolves sprint after sprint.

Continuous Improvement

As part of the 5 key ceremonies (Schwaber & Sutherland, Scrum.org, 2017), in

particular, the retrospective-based activities opportunities to collect and analyze perfor-

mance data is given to the team towards the fulfillment of the agile principle 12. This

information can be used together with proper process improvement methodologies to

perform adjustments in the team performance and delivery across different sprints.

Best practices and lessons learned

The results shown by the previous analysis at the conceptual, bibliographic and sys-

temic dimensions, although preliminary, seem to be pretty consistent with the practical

experience of the authors in real-world projects of different sizes and complexities

where, more often than not, the projects where old fashioned, Software Engineering

fundamentals are not enforced, the technical debt increases with the successive sprints

eroding customer trust in the new features incrementally delivered, generating schedule

overruns at a product level, and forcing to add extra effort, and hence cost, in the form

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109101

of additional sprints whose backlog is mainly composed of defect-correction stories.

Very little is included in the agile methodologies corpus reinforcing the need to take

special care of these technical aspects. This kind of situation is against some of the

Agile principles, first and foremost the one that states that “Our highest priority is to
satisfy the customer through early and continuous delivery of valuable software”. The

value of the software is put then in question and could be destroyed if the project devi-

ates from its goals beyond acceptable thresholds. More often than not, the actual in-

vestment the software project enables is highly leveraged with a much bigger invest-

ment return, and therefore, the entire investment is jeopardized. In addition to that, the

effort consumed by sprints devoted to defect correction stories is essentially waste, con-

tradicting, therefore, the Agile principle that states that “Simplicity – the art of maxim-

izing the amount of work not done, is essential”. The author´s experience shows that in

order to fulfill at product level the Agile principle that “working software is the primary
measure of progress”, certain practices and metrics borrowed from the plan-driven soft-

ware engineering processes, may be relevant to be exercised.

In terms of instruments, ways, and means to protect value, what the experience

shows and the results of the simulation preliminary confirm is that, by large, the Cost

of Poor Quality is the main driver in terms of value erosion all along the development

cycle of actual software products, especially considering that a typical development

cycle normally takes a significant number of sprints. This result is aligned with the

classical principle that states that the cost of fixing a bug increases exponentially

through the development process (Boehm & Basili, Software Defect Reduction Top 10

List, 2001). Attention needs to be paid to the importance of the capability to detect and

correct errors in the sprint where they were introduced, which is measured by the PCE

metric, as defects escaped from one sprint to the following ones, erode value with

greater speed because of the value-added nature of the activities of subsequent sprints.

An immediate conclusion is the need to create a stronger awareness about the foun-

dation nature of the Software Engineering practices, and the need to blend them in the

day-to-day agile activities. Map how the different major goals correlate to agile activi-

ties needs to be done and understood by the team, metrics collection on subjects other

than velocity and crump down related evolutions needs to be introduced as well. The

authors believe that the definition of practices and collection of these metrics shall be

as agile as the rest of the process, for example identifying the stories where defects from

previous sprints need to be corrected and deriving PCE from them, and considering the

story points of the backlog devoted to defect correction stories as a measure of CoPQ.

In the same manner, as a burndown chart is kept and used as a measure of progress,

curves of planned vs actuals of PCE and CoPQ could be kept and used as key elements

for product release decisions and for appropriate planning of successive sprints.

The evaluation under a formal quality framework is shown as an additional dimen-

sion of the bond between the rigurosity required by some Software Engineering best

practices with the main concepts beneath agile approaches to the point that formal eval-

uation methods can be integrated as a formal token of the rigorous implementation of

certain requisites collectively deemed as a quality system; on the other hand, it helps

the organization to embrace mature practices for the management of their business.

Organizations, especially SME, are often willing to embrace agile concepts as a way to

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109102

improve their technical delivery capabilities and customer satisfaction, but the connec-

tion between agile practices aren’t always linked with the actual execution of software
engineering practices, and even when connected aren’t perceived as good enough to
aim for formal evaluations or certifications, We hope this work will help to laid down

a step into deconstructing that notion.

