
User Interface Adaptation Using Web Augmentation
Techniques: Towards a Negotiated Approach

Diego Firmenich1,2, Sergio Firmenich1, Gustavo Rossi1, Marco Winckler3, Damiano
Distante4

1LIFIA, Facultad de Informática, Universidad Nacional de La Plata and CONICET
{sergio.firmenich, gustavo}@lifia.info.unlp.edu.ar

2 DIT, Fac. de Ingeniería, Universidad Nacional de la Patagonia San Juan Bosco, Argentina
dfirmenich@tw.unp.edu.ar

3 ICS-IRIT, University of Toulouse 3, France
winckler@irit.fr

4 Unitelma Sapienza University, Italy
Damiano.distante@unitelma.it

Abstract. The use of Web augmentation techniques has an impact on tasks of
owners and developers of Web sites, developers of scripts and end users. Be-
cause the Web site can be modified by external scripts, Web site’s owners
might lose control about how Web site contents are delivered. To prevent this,
they might be tempted to modify the DOM structure of Web pages thus making
harder to execute external scripts. However, communities of Web augmentation
scripters are increasing since end-users still have needs not yet covered by orig-
inal Web sites. In this paper we analyze the trade-offs of the introduction of
Web augmentation scripts. In order to mitigate some negative effects, such as
the loss of control, we propose an approach based on negotiation and coordina-
tion between actors involved in the process. We present a set of tools to facili-
tate the integration of scripts and to foster the dissemination of Web augmenta-
tion scripts for the benefit of all actors involved.

Keywords: Web augmentation, client-side adaptation, script developers.

1 Introduction

Web augmentation techniques have been proposed as a way for extending Web sites
features without affecting the server-side code [2]. Most of the popular Web augmen-
tation tools extend the Web browser functionalities via plugins that can run client-side
scripts to manipulate the structure of Web pages. The potential of these techniques for
adapting existing Web sites is huge and this can be easily illustrated by some ad-
vanced applications [10][11]. Web augmentation techniques are used to adapt sites
according to users’ needs that have not been originally taken into account during the
design of the Web site. The flexibility provided by Web augmentation techniques
motivates individual and communities of coders to develop scripts. For example,

YouTube center1, which adds several new functionalities (e.g. download and repeat
videos) for improving the user experience, has been proved very popular with more
than 15K downloads. The very existence of communities might also allow end-users
to provide direct feedback to developers via requests for new augmenters instead of
asking the Web site’s owners to change the original site [8]. Moreover, some existing
tools such as WebMakeUp [7] claim to support end-user development of Web aug-
menters. Thus, Web augmentation might compete with other existing techniques for
adapting Web sites. When compared with closed adaptation techniques broadly-used
by large Web applications for supporting personalization [3], Web augmenters allow
users to go beyond of the adaptation features predefined by the Web site’s owner.
Some Web sites provide APIs that can be used to build extension-based adaptation of
contents. For developers, APIs extensibility usually implies to follow specific guide-
lines and constraints. Moreover, there is no guarantee that the API will provide all the
sought adaptation mechanisms. Besides, without prior commitment of the participants
involved in the process, the development of Web augmenters can also be frustrating
since Web augmenters might stop working when owners decide to change the Web
site design [5]. As for the Web site owners, neglecting users’ need for adaptation and
the creative potential of community of coders, might make them less competitive.

In this paper we analyze the trades-off of Web augmentation approaches and we
claim that benefits can be shared among actors involved in the process. An analysis of
different strategies for Web site adaptations and the actors involved in the process is
presented in section 2. In section 3 we propose a negotiated approach for Web aug-
mentation adaptation. The aim is to delegate to the crowd of users the specification of
the changes they are looking for, delegate to coders (users with programming skills)
the implementation of the augmenters and finally let the Web site’s owner integrate
augmenters into their Web sites. Such an approach is duly supported by a platform
which is described in section 4. In section 5 we propose an assessment based on cost
estimation. In section 6 we discuss the contribution at the light of existing work and
lastly in section 7 we present conclusions and future work.

2 Actors, strategies and trade-offs for adapting Web interfaces

The adaptation of user interfaces (UI) requires the definition of what are the goals of
the adaption, what is adapted, what events trigger the adaptation, and which pro-
gramming techniques are used to perform the adaptation [3]. In the context of this
work, the goal of adaptation is to modify any aspect of the UI at client-side (either
rendering and/or behavior). For that purpose adaptations might change the way users
perform tasks (e.g. replacing scroll navigation between the top/bottom parts of a Web
page by adding navigation buttons), the contents in display (e.g. enriching the page
with information obtained from other sources), and/or the page’s structure and layout.
These adaptations should be triggered by DOM events in the client-side. As for the
techniques, the main focus of this study is on Web augmentation.

