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Luttinger liquid with asymmetric dispersion
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We present an extension of the Tomonaga-Luttinger model in which left and right-moving particles
have different Fermi velocities. We derive expressions for one-particle Green’s functions, momentum-
distributions, density of states, charge compressibility and conductivity as functions of both the
velocity difference ǫ and the strength of the interaction β. This allows us to identify a novel
restricted region in the parameter space in which the system keeps the main features of a Luttinger
liquid but with an unusual behavior of the density of states and the static charge compressibility
κ. In particular κ diverges on the boundary of the restricted region, indicating the occurrence of a
phase transition.
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In the last years there has been much interest in the
study of one-dimensional (1D) condensed matter prob-
lems [1]. Specific examples of experimentally realized
1D structures are: strongly anisotropic organic conduc-
tors [2], charge transfer salts [3], quantum wires [4], edge
states in a two-dimensional (2D) electron system in the
fractional quantum Hall (FQH) regime [5] and the re-
cently built Carbon Nanotubes [6]. All these systems
are no longer described by the usual 3D-like Fermi liquid
picture. They are believed to belong to a novel, highly
correlated state of matter known as the Luttinger liquid
(LL) [7]. Very recently, possible LL behavior in 2D high
temperature superconductors has also been reported [8].

From the theoretical point of view the most widely
studied 1D model is the so-called “g-ology” model [9],
which is known to display the LL behavior characterized
by spin-charge separation and by non-universal (interac-
tion dependent) power-law correlation functions. In par-
ticular it predicts a momentum distribution function that
vanishes at pF as n(p) ∼ (p−pF )2γ , where γ is related to
the strength of the electron-electron interaction (in the
free case one has γ = 0 and n(p) ∼ θ(pF + p)). One of
the simplest and yet very useful version of the “g-ology”
model is the exactly solvable Tomonaga-Luttinger (TL)
model, which describes left and right-moving electrons
subjected to forward-scattering interactions [10].

In this Letter we propose a simple modification of the
TL model in which left and right-moving electrons have
different Fermi velocities vL and vR. Previous studies
of LL systems involving more than one Fermi velocity
are related to an special class of chiral LL [11] and to
multiband and multichain models [12]. Another inter-
esting problem in which one has different values for vF
is the interaction between parallel conductors leading to
the so called Coulomb drag [13]. We want to stress that
the model we shall study is crucially different from all
these systems since it is neither a purely chiral LL nor a
multiband system with symmetric dispersion. Our the-

ory is formally similar to a recently proposed model for
the study of spin-orbit coupling in interacting quasi-1D
systems [14]. These authors, however, concentrated their
attention on the interplay between velocity asymmetry
and spin degrees of freedom, whereas here we derive and
analyze physical consequences connected to the asym-
metric dispersion only. As we shall see, this point of
view allows us to obtain some novel non trivial features
of the system.
To be specific we start by considering an asymmetric

dispersion described by the following Hamiltonian

H = −i~
∫

dx (vRψ
†
R∂xψR − vLψ

†
L∂xψL)

+ πU

∫

dxψ†
R ψR ψ

†
L ψL, (1)

where ψR,L and ψ†
R,L are the electron operators and U is

the strength of the forward-scattering electron-electron
interaction. In the “g-ology” language we have g2 = π U
and g4 = 0. The extension of our results to the general
case (g4 6= 0) is straightforward, here we consider this
particular case in order to keep the discussion as clear as
possible. We will set ~ = 1 from now on. Please note that
both vL and vR are positive, and U > 0 corresponds to
repulsive interactions. This is the case we shall examine
throughout this work.
Since the edge states of FQH systems have been suc-

cessfully described in terms of chiral fermions with drift
velocities proportional to E/B [5] (B is the uniform
transverse magnetic field and E is an electric field that
keeps electrons inside the sample [15]), the model above
could be experimentally realized by putting together the
edges of two FQH samples in the presence of different
fields such that the resulting fractions are also different.
In such experimental array U represents the strength of
the interaction between the charge-densities (CD) of each
fermionic branch. Recent experiments on tunneling be-
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tween edge states of laterally separated quantum Hall
effect systems [16] seems to indicate that the experiment
we propose is indeed feasible.
One interesting result of this Letter is the appearance,

due to the velocity asymmetry, of a new available re-
gion in the space of couplings in which the model (1)
predicts an anisotropic phase, in the sense that the col-
lective charge-density modes associated to each branch
propagate in the same direction. However one has to
be cautious with this prediction since our computations
show that (1) is no longer valid in this region. Indeed, as
we shall see, if we define

v0 = (vR + vL)/2 (2)

and

ǫ =
vR − vL
vR + vL

, β = U/2v0, (3)