Several bibliography references and the previous work from the authors build a con-

ceptual roadmap on the relevance of agile methodologies as the conduit for the adoption

of software engineering practices, the importance of protecting the value yield by the

agility by using best practices, still, the survey of Argentinean organizations suggests

that the preferred quality framework form SME sized organizations is still ISO9001.

Little effort has been made to map how rigorous execution of agile methodologies can

at the same time address the requirement of such framework and thus help not only to

execute but also to assess in a structured way the operations.

The map developed shows how the different major requirements of ISO9001 corre-

lates to agile activities that need to be done and understood by the team, metrics collec-

tion on subjects other than velocity and crump down related evolutions needs to be

introduced as well. Two exceptions are identified as part of this map, one related to the

need to introduce an independent view on the team operation (internal audit) and mech-

anisms for the upper management to be explicitly being kept informed. The authors

believe that the definition of practices and collection of these additional activities shall

be as agile as the rest of the process

Future work

Further work is needed to develop ideas toward a framework following the line of

work of the I+D effort this paper is part of, including the identification of prototype

projects where factual data can be extracted for further validation of the premises, as

well as to collect metrics enabling the comparison of defect and phase containment

behavior consistent with the ones captured from the bibliography. The results, in terms

of product defects and development costs, could then be compared with those of similar

projects that have not introduced these practices. Also, a further characterization of the

emergent trend to apply hybrid approaches to software development in terms of mix-

tures between agile and Software Engineering process models is needed. Particularly

for projects at some larger scale, where the importance of uncovering, understand and

effectively applying the links between these two approaches will be increasingly im-

portant for practical purposes and, as such, a topic for further relevant research work.

A great deal of confidence is placed on the completion of the research effort whose

preliminary results are shared in this paper in order to obtain further degrees of confi-

dence in the conclusions.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109103

Bibliography

(s.f.).
agencia.mincyt. (s.f.). agencia.mincyt. Recuperado el 17 de 10 de 2020, de Ley de

Software: http://www.agencia.mincyt.gob.ar/upload/ley_25922-2.pdf

Agile Alliance. (12 de 08 de 2020). Agile Practices Timeline. Obtenido de Agile

Practices: https://www.agilealliance.org/agile101/practices-timeline/

Akbar, R. (2019). Tailoring Agile-Based Software Development Processes. IEEE

Access, 2019.

Alegrìa, J. H., & Bastarrica, M. (2007). Implementing CMMI using combination of

Agile methods. V9(N1).

Appleton, B., Berczuk, S., & Cowham, R. (2005). The Agile Difference for SCM.

Obtenido de CrsossRoads: https://www.cmcrossroads.com/article/agile-

difference-scm

Banerjee, A., Narasimhan, B., & Kanakalata, C. (2011). Experience of Executing Fixed

Price Off-shored Agile Projects. Proceedings of the 4th India Software

Engineering Conference. ACM.

Beck, C. F. (2001). Agile alliance. Obtenido de

https://www.agilealliance.org/agile101/the-agile-manifesto/

Beck, K., & Boehm, B. (2003). Agility through Discipline: a debate. June 2003.

Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A., Cunningham, W., Fowler, M., .

. . Thomas, D. (2001). Principles behind the Agile Manifesto. Retrieved from

http://agilemanifesto.org/principles.html

Bhasin, S. (2012). Quality Assurance in Agile –A study towards achieving excellence.

págs. pp 64-67.

Bick, S., Spohrer, K., Hoda, R., Scheerer, A., & Heinzl, A. (2018). Coordination

Challenges in Large-Scale Software Development: A Case Study of Planning

Misalignment in Hybrid Settings. IEEE Transactions on Software

Engineering, Year: 2018, Volume: 44, Issue: 10.

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. The

Journal of Political Economy, V81(N3), págs. pp 637-654.

Boehm, B. (1987). Improving Software Productivity. IEEE Software.

Boehm, B., & Basili, V. R. (2001). Software Defect Reduction Top 10 List. IEEE

Computer, January 2001.

Boehm, B., & Turner, R. (2005). Management Challenges to Implementing Agile

Processes in Traditional Development Organizations.

Brealey, R., & Myers, S. (2016). Principles of Corporate Finance 12th Edition.

McGraw-Hill, 6th Edition.