1 YouTubeCenter. Available at: https://greasyfork.org/es/scripts/943-youtube-center, last access: 12/2/2015

3

The development, deployment and use of Web adaptation techniques affect many
actors, including the Web site owner, the coders of scripts and the end-users. The
term Web site owner designates here the development team that has full control of the
original Web site. In opposition, coders of scripts refer to developers who implement
augmenters to support adaptations on the client-side. End-users refer to the user popu-
lations that consume Web site contents (being adapted or not to their profile). We
identified four strategies for adapting Web applications involving these actors:

• Closed adaptation refers to adaptation techniques that are embedded as part of the
original Web site and totally under the control of Web site owner. This kind of ad-
aptation might encompass adaptations processed on the server-side and/or on the
client-side. In any case, developers don’t have any constraint for accessing to the
code source of the Web site. Adaptations can be built upon users’ characteristics
that have been obtained by explicitly collecting users’ profile (via Web forms) or
implicitly (by tracking the behavior of ordinary visitors) [13]. In closed adaptation,
the Web site is modified as the result of a direct relationship between the Web site
owners and the end-users. End-users contribute with information that can be used
to personalize the adaptation and they only have access to adaptations that have
been predefined by the Web site owners. Typically, recommendation systems, col-
laborative filtering systems, or hybrid systems [15] belong to this category.

• Extension-based customization is obtained with the help of dedicated APIs which
allow external developers to adapt the Web site. This kind of adaptation strategy is
well known in applications such as Google Drive2 or Facebook3. By using APIs,
external coders can create new forms of adaptations that have not been considered
yet by Web site owners. Overall, adaptations require a triangulation between what
Web site owners make adaptable via an API, what coders can do with such API
and the end-users’ expectations. Advanced programming skills, deep knowledge
about the original Web site and the functions provided by the API are required to
create adaptations. Thus, coders are somewhat dependent of the availability of API
delivered by the original Web site. Besides that, end-users need to be supported
with some tool for browsing and installing the available extensions.

• Web augmentation is a term used to address techniques that allow the adaptation of
existing third-party Web applications in the client-site in such a way that no prior
authorization from Web site owners is required [3]. Web augmentation techniques
can be fine-tuned to work on a specific Web site but they can also be generic
enough to work in any kind of Web site. The most common solutions for imple-
menting Web augmentation techniques is Web browser extensions (i.e. plugins)
that once installed modify the Web sites visited by the users. End-users may take
advantage of a large set of scripts uploaded by their creators to public repositories4.
Most of the popular augmenters are implemented using JavaScript, which means
that coders need to have advance skills in imperative programming. The relation-

2 The Drive Platform. Available at: https://developers.google.com/drive/ Last access: last access: 12/2/2015
3 The Facebook API. Available at: https://developers.facebook.com/ Last access: last access: 12/2/2015
4 Repositories list: http://wiki.greasespot.net/User_Script_Hosting. Last accessed: 2/4/2015

ship between actors is simplified by excluding Web site owners from the adapta-
tion process.

• End-User Web augmentation is a concept built upon Web augmentation techniques
for empowering end-users with tools allowing them to program their own scripts
[4][7]. The underlying idea is that users with little programming skill can be guid-
ed through a set of visual tools that hide the complexity of the code used to per-
form the adaptations on a Web site. This kind of techniques assume that end-users
can work by their own, so that they do not longer depend on coders and/or Web
site owners for having their Web sites personalized. For example, in [8] authors
propose an environment where users can modify on the fly Web pages as a means
to express requirements and/or to personalize the interaction with the site.

Adaptation strategies define different types of relationship between actors. Table 1
shows how Web site owners’ and end-users are involved in a closed adaptation strat-
tegy. This is the most traditional approach for Web adaptation. Users often have to
provide personal information (explicitly via a user account, or implicitly by user foot-
prints whilst navigating the Web site). Closed adaptation, by definition, excludes the
possibility of collaboration with external coders so all the costs of adaptation are sup-
ported by Web site owners. But site owners have at least full control on the adapta-
tions provided to end-users.

Table 1. Trade-offs on Closed Adaptation
Web site Owner Coder End-user

- Implementation of adaptations
models is expensive

+ User can provide personal
information for portraying a
user profile to tune adapta-
tions

+ Full control of adaptation
mechanisms proposed to users

- Adaptation mechanism are
dependent of a Web site

-

+ Users do not need to install anything on the browser
- Costs limit the daptation to large and specialized Web sites
+ Can support personalization via recommendation and collabo-

rative filtering systems
- Users must have create an account and a profile to get the

benefits of adaptations
- Requiring user profile/feedback raise privacy issues
+ Adaptations can be tune to the usual tasks with the site
- Might not be enough to support users requirements
- Users have to learn how adaptation works in every site

Table 2. Trade-offs on Extension-based Adaptation
Web site Owner External Coder End-user

- Implementation of APIs has direct
costs, including for training and
advertisement