we can only trust our model inside the unit circle in the
ǫ−β parameter space (ǫ2+β2 = 1). We then first explore
the physics described by (1) in the restricted region. We
shall be specially interested in discussing the cases of con-
stant asymmetry (ǫ fixed) and constant interbranch in-
teraction (β fixed). In so doing we found a drastic change
in the behavior of the charge compressibility κ where the
value at zero asymmetry is multiplied by a factor which
diverges on the transition curve. Studied as a function of
β for fixed ǫ, it first reaches a minimum and then there is
a strong enhancement as β → β0 ≡ √

vRvL/v0, in oppo-
sition to the monotonous decay present in the ǫ = 0 case.
A similar change of behavior is present in the density of
states (DOS) function. For β and ǫ sufficiently small one
recovers an ordinary LL system (v0 → vF ,v− → −v+).
Outside the restricted region there is a change in the

sign of one of the “plasmon” velocities, accompanied by
a dramatic change in the behavior of the Green function
for that branch, which now diverges at long distances.
This, together with the fact that κ becomes negative,
bring out that the model suffers some kind of instability
in this region. It is important to stress that this region
is absent for vR = vL.
We have studied the system (1) by using functional

bosonization techniques [17]. This amounts to defining
fermionic field operators in the Heisenberg picture. We
then have a field-theoretical, Lagrangian formulation of
the model. This, in turn, allowed us to obtain an action
describing the dynamics of the bosonic collective excita-
tions of the system. Using this action one can easily com-
pute the dispersion relations for the CD oscillations. For
short-range, constant electron-electron potentials, these
dispersions are linear, with velocities given by v± = v0η±,
and

η± = ǫ±
√

1− β2. (4)

From this equation one sees that the propagation of the
collective modes takes place for β < 1. It becomes appar-
ent that, in contrast to the usual answer for a TL model
with vR = vL and g4 = 0, here one has two different
velocities v+ and v− for the propagation of left and right
CD modes. Moreover, one of the velocities v+ or v− goes
to zero as the interaction and the asymmetry approach
the curve ǫ2 + β2 = 1 and changes its sign beyond that
curve, as anticipated above. If one keeps β fixed this
change of sign occurs for ǫ = ǫ0 ≡

√

1− β2. At this
point, as we will see, there is a divergence in the charge
compressibility and in the DOS, which suggests that a
phase transition takes place.
Now, in order to get an insight into the physical

consequences of the velocity difference, we compute
single-particle quantities: the Green function Gr(x, t) =
〈

ψr(x, τ)ψ
†
r(0, 0)

〉

τ→it
with r = +(R),− (L), the mo-

mentum distribution function, the spectral function
ρr(q, ω) given by

ρr(q, ω) = − 1

π
ImG(ret)

r (q, ω), (5)

and the DOS defined as

N(ω) =
1

2π

∑

r

∫

dq ρr(q, ω). (6)

In these equations, G
(ret)
r (q, ω) is the Fourier transform

of the retarded Green function:

G(ret)
r (x, t) = iθ(t)

〈{

ψr(x, t), ψ
†
r(0, 0)

}〉

. (7)

For the normal phase (β2+ǫ2 < 1), the Green function
at T = 0 is given by

Gr(x, t) =
1

2πα

(

α

α− ir(x − vrt)

)γ+1

×
(

α

α+ ir(x− v−rt)

)γ

(8)

where α is an ultraviolet cutoff. The constant γ has the
usual expression in terms of the stiffness constantK, γ =
(K+K−1−2)/4, but in this constant vF must be replaced
by the average v0:

K =

√

v0 − U

v0 + U
=

√

1− β

1 + β
. (9)

In the outer region (β2 + ǫ2 > 1), for vR > vL, we get

GR(x, t) =
1

2π

[α− i(x− v−t)]
γ

[α− i(x− v+t)]
γ+1 (10)
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and

GL(x, t) =
−1

2πα2

[α− i(x− v−t)]
γ+1

[α− i(x− v+t)]
γ . (11)

From these results one obtains a momentum distribu-
tion of the Fermi type for the right branch, i.e., nR(p) ∼
θ(p−pR). However, the situation is very different for nL.
Indeed, when taking the appropriate t→ 0− limit in or-
der to employ the usual definition of nL(p), one finds that
the correlator increases linearly with distance, instead of
having the x−1 decay (typical of 3D-like systems) as is
the case for the right branch, or the x−(2γ+1) behavior
that yields the LL result in the “normal” LL region. This
leads to nL ∼ δ′(p + pL). The appearance of this diver-
gent (at long distances) left correlator, together with a
momentum distribution which is not a positive definite
quantity, are clear indications that the model given by
(1) is unphysical beyond β2 + ǫ2 = 1. (For vL > vR the
corresponding left and right behaviors are exchanged).
We then conclude that the model given by (1) yields sen-
sible results for ǫ2 + β2 < 1 and from now on we will
restrict our study to that region.
From equation (5) one can calculate the spectral func-

tion ρr(q, ω). We obtain, as in the symmetric case, only
one singularity in the positive frequency sector and one
in the negative sector, as expected for spinless systems.
The function diverges at those points as