Bustard, D., Wilikie, G., & Greer, D. (2013). The Maturation of Agile Software

Development Principles and Practice: Observations on Successive Industrial

Studies in 2010 and 2012. 20th Annual IEEE International Conference and

Workshops on the Engineering of Computer Based Systems (ECBS).

Caballero, E., Calvo-Manzano, J., & Feliu, T. S. (2011). Introducing Scrum in a Very

Small Enterprise: A Productivity and Quality Analysis. págs. pp. 215-224.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109104

Chora, M., Springer, T., Kozik, R., López, L., Martínez-Fernandez, S., Ram, P., . . .

Franch, X. (2020). Measuring and Improving Agile Processes in a Small-size

SoftwareDevelopment Company. IEEE Access (Volume: 8), 2020.

Clark, B. (2000). Quantifying the effects of Process Improvement on Effort. IEEE

Software. Nov 2000.

Cochran, W. G. (1977). Sampling Techniques, 3rd Edition. Wiley.

Cockburn, A. (2007). Agile Software Development. , Addison-Wesley.

Cockburn, A., & Highsmith, J. (2001). Agile Software Development: The People

Factor. IEEE Computer Year: 2001, Volume: 34.

Cohen, D., Lindvall, M., & Costa, P. (2004). An Introduction to Agile Methods.

ADVANCES IN COMPUTERS, VOL. 62.

Cohn, M. (2010). Succeding with Agile. Addison Wesley.

Cohn, M. (2012). Essential Scrum. Adisson Wesley.

Coleman, D. (2015). El cerebro y la inteligencia emocional: Nuevos descubrimientos.

Penguin Random House Grupo Editorial España.

Colla, P. (2012). Marco para evaluar el valor en metodología SCRUM. La Plata-

Argentina.: 13th Argentine Symposium on Software Engineering.

Colla, P. (2016). Uso de opciones reales para evaluar la contribución de metodologías

KANBAN en desarrollo de software. Tres de febrero: SADIO ISSN: 2451-

7593.

Colla, P., & Montagna, M. (2008). Software Process Improvement Behavior of Small

and Medium Organizations in Argentina. CACIC’08 . Chilecito: CACIC’08 .
Davis, A. (1994). FIFTEEN PRINCIPLES OF SOFTWARE ENGINEERING. IEEE.

Davis, A., Bersoff, E., & Comer, E. (1988). A Strategy for Comparing Alternative

Software Development Life Cycle Models. IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 14, NO. IO,.

Deemer, P., Benefield, G., Larman, C., & Vodde, B. (2012). Scrum Primer. Recuperado

el 31 de 05 de 2020, de https://scrumprimer.org/

DeMarco, T., & Lister, T. (1987). Peopleware. Dorset House.

Dingsøyr, T., Fægri, T. E., Dybå, T., Haugset, B., & Lindsjørn, Y. (2016). Team

Performance in Software Development Research Results versus Agile

Principles. IEEE Software (Volume: 33 , Issue: 4 , July-Aug. 2016).

Duncan, S. (2019). Understanding Agile Values & Principles. C4Media, InfoQ.com.

Ebert, C., & Paasivaara, M. (2017). Scaling Agile. IEEE Software (Volume: 34 , Issue:

6 , November/December 2017).

Endres, A., & Rombach, D. (2003). A Handbook of Software and Systems Engineering.

Pearson Addison Wesley.

Fairley, R., & Bourque, P. (2014). SWEBOK v 3.0 Guide to the Software Engineering

Body of Knowledge. IEEE Computer Society.

Falessi, D., Cantone, G., Sarcia, S. A., Calavaro, G., Subiaco, P., & D’Amore, C.
(2010). Peaceful Coexistence: Agile Developer Perspectives on Soft-ware

Architecture. IEEE Software Year: 2010, Volume: 27, Issue: 2.

Fritzche, M., & P.Keil. (2007). Agile Methods and CMMI: Compatibility or Conflict ?

Gilb, T. (1988). Principles of Software Engineering Management. Addison-Wesley.

Gislén, M. (2016). Achieving Agile Quality - An Action Research Study. Karlskrona.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109105

Glass, R. (2002). Facts and Fallacies of Software Engineering. Addison Wesley.