+ Control of functions that are made
available through the API

+ Code provided by external coders
might contribute to the popularity
of the owners’ Web site

- Still requires programming on the
top of APIs to implement the re-
quired adaptations

- The owner don’t have control of
API-based adaptations

+ Often free of costs for coders
+ Support and documentation

might be free of charges
+ Coders can build they applica-

tions on the top of existing Web
sites, which is often cheaper than
starting from scratch

- Coders creativity can be limited
to functions available in the API

- Might not be enough to support
adaptations envisaged by coders

+ Coders can contribute to create
new adaptations

+ Users do not need to install
anything on the browser

+/- There is no guarantee that
applications using APIs are
free of charges for the end-
users

- Might not be enough to sup-
port the adaptations required
by users

+ Let users to customize the
application by installing ex-
tensions

5

By exposing an API to the community Web site owners allows the collaboration
with an external community of coders, see Table 2. Deploying an API implies signifi-
cant costs for the Web site owners but might also contribute to the popularity of the
Web site, for the benefits of external codes and the Web site owners alike. To ensure
protection on the backend, adaptability through APIs is often limited to a few func-
tions which do not necessary grant access to information about the user profile. If one
hand such strategy allows some level of control, it might also limit creativity of exter-
nal coders. For the users, extended adaptation will only work in a few Web sites and
do not necessary cover all users’ needs for personalization.

In the case of Web augmentation strategies, it is the Web site owner who is exclud-
ed from the process, such as Table 3 and 4 show. The relationship occurs only be-
tween end-users who become the clients of coders who develop augmenters that op-
erate on client-side without the supervision and control of the owners’ of the Web. In
such cases, Web site owners are excluded from the adaptation process and have no
control in how the contents are delivered to end-users. Web site owners might be
tempted to regularly modify the DOM structure of Web pages thus making harder to
execute external scripts, which is a hard blow for external coders and end-users. Ad-
aptations are often volatile and should be reapplied every time users return to the Web
site.

Table 3. Trade-offs on Web Augmentation Adaptation
Web site
Owner External Coder End-user

-

+ Coders creativity is not limited by APIs
- Adaptations might stop working if the DOM

of Web page is updated
+ By tracking downloads of extensions proposed

to the users coders can assess popularity and
infer user needs

+ The independence of APIs allows the devel-
opment of augmenters focused on specific
tasks that might be generic and thus be applied
in many Web sites

+ There is no limitation about what aspects of
the client-side application the coder may adapt
on the Web site

- Different augmenters developed by different
coders might spoil the alterations between
them

+ Users have diverse alternatives for adapt-
ing Web sites

- Might not be enough to support all the
adaptations required by users

- Require users to install extensions
+ Users can reuse adaptation tools in a

seamlessly way whilst navigating the Web
- It is hard to take into account the user

profile in generic augmenters, so that users
might lose the benefits of recommendation
systems or collaborative filtering systems

- Adaptation mechanism provided natively
may be spoiled

- Since augmenters are not verified, some of
them may be malicious

Table 4. Trade-offs on User-Driven Web Augmentation
Web site
Owner

External
Coder End-user

- -

+ Users are empowered with tools to perform the adaptations they want
- End-users must develop programming skills for using EUP tools
- Adaptations can be limited by users knowledge and skills, as well as the func-

tions delivered in EUP environments

3 Towards a negotiated Web adaptation approach

All existing adaptation strategies remarkably fail to provide seamless collaboration
between actors involved. For that, we present a negotiated approach to Web adapta-
tion which relies on three basic principles: first, all actors must find advantages in the
collaboration; secondly, actors must collaborate; last but not least, tooling is essential
to incentivise actors collaboration. We next present a view at glance of the approach
and a detailed description of the distribution of tasks among the actors and how the
execution of individual tasks can contribute to advantages for all.

3.1 The approach in a nutshell

Fig 1. illustrates some advantages actors can find in this kind of relationship. For
example, Web site owners can stablish a trustful relationship with coders that guaran-
tee that augmenters are not malicious. The negotiation between Web site owners and
coders also benefit end-users who, by extension, can trust that third-party augmenters
have been checked by owners of the Web site they trust. By keeping end-users in the
loop benefits both the Web site owners who can continue to collect information about
users and even share such as information with coders for improving their augmenters
according with user needs. The negotiated approach also implies that a kind of com-
mitment can be reached and for that actors must collaborate. Close collaboration and
commitment often demand the implementation of coordination and communication
tasks [14], which require additional resources (in terms of time and cognitive effort to
maintain relationships running). To prevent that additional coordination and commu-
nication tasks come to plunge the advantages of such collaboration, the negotiated
approach proposes that actors can work independently (as much as possible) and only
perform the tasks for which they might foresee a direct advantage. To support such as
a light-tight collaboration, we rely on a distribution of tasks among the participants
and the existence of appropriate tool support as presented in Fig 2.