ρr(q, ω) ∼ (ω − vrq)
γ−1(ω − v−rq)

γ

× [θ(ω − v−q)θ(ω − v+q) + θ(v−q − ω)θ(v+q − ω)].
(12)

The exponents do not depend on ǫ whereas the position
of the singularities does.
Concerning the DOS we get

N(ω) = N0(ω)

(

1− ǫ2

ǫ20

)−1−γ

(13)

with

N0(ω) =
1

πv0

(ω/ω0)
2γ

Γ(2γ + 1)(1− β2)γ+1/2
, (14)

where ω0 = v0/α and Γ is the Gamma function. We
see that as the asymmetry is increased, the DOS grows
from its value at ǫ = 0, and diverges at the point ǫ = ǫ0.
We want to stress that in systems with several spectral
branches as multicomponent Tomonaga-Luttinger model
[1] and spin-polarized Luttinger liquids [18] a growing
of the DOS as increasing the velocity difference between
spectral branches is also observed. This disagrees with

the result obtained in the system with spin-orbit coupling
[14].
Using standard linear response theory one can express

the conductivity as an integral of the retarded current
density correlation function. At this point one has to
recall that the naive definition of the current j = vRρR−
vLρL does not satisfy the continuity equation [19]. This
choice for j leads to a frequency-dependent conductivity
that diverges on the unit circle ǫ2 + β2 = 1 and becomes
negative for ǫ2 + β2 > 1. However, as shown in [19] it is
indeed possible to build a physical current starting from
the continuity equation. Extending this procedure for
the present ǫ 6= 0 case we obtain jphys = (1 − β)(ρR −
ρL) + v0ǫ(ρR + ρL). Using this expression we were able
to get the frequency-dependent conductivity σ as:

σ(ω) =
v0 (1− β)

π ω
, (15)

which is independent of ǫ.
Let us now consider the static charge compressibility of

this system, defined as κ = 〈(ρR + ρL)(ρR + ρL)〉 (q, ω)
for ω → 0. A straightforward computation yields

κ = κ0

(

1− ǫ2

ǫ20

)−1

(16)

with

κ0 =
1

π v0 (1 + β)
, (17)

where one sees the divergence that takes place, at fixed
β, for ǫ = ǫ0. This is similar to the behavior of the DOS,
although both functions diverge with different exponents.
Note that beyond ǫ0 one obtains negative values for the
compressibility, a further indication that the model is not
valid in that region. In Figure 1 we show the dependence
of κ on ǫ for different values of β. We see that the asym-
metry enhances the compressibility. Of course, it is also
possible to study κ as function of the coupling β, for
a fixed asymmetry. This is depicted in Figure 2 where
one sees that in drastic departure from the symmetric
case, which displays decreasing κ for increasing β, now
κ reaches a minimum and then grows without bound as
β → β0.
The critical behaviour of the static charge compress-

ibility and the DOS at ǫ0 together with the “freezing” of
one of the spectral branches (v+/− → 0) is an indication
that a phase transition involving CD degrees of freedom
takes place on the boundary β2 + ǫ2 = 1. A similar tran-
sition related to spin variables was also found in [14].
In summary, we have presented a simple modification

of the usual TL model, in which left and right-moving
particles have different Fermi velocities. By using func-
tional bosonization methods we computed the dispersion
relations of the underlying bosonic collective modes of the
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FIG. 1: Static charge compressibility as function of ǫ, for
β = 0.1, 0.6, 0.9.
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FIG. 2: : Static charge compressibility as function of β, for
ǫ = 0.1, 0.6, 0.9.

system. We showed that the velocity asymmetry gives
rise to some remarkable features. We have found that
the values for the electron-electron coupling β and the
asymmetry ǫ are restricted to lie inside the circumfer-
ence ǫ2+β2 = 1 in order to guarantee the stability of the
LL described by (1). In this region, the DOS N(ω) and
the static charge compressibility κ display a big devia-
tion from the standard LL behavior. For a fixed asym-
metry one sees that now κ reaches a minimum and then
grows without bound as β → β0. On the boundary of
the restricted region the velocity of one spectral branch
goes to zero. Also κ and DOS diverge when approach-
ing this critical boundary, indicating the appearance of a
new phase.
To conclude we would like to stress that the idealized

model we present here could be approximately realized
by allowing the interaction between the edge states of two

FQH plates. Since the drift velocities of the correspond-
ing chiral LL’s are proportional to E/B, one could have
vR 6= vL by conveniently tuning up the corresponding
values of these fractions.
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