Glazer, H., Dalton, J., Anderson, D., Konrad, M., & Shrum, S. (2008). CMMI or agile:

why not embrace both! SEI TECHNICAL NOTE.

Goldenson, D., A.Liu, & Jianping, Q. (2006). CMMI-Based Process Improvement:

How and When Does Success Happen? CMMI Technology Conference:

Software Engineering Institute.

Good, J. M. (2003). A Pragmatic Approach to the Implementation of Agile Software

Development Methodologies in Plan-Driven Organisations (MSc Thesis).

Lincoln University.

Hallowell, D.L. (2003). Six Sigma Software Metrics Maturity. Recuperado el 2019, de

iSixSigma: https://www.isixsigma.com/industries/software-it/exploring-

defect-containment-metrics-agile/

Harvie, D., & Agah, A. (2016). Targeted Scrum: Applying Mission Command to Agile

Software Development. IEEE Transactions on Software Engineering (

Volume: 42 , Issue: 5 , May 1 2016).

Hoda, R., Salleh, N., & Grundy, J. (2018). THE RISE AND EVOLUTION OF AGILE

SOFTWARE DEVELOPMENT. IEEE Software (Volume: 35 , Issue: 5 ,

September/October 2018).

Hohmann, L. (1997). Journey of the Software Professional . Prentice Hall.

Hummel, O., & Burger, S. (2013). A pragmatic means of measuring the complexity of

source code ensembles.

Humphrey, W. S. (1989). Managing the Software Process. Addison-Wesley.

Hung, M., & So, L. (2010). The Role of Uncertainty in Real Option Analysis.

Institute, S. (s.f.). Scrum Institute. Recuperado el 08 de 06 de 2020, de

https://www.scrum-institute.org/inspect-and-adapt-scrum-framework.php

ISACA. (2018). COBIT 5 Framework. En ISACA.

Ismail, N. (2016). UK wasting 37 billion a year on failed agile IT projects. Obtenido

de https://www.information-age.com/uk-wasting-37-billion-year-failed-

agile-it-projects-123466089/

ISO. (08 de 06 de 2020). ISO 9000:2015. Obtenido de

https://www.iso.org/obp/ui/es/#iso:std:iso:9000:ed-4:v1:es

Johnson, H., & Sims, C. (2012). Scrum: a Breathtakingly Brief and Agile Introduction.

Dymaxicon.

Jorgensen, K. M. (2003). A review of software surveys on software effort estimation.

Proceedings ISESE 2003. , (págs. pp-223-230). Rome, Italy.

Jorgensen, M. (2019). Relationships Between Project Size, Agile Practices, and

Successful Software Development Results and Analysis. IEEE Software Year:

2019 Volume: 36, Issue: 2.

Karlstrom, R. (2005). Combining agile methods with stage-gate project management.

IEEE Software, Year: 2005, Volume: 22, Issue: 3.

Kersten, M. (2018). What Flows through a Software Value Stream? IEEE Software

Year: 2018, Volume: 35, Issue: 4.

Knox, S. (1993). Modeling the Cost of Software Quality. págs. pp 9-16.

Kruskal, L. A. (1954). Measures of Association for Cross Classifications. Journal of

the American Statistical Association, 732-764.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109106

Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Trektere, K., McCaffery, F., . . . Prause,

C. R. (2019). Hybrid Software Development Approaches in Practice: A

European Perspective. IEEE Software (Volume: 36 , Issue: 4 , July-Aug.

2019).

Kunz, M., Dumke, R. R., & Zenker, N. (2008). Software Metrics for Agile Software

Development. págs. pp. 673-678 .

Lan, C., & Balasubramaniam, R. (2007). Agile Software Development: Ad Hoc

Practices or Sound Principles. April 2007.

Lawlis, P. K., M., F. R., & B., T. J. (1995). A Correlational Study of the CMM and

Software Development Performance. págs. pp. 21-25.

Lee, G., & Xia, W. (2010). TOWARD AGILE: AN INTEGRATED ANALYSIS OF

QUANTITATIVE AND QUALITATIVE FIELD DATA ON SOFTWARE

DEVELOPMENT AGILITY. págs. pp 87-114.