Fig. 1. Relationships between actors in a negotiated adaptation approach.

7

Fig. 2. Tasks allocation in a negotiated adaptation based on a Web augmentation approach.

3.2 Analysis of actors’ tasks

Hereafter we analyze implications for individuals of tasks imposed by the approaches
shown in Fig 2. Notice that these tasks cannot be performed without appropriate tool
support. For that a set of tool have been developed, including:

• Augmenter repository: is a Web site that contains the augmenters;
• Augmenters Central Hub Application (ACHA): is the front-end application that

allows the management (search, inclusion, etc.) of augmenters into the repository.
• Augmenters Access Point (AAP): is a client-side component embedded on the Web

sites registered in ACHA thus providing direct access to certified augmenters.

A full description of these tools is provided in section 4. Nonetheless, we make ex-
plicit reference to these tools whilst describing the tasks the different actors have to
perform in a negotiated approach.

Augmenters Creation: Coders.
The main task of coders is to create and share augmenters. Once duly registered at
ACHA (task 1 in Fig 2), coders can create (2) and share (3) augmenters at the Aug-
menter Repository. Scripts proposed by codes might include generic adaptations that
work for diverse Web sites (ex. replace phone numbers in Web pages with a shortcut
to Skype), adaptations that exploit user profile (ex. by using user history of naviga-
tion, the augmenter might propose links to recent searches) or advanced adaptations
that allows user customize user interface (ex. letting the user to rearrange the layout).

Augmenters Certification: Web Site Owners.
As for Web Site owners, they have three main tasks, as follows:

• Registration: in first place, owners need to register the ownership of a particular
web domain (task 4 in Fig 2), for instance dblp.org. They also must provide a secu-
rity file that is use to authenticate its Web site.

• Installation: to make augmenters available through their Web sites, owners have to
include in their HTML responses the AAP component (task 5). This component is
the responsible of allowing users to select augmenters without installing Web
browser plug-ins. Tools included in AAP component have a look & feel by default
but it is possible for a Web site owner to change it to make it to fit in Web site’s
design (see tasks Config AAP and adapting look & feel (5.1) in Fig 2).

• Augmenters Certification: once the registration process is finished, Web site owner
can inspect the augmenters in the repository and certify those who he thinks useful
for adapting their Web site (task 6).

Augmenters Use: End-Users.
The negotiated approach gives to end-users a major role as they ultimately have full
control of adaptations that are going to be performed on the Web site. As we shall see
in Fig 2, users have many duties with respect to the selection of certified (activity A1)
and/or non-certified augmenters (activity A2):

• Use of certified augmenters (a): when users visit a Web site (task 7.a) for which
there are certified augmenters, the Web is rendered in the client (task 8.a) embed-
ding the AAP tool. By using the AAP tool (task 9.a) end-users can select the de-
sired augmenters which are then downloaded and executed transparently in the cli-
ent-side (task 10.a). At the same pace, the ACHA record in the repository the in-
formation that a user has downloaded and used a given augmenter.

• Use of non-certified augmenters (b): end-users use augmenters that do not have
been certified by Web site owners. Non-certified augmenters do not automatically
appear through the AAP when visiting a Web site. However, by using ACHA, us-
ers may browse non-certified augmenters (task 7.b). If the augmenter is relevant,
the user may download it (task 8.b), and use with some external Web Augmenta-
tion engine such as GreaseMonkey (task 9.b). Note that this activity is not neces-
sarily carried out by all the Web application users, but by those that are aware of
the existence of the mechanisms for adapting third-party existing applications.

9

Analysis of use of Augmenters: Web Site Owners.
As show by task 11 in Fig 2, Web Site Owners can obtain feedback of use of the ex-
isting augmenters. Information about users using non-certified augmenter (task 9.b) of
a Web site becomes part of the knowledge base of ACHA. This information is availa-
ble for Web site owners who, thereupon, can decide to investigate (or not) why users
are using such augmenters and what are they need for adapting the Web site.

4 An platform for Web augmentation dissemination

In this section we present further details about the tool support that we have devel-
oped to demonstrate the feasibility of our negotiated approach. Section 4.1 presents a
few underlying requirements that we have identified as essential for automating (as
much as possible) user tasks. This follows with the presentation of the set of tools that
have been developed to support the approach and concrete example of tool usage.

4.1 Underlying requirements

These components were defined to address several aspects we believe to be really
important for a negotiated adaptation approach:

• Easy to install: tools installation should be as simple as possible for the Web appli-
cation owners. With this in mind the only actions required to the owner are the reg-
istration of the corresponding Web application in ACHA and also to add a JavaS-
cript library on the Web pages (which contains the AAP among others). In the de-
velopment of current applications supported by Web frameworks, it usually would
mean to add a line of code in the main template of the application.

• Customizability of the look & feel for augmenters: besides to be easy to install, we
allow Web application developers to define specific styles and behavior to the end-
user tool (Augmenter Access Point tool) in order to make it compatible with the
look & feel of the application.

• Plug & Play: it is essential for end-users to be able to select, activate and deacti-
vate augmenters. Users must feel in control of the usage of adaptation but should
guide them in the process.

• Compatible and extensible: the negotiated approach and the corresponding tool set
should be compatible with existing augmenters in the community. In this way, our
current implementation is compatible with existing user scripts, which are probably
the most popular kind of artefacts. For that, our tool set must also provide an Aug-
menter Engine Emulators to make possible to execute any kind of scripts featuring
augmenters.

• Independence of Augmenter Repository: the external repository shown in Fig 2 is
proposed as a public standalone Web application. However, if Web site owners
don’t want to consume augmenters from the public repository, they instantiate a
version of both the Augmenter Repository and ACHA in a private Web server ac-
cessible to a small community of coders.

4.2 Set of tools supporting the approach

We have developed a bipartite system composed by a client-side library and a server-
side Web application. On a dedicate Web server-side, the tools include:

• Augmenters Repository and Augmenter Central Hub Application: Augmenter Re-
pository centralizes all the augmenters created by coders. The Augmenter Central
Hub Application (ACHA) allows to manage the repository according to each role,
i.e., that ACHA exposes different views and functionality for repository according-
ly with the responsibilities of coders, owners and end-users.

At the client-side, there is the Augmenter Access Point component (AAP), a JavaS-
cript library that encompasses three subcomponents cooperating with each other:

• End-User Augmenter Selection Tool: this tool aims at helping the selection of
augmenters by end-users. This tool takes into account the current context, i.e.
which Web page of the application is loaded; this is because an augmenter not nec-
essary works for the whole application but just one or a set of nodes.

• Augmenter Injector: this tool is used for downloading and executing certified aug-
menters. The tool also record the user selection, so that the next time a user visits
the same Web page, the corresponding augmenter is automatically executed.

• Augmenter Engine Emulator: this component allows the emulation of diverse APIs
such as GreaseMonkey. It was implemented to make our approach compatible with
any possible Web augmentation artefacts.

4.3 Illustration of tools in a case study

The case study presented in this section is based on the Web site dblp.org. For the
sake of illustration, in these examples we adopt the perspective of actors whilst pre-
senting tools and the corresponding tasks. Moreover, all the examples below make
reference to adaptions of the original page shown in Fig 3.

Fig. 3. Original search page of the DBLP web site.

11

Coders.
We assume that a coder has developed two augmenters that are aimed at improving
the user experience of DBLP’s users by implementing adapting features that are not
yet available there such shown by Fig 4.

a) Pie chart augmenter featuring

publications per type at DBLP
b) original DBLP page c) adapted page using respon-

siveDBLP augmenter

Fig. 4. Example of augmenters created by coders and waiting to be shared with the community.

The first is an augmenter that is able to parse a DBLP Web page, extract infor-
mation about publications and create a pie chart graph that can be injected into the
Web site for depicting publication as shown in Fig 4.a. The second augmenter is
aimed at modify the layout of Web page responsive to screen size. Fig 4.b shows the
original Web page when visualized in a small screen and how visualization problems
are fixed by the augmenter called responsiveDBLP Fig 4.c.

The augmenters illustrated by Fig 4 are ready to be used but the owners of the
DBLP Web site did not have certified them yet. In order to get a certification and
improve the visibility of these augmenters, we assume that the coder decides to share
them via a public instantiation of both the Augmenter Repository and the ACHA,
hosted at UserRequirements.org. For that, coders must create a user account on
ACHA, define a user story describing the adaptations provided by each augmenter
and finally upload it using the Web form.

Web site owners.
Let’s assume that the owners are particularly interested by the augmenter responsi-
bleDBLP shown Fig 4 mainly because such augmenters might save lots of work for
making the DBLP responsive. For including the responsiveDBLP into the DBLP Web
site, the owners have at first to register at UserRequirements.org which can be ac-
complished by following these steps:

• Create a user account in ACHA, hosted in UserRequirements.org
• Register themselves as owners of the domain dblp.org
─ Certificate ownership: in order to demonstrate that they are actually the owners

of dblp.org, they must download from ACHA a file containing a security token
for dblp.org and upload the security token file to the web application root

─ Log in in UserRequirement and validate domain. ACHA will check that the se-
curity token file is already in the owners’ Web server.

With these steps, ACHA accepts the association between that user account and the
specified domain dblp.org. Once affiliated, owners need to add the Augmenter Access
Point component into their main HTML. This only implies to add one line of code for
adding a JavaScript file, line 5 in the code shown in Fig 5.

Fig. 5. DBLP Web page (HTML) featuring the links binding it to the augmenters repository.