Liebert, F. (2019). BARRIERS TO SUCCESSFUL REALIZATION OF NEW

PRODUCT DEVELOPMENT PROJECTS IN THE IT INDUSTRY. Silesian

University of Technology, Faculty of Organization and Management.

M. Staples, M. R. (2007). An exploratory study of why organizations do not adopt

CMMI. The Journal of Systems and Software 80 , p.p. 883–895.

Mahnic, V. (2012). A Capstone Course on Agile Software Development using

SCRUM. IEEE TRANSACTIONS ON EDUCATION, VOL. 55, NO. 1,

FEBRUARY 2012.

Maller, P., C.Ochoa, & Silva, J. (2004). Lightening the software production process in

a CMM level 5 framework. IEEE Latin American Transactions, V3(N1)(pp

15-22).

Mantovani Fontana, R., Reinehr, S., & Malucelli, A. (2015). Agile Compass: A Tool

for Identifying Maturity in Agile Software Development Teams. IEEE

Software (Volume: 32 , Issue: 6 , Nov.-Dec. 2015).

Marcal, A., DeFreitas, B., Furtado, F., & Belchior, A. (2008). Blending SCRUM

practices and CMMI Project Management Process Areas. Innovation System

Software(pp 18-29).

Mardsen, P., & Wright, J. (2010). Handbook of Survey Research. Emerald.

Martin, R. (2012). Código limpio: Manual de estilo para desarrollo ágil de software.

Anaya.

Martin, R. (2019). Clean Agile: Back to Basics. Prentice Hall.

Matson, J., Barrett, B., & Mellichamp, J. (1994). Software development cost estimation

using function points. 20.4, pp. 275-287.

McConnell, S. (1993). Code Complete. Microsoft Press.

McConnell, S. (1996). Rapid Development. Microsoft Press.

McConnell, S. (2019). More Effective Agile: A Roadmap for Software Leaders.

Construx Press.

McMahon, P. (2010). Integrating CMMI and Agile Development. Addison-Wesley

Professional;.

Meadows, D. (2008). Thining in Systems: a primer. Chelsea Green.

Mendarozqueta, A. R., & Andriano, N. (2014). Un enfoque para la mejora continua

basado en los principios ágiles.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109107

Miller, G. (2013). Agile problems, challenges, & failures. PMI® Global Congress

2013, págs. pp.1-8.

Mohan, K., Ramesh, B., & Sugumaran, V. (2010). Integrating Software Product Line

Engineering and Agile Development. IEEE Software (Volume: 27 , Issue: 3 ,

May-June 2010).

Morse, L. (2012). 3 Paradigm Shifts of Agile. Recuperado el 04 de 05 de 2019, de

Solutions IQ: https://www.solutionsiq.com/resource/blog-post/3-paradigm-

shifts-of-agile/

Mukker, A., Mishra, A. K., & Singh, L. (2014). Enhancing Quality in Scrum Software

Projects. págs. pp 682-688.

Mun, J. (2002). Real Options Analysis, Tools and Techniques for Valuing Strategic

Investment and Decisions. Hoboken, New Jersey: John Wiley & Sons.

O’Regan, G. (2017). Concise Guide to Software Engineering. Springer.

OPSSI. (2016). Reporte anual sobre el Sector de Software y Servicios Informáticos de

la República Argentina. Buenos Aires: CESSI.

Paulk, M. C. (2002). Agile Methodologies and Process Discipline. Institute for

Software Research. Paper 3.

Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development: An Agile

Toolkit. Addison Wesley.

Rafaela Mantovani Fontana, S. R. (s.f.).

Rico, D. F. (2008). What is the ROI of Agile vs. Traditional Methods? págs. pp. 9–18.

Ruiz de Mendarozqueta, A. &. (2016). Certificación ISO 9001:2008 en organizaciones

ágiles. CoNaIISI. Salta: UCASAL.