In order to certify augmenters, the Web site owners must look for augmenters at the
Augmenter Repository suitable to work with the DBLP Web site. As shown by Fig 6,
once the augmenter responsiveDBLP is found, the certification is done by selecting
actions enable/disable options. It is also possible to download the augmenter for in-
specting the code source and run it to see how it works. These tests are addressed
mainly to check if augmenters are compatible with the current Web site DOM, how-
ever, owners may add further tests about the augmenter execution in order to prove if
the adaptation is not spoiling relevant original content or functionality. Also from the
ACHA, Web site owners can monitor user’s feedback on this augmenter.

Fig. 6. Management of augmenters at the Web site repository: UserRequirements.org.

End-users.
When DBLP end-users visit the Web site they will be notified that certified aug-

menters exist by a green binding point at the up corner of the screen, as shown at the
left side of Fig 7. The interaction between the end-user, the Web browser and our
components is shown in Fig 8. When the user clicks on it, a menu is deployed show-
ing augmenters available (this is the Augmenter Selection Tool). To active/deactivate
an augmenter, end-users only need to click on the corresponding name in the list. Via
this menu, end-users can also see the description of the augmenter left by the coders
and further details about its popularity. Note that, as Fig 7 shows, the only augmenters
available are those certified by the Web site owners in this case Responsive DBLP.

13

Fig. 7. Using augmenters at the DBLP web site.

Fig. 8. Interaction when a Web site embedding AAP is rendered.

Fig 9 shows the selection of an augmenter from the AAP and how it connects with
the Augmenter Repository to delegates the execution to the Augmenter Injector.

Fig. 9. Interaction when the end-user wants to enable an augmenter.

Although the non-certified augmenters do not appear in the Augmenter Selection
Tool, if a user navigate the Augmenter Repository from ACHA, he may find also
those rejected by the Web site owner, for instance “Pie chart: publications per type”
among others. In these cases, the user may download and install it, in this case, with
GreaseMonkey engine. Besides that, if available augmenters do not satisfy a particu-
lar user’s need, he may ask to coders for new scripts by the addition of new user sto-
ries. For the sake of conciseness these functions are not described here but the inter-
ested reader can find further information at [8].

5 Preliminary assessment of tools

This section presents some preliminary assessment of the proposed platform.

5.1 Existent augmenters compatibility

To determine whether (or not) existing augmenters in public repositories are fully
functional and compatible with our platform we have assessed the compatibility of 15
augmenters from public repositories, listed in Table 5. The augmenter selection was
addressed to test different features:

• Generality: report if the augmenter works for any Web site or it is Web site-
specific.

• Popularity: in terms of number of users (thousands of users versus a few
known users).

• Programming effort: in terms of lines of code.
• API use: altogether, the augmenters selected use most of the API provided

by the corresponding engines (User Script engines), in this way, we could
show that Augmenter Engine Emulator is feasible to be built.

Since several of the augmenters are executed in very well-known Web sites that we
are not able to manipulate at server-side, we have attached our platform to these ap-
plications via a bookmarklet, which is just a bookmark that executes JavaScript code
when the user clicks on it. This JavaScript code is executed with the same privileges
that native JavaScript code, then it is a sufficient prove of that augmenters may work
from inside the application if the platform is also loaded. This also explains the case
study presented in Section 3.1. The result was that the 100% of augmenters listed in
Table 5 ran successfully with our platform. We have compared the result with the
execution via Web Augmentation engines, and the augmentation effects were the
same. Every feature of the augmenters (for instance, some personalization options
that some of them support) also worked.

15

Table 5. List of augmenters assessed.

Site Augmenter Description Users
Lines

of
Code

Youtube.com
Aug1: Download
YouTube Videos as
MP4

Adds a button to let users download
YouTube videos. 3.711 765

Google.com Aug2: Google Search
Extra Buttons

Add buttons (last day, last week, PDF
search etc.) to results of search page of
Google

150 104

Imdb.com Aug3: IMDB+
Add external links to IMDb. Every
feature can be enabled/disabled in
settings.

353 156

* (any Web site) Aug4: Mouseover
Popup Image Viewer

Shows larger version of thumbnails.
Also supports HTML5 video. 8.580 1.207

* (any Web site) Aug5: Google Transla-
tor Tooltip Expanded

Translates the selected text into a
tooltip automatically. 493 1.227

Imdb.com Aug6: Search IMDb
Item on Netflix

Places a "Search for this on Netflix"
button on the main page of any TV
show/movie page on IMDb

141 34

Trello.com Aug7: Trello-minimize
lists

Minimize width of lists with toggle
button 10 159

* (any Web site) Aug8: Fixed Scroller
Anywhere Scroll by fixed pages 38 630

Wikipedia.org Aug9: Wikipedia Inline
Article Viewer

Adds a hover event to internal article
links on wikipedia pages, which open
the article inline in a dhtml frame.

3 512

Geocaching.com Aug10: Geocaching
Map Enhancements

Adds Ordenance Survey maps and
grid reference search to Geocach-
ing.com, plus other enhancements.

47.648 2.726

Twitter.com
Aug11: Twitter Insta-
gram Cards - Photo
Viewer

Now that Instagram have pulled their
twitter support, this script adds back
inline instagram photos.

361 46

* (all Web site) Aug12: Universal
Syntax Highlighter

It highlights plain text source code
URLs in several languages. Based on
the SpiralX auto highlighter

42 114

Google.com Aug13: Endless google Load more results automatically and
endlessly. 4.732 142

Google.com Aug14: Google Cache
comeback

Brings back links to cached pages in
the Google search results 15.208 248

Youtube.com Aug15: Youtube to
mp3 Convert youtube video to MP3 1.724 77

6 Related work

The present work has interconnections with many relevant research areas such as
personalization and adaptation techniques of Web applications, development of
frameworks for supporting client-side adaptation and transcoding, end-user program-
ming and communities of developers. Since 1996, most of the papers related to adap-
tive hypermedia systems were focused on Web applications [3][16]. Most of the well-
known methods for the design of Web applications have incorporated the design of

adaptation mechanisms. User profile modeling [13] has become also an important
concern in adaptive Web applications, as well as the design of recommendation sys-
tems. However, the use of the Web not only is still increasing, which was the main
factor mentioned by Brusilovsky [3], but also the way in which the Web is used has
been mutating. There are several Web Augmentation communities around of existing
repositories. Most important communities (in terms of size) are related to two kinds of
artifacts, userscripts and userstyles. The formers are JavaScript-based augmenters
such as those described in this paper. Currently, there are several userscripts reposito-
ries, altogether hosting more than 180 thousands of augmentation artifacts and several
of these artifacts have been installed more than a million times. With all these existing
repositories, it is clear that Web Augmentation is a current trend among the crowd of
users. However, all these communities actually work without the intervention of Web
site owners.

From the academy, in more recent years many works have investigated the poten-
tial of using End-User Programming techniques for allowing users to customize their
applications [4][9]. Participation of the crowd of end-users is often presented as a
suitable alternative for personalization, which often requires appropriate tool support
and methodological approach for personalization [6]. Indeed, many works such as [7]
focus on tool support for allowing end-users to tune Web sites. The results are prom-
ising but the impact in terms of number of users that can be reached by such as an
approach is limited, given the skill level required to build such applications [12].

Some studies [17] have highlighted the importance of the involvement of commu-
nities of developers involved in the creation of scripts for adapting Web applications.
Moreover, some authors [12] try to explain the role played by developers in the pro-
cess. Other approaches tackle frequent design and implementation issues that appear
when developing Web augmentation artefacts. For instance, some authors have stud-
ied how augmenter may be more resilient to DOM changes or even to improve the
augmenters’ reusability (i.e., usable in several Web sites) [5]. The same authors have
proposed a security model in order to control what augmenters could do in a Web site
[1], which is clearly utilizable in our approach. Nonetheless, very few works have
investigated the relationship and possible interactions between other actors involved
in the process, namely the owners of Web sites being adapted by external scripts.

7 Conclusions and future works

In this paper we have presented a negotiated approach that involves end-users, owners
of Web sites and external communities of coders specialized in the development of
Web augmentation scripts to perform client-side adaptation of Web sites. The under-
lying idea is to share the tasks required for Web-side adaptation among the actors
involved in the process and that, for the benefits of all. By exposing the advantages
that all actors might found in process, our negotiated approach presents a new per-
spective for the research in the areas of Web scripts development and Web site adap-
tation. Indeed, we claim in this paper that a deep analysis of tradeoffs for all actors is
essential for deciding design options for implementing Web applications. In this re-

17

spect, the comparative analysis of advantages and drawbacks of adaptations ap-
proaches for each role is a contribution of this paper at its own right.

The negotiated approach is not a panacea and probably don’t solve all adaptation
problems. Indeed, it is not aimed at replacing adaptation mechanisms that work pretty
well and already fulfill a purpose. Nonetheless, we do claim that a negotiated ap-
proach opens up a new perspective for the research in the area in particular with re-
spect to the way we involve actors in the adaptation process, in terms of tools required
to support a distributed architecture for client-side adaptation and about mechanisms
for observing the evolution of end-user needs for adaptation of Web site contents.
Indeed, this work allows starting to investigate many interesting research questions
that for Web engineering, for example: In which extension end-users are able to com-
prise and collaborate with Web site owners and communities of coders? How user’s
needs that require adaptation of Web sites evolve overtime? How communities of
coders can make a bigger impact on existing Web sites? How to prevent those com-
munities of coders can damage the presentation of Web site contents? How to im-
prove trustful relationship between users that have different interests in the adaptation
of Web applications? How to ensure long term compatibility between Web sites and
external scripts?