Ruiz de Mendarozqueta, A. (s.f.). Goggle Forms. Recuperado el 10 de 17 de 2020, de

https://docs.google.com/forms/d/1c0nhdf7hENrL9_r7mD0mUPQfOiIjOvD5

FdJ2mcU9WOM/edit

Ruiz de Mendarozqueta, A. (s.f.). Linkedin. Recuperado el 17 de 10 de 2020, de

Linkedin: https://www.linkedin.com/posts/alvarordm_encuesta-sobre-

agilidad-y-pr%C3%A1cticas-de-ingenier%C3%ADa-activity-

6701246489215168512-0BgA/

Ruiz de Mendarozqueta, A., Bustos, F., & Colla, P. (2019). Agile in practice, a systemic

approach. Paper accepted for 48 JAIIO-ASSE 2019, to be published in 49

JAIIO-ASSE 2020.

SAFe. (s.f.). Recuperado el 08 de 06 de 2020, de

https://www.scaledagileframework.com/agile-architecture/

Sandu, I., & Salceanu, A. (2018). New approach to agile cycles containment

effectiveness metrics in automotive software development. págs. pp. 3-8.

Sargent, R. (2009). Verification and validation of simulation models. Proceedings of

the 2009 Winter Simulation Conference, ed. M. D. Rossetti, R. R. Hill, B.

Johansson, A. Dunkin, and R. G. Ingalls,.

Sauer, J. (2005). Agile Practices in Offshore outsourcing- An analysis of published

experiences. ECSCW 2005.

Schwaber , K., & Sutherland, J. (2017). Scrum.org. Recuperado el 31 de 06 de 2020,

de The home of Scrum: https://www.scrum.org/resources/scrum-guide

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109108

Schwaber, K. (2005). A CIO’s Playbook for Adopting the Scrum Method of Achieving
Software Agility. Srum Alliance.

Schwaber, K., & Sutherland, J. (2017). The Scrum Guide. Obtenido de Scrum.org

SCRUMstudy. (2013). A Guide to the SCRUM BODY OF KNOWLEDGE. Recuperado

el 31 de 05 de 2020, de https://www.scrumstudy.com/:

https://www.scrumstudy.com/

Shore, J., & Warden, S. (2008). The Art of Agile Development. O’Reilly.
Shuterland, J., Jakobsen, C., & K.Johnson. (2008). Scrum and CMMI L5 The magic

potion for the code warriors. V(N).

Sommerville, I. (2015). SOFTWARE ENGINEERING 10th Edition. Pearson.

Stålhane, T. &. (2008). The application of ISO 9001 to agile software development.

The Norwegian University of Science and Technology. Springer Professional.

Stellman, A. (2014). Learning Agile: Understanding Scrum, XP, Lean, and Kanban.

O’Reilly.
Team, C. P. (2010). CMMI for Development, version 1.3. Pittsburgh, Pennsylvania,

USA: Software Engineering Institute (SEI), November 2010.CMU/SEI-2010-

TR-033.

Telemaco, U., Oliveira, T., Alencar, P., & Cowan, D. (2020). A Catalogue of Agile

Smells for Agility Assessment. IEEE Access, Year: 2020, Volume: 8.

Turner, R., & Jain, A. (2002). Agile meets CMMI: Culture clash or common cause.

XP/Agile Universe LNCS 2418.

Vallon, R., Strobl, S., Bernhart, M., Prikladnicki, R., & Grechenig, T. (2016). ADAPT

A Framework for Agile Distributed Software Development. IEEE Software (

Volume: 33 , Issue: 6 , Nov.Dec. 2016).

Vijay, D., & Ganapathy, G. (2014). Guidelines to minimize the cost of software quality

in agile SCRUM process. Vol.5, No.3, págs. pp 61-69.

Vijayasarathy, L. R., & Butler, C. W. (2016). Choice of Software Development

Methodologies – Do Project, Team and Organizational Characteristics

Matter? IEEE Software (Volume: 33 , Issue: 5 , Sept.-Oct. 2016).

Vishal, S., & Kishen, I. (2007). Will Agile Methodologies work in offshore outsourcing?

San Diego, USA: SWDSI07.

Weinberg, G. (1992). Quality Software Management (Vol 1 Systems Thinking). Dorset

House.

Yamane, T. (1967). Statistics, An Introductory. NY: Harper and Row.

A. R. de Mendarozqueta et al, Relationship between mature software engineering practices, EJS 21 (2) 2022 79-109109