 It is evident that for supporting the approach, and ultimately the underlying re-
search questions, appropriate tool support is necessary. For that we have developed a
set of full-fledge tools that are publicly available and we invite the interested readers
to take a look at the Web site http://UserRequirements.org for further information.
The tools are fully functional and can be used either by end-users, community of cod-
ers and Web site owners as it was dully illustrated in the present paper. Since the
availability of such tools is very recent, we still don’t have collected enough material
to make any assertion about the usability and/or user experience of people using these
tools. Due to the inner nature of the negotiated approach, studies in a long run are
required to make the necessary observation of all users and confirm if our hypothesis
(dressed here merely as an estimation effort) hold on.

As part of our future work, we have already started to advertise the platform
around the community so that we can have a substantial number of users (in different
roles) for supporting further analysis. We are also planning to pursue the study about
compatibility between scripts and Web sites.

References

1. Arellano, C., Díaz, O., Iturrioz, J. Crowdsourced Web Augmentation: A Security Model.
In Proc. of WISE 2010. Springer LNCS 6488, pages 294-307.

2. Bouvin, N. O. Unifying Strategies for Web Augmentation. In: Proc. of the 10th ACM
Conference on Hypertext and Hypermedia, 1999.

3. Brusilovsky, P. Adaptive Hypermedia. User Modeling and User-Adapted Interaction
(UMUAI). Volume 11, Issue 1-2, pp. 87-110, 2001, Springer.

4. Díaz, O., Arellano, C., Aldalur, I., Medina, H., Firmenich, S. End-User Browser-Side
Modification of Web Pages. In Proceedings of WISE (Thessalonoki, Greece), pp. 293-307,
2014.

5. Díaz, O., Arellano, C., Iturrioz, J. Interfaces for Scripting: Making Greasemonkey Scripts
Resilient to Website Upgrades. ICWE 2010: 233-247.

6. Arellano, C., Díaz, O., Iturrioz, J. Opening Personalization to Partners: An Architecture of
Participation for Websites. In Proceedings of the International Conference on Web Engi-
neering (ICWE 2012), LNCS 7387, pp. 91–105, 2012.

7. Firmenich, S., Rossi, G., Winckler, M., Palanque, P. An approach for supporting distribut-
ed user interface orchestration over the Web. Int. J. Hum.-Comput. Stud. 72(1): 53-76
(2014).

8. Firmenich, D., Firmenich, S., Rivero, M., Antonelli, L. A Platform for Web Augmentation
Requirements Specification. In proceedings of ICWE (Toulouse, France), pp. 1-20, 2014,
Springer.

9. Firmenich, S., Rossi, G., Winckler, M. 2013. A domain specific language for orchestrating
user tasks whilst navigation web sites. In Proceedings of the 13th International conference
on Web Engineering (ICWE'13), Florian Daniel, Peter Dolog, and Qing Li (Eds.). Spring-
er-Verlag, Berlin, Heidelberg, 224-232.

10. Garrido, A., Firmenich, S., Rossi, G., Grigera, J., Medina-Medina, N., Harari, I. Personal-
ized Web Accessibility using Client-Side Refactoring. IEEE Internet Computing 17(4):
58-66 (2013).

11. Han, H., Tokuda, T. Towards flexible and lightweight integration of web applications by
end-user programming. IJWIS 6(4): 359-373 (2010).

12. Jones, M. C., Churchill, E. F. 2009. Conversations in developer communities: a prelimi-
nary analysis of the yahoo! pipes community. In Proceedings of the fourth international
conference on Communities and technologies (C&T '09). ACM, New York, NY, USA,
195-204.

13. Kobsa, A. Generic User Modeling Systems. In The Adaptive Web, Methods and Strategies
of Web Personalization, pp. 136 – 154, 2007, Springer.

14. Malone, T. W., Crowston, K. The interdisciplinary study of coordination. ACM Comput.
Surv., 26(1):87–119, 1994.

15. Adomavicius, G., Tuzhilin, A. Toward the Next Generation of Recommender Systems:
Survey of the State-of-the-Art and Possible Extensions. Trans. Knowl. Data Eng. IEEE,
2005, pp. 734-749.

16. Rossi, G., Schwabe, D., Guimarães, R. Designing personalized web applications. In Pro-
ceedings of the 10th international conference on World Wide Web (WWW'01). ACM,
New York, NY, USA, 275-284.

17. Stolee, K.T., Elbaum, S., Sarma, A. 2013. Discovering How End-User Programmers and
Their Communities Use Public Repositories: A Study on Yahoo! Pipes. Information and
Software Technology 55(7):1289–1303. Retrieved October 9, 2014
(http://linkinghub.elsevier.com/retrieve/pii/S095058491200211X).

