
L-moments and C-moments
T. J. Ulrych, D. R. Velis, A. D. Woodbury, M. D. Sacchi

Abstract It is well known that the computation of higher order statistics, like
skewness and kurtosis, (which we call C-moments) is very dependent on sample
size and is highly susceptible to the presence of outliers. To obviate these
dif®culties, Hosking (1990) has introduced related statistics called L-moments. We
have investigated the relationship of these two measures in a number of different
ways. Firstly, we show that probability density functions (pdf ) that are estimated
from L-moments are superior estimates to those obtained using C-moments and
the principle of maximum entropy. C-moments computed from these pdf 's are not
however, contrary to what one may have expected, better estimates than those
estimated from sample statistics. L-moment derived distributions for ®eld data
examples appear to be more consistent sample to sample than pdf 's determined by
conventional means. Our observations and conclusions have a signi®cant impact
on the use of the conventional maximum entropy procedure which typically uses
C-moments from actual data sets to infer probabilities.

1
Introduction
Probability density functions are of central importance in science and engi-
neering, and certainly to us. For example, Mauricio Sacchi (1996) shows how we
can build objective functions using Bayes' theorem, Allan Woodbury (1989) is
involved in Bayesian interpolation and Tad Ulrych (1998) is examining proba-
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bility density functions associated with chaotic time series. An excellent preprint
by Gouveia, de Moraes and Scales (1998) who write about the use of higher
moments for the maximum entropy construction of Bayesian a priori pdf 's,
presents clearly both the use of derived pdf 's as well as dif®culties encountered in
computing these functions from realizations. These dif®culties prompted Hosking
(1990) to formalize a method for the estimation of statistics that are measures of
higher moments, skewness and kurtosis for example, but are more robust with
respect to sample size and the presence of outliers. These measures, called L-
moments, are based on expectations of linear combinations of order statistics.
Indeed, Vogel (1995) observes that the introduction of the theory of L-moments
by Hosking ``is probably the single most signi®cant recent advance in relating to
our understanding of extreme events''.

In this paper we concern ourselves, speci®cally, with the following question.
What is the relationship between conventional moments, that we call C-moments
in this paper for convenience, and L-moments? This brings into focus such issues
as the inversion of L-moments to compute pdf 's, the comparison of pdf 's
computed using C- and L-moments and, ®nally, the computation of C-moments
from L-moment derived distributions.

The robust computation of higher moments of pdf 's from limited datasets are
often used statistics. Important applications occur in wavelet estimation (Velis and
Ulrych, 1996) and in the determination, by means of the principle of maximum
entropy, of distributions that enter as prior probabilities in Bayesian inference
(Gouveia et al., 1998). The central concept here is that of robustness. The con-
ventional method for the determination of higher order moments, called the direct
approach, is by means of an integral formulation. L-moments simplify this com-
putation considerably. Not only do L-moments lead to simpli®cation, they also
yield estimates with much lower bias. These properties are of such importance that
Royston (1991) has proposed that all statistical packages incorporate L-moments
as the method of computing higher order moments. The question remains in our
minds, however. How are these different estimates of pdf properties, related?

In order to investigate this topic, we pursue the following methodology. We ®rst
compute C- and L-moments from a particular sample size. We then determine the
associated pdf using the principle of maximum entropy for both C- and L-mo-
ments (no mean task, as it turns out) and compare the derived distributions with
the actual pdf. Finally, we compute C-moments from the L-moment derived pdf.

2
Theoretical summary
We present, brie¯y, the derivation of L-moments, as well as some details of the
inverse problem that we solve to determine pdf 's from L-moments.

2.1
L-moments
We are all very familiar with the ®rst two moments, the mean and the variance.
The next two moments, skewness and kurtosis are also familiar, but less so. In
applied geophysics, at least, these moments are seldom used. Although their
application has been somewhat limited in the past, the scale dependent phe-
nomena that we are constantly encountered with demands that we look at our
data in ever ®ner detail. This is where these statistics are of great importance. As
we will see, conventional estimation of skewness and kurtosis has serious
drawbacks. To obviate some of these drawbacks, Hosking (1990) formalized a
method for their estimation that is based on expectations of linear combinations
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of order statistics. This approach originated with the work of Gini (1912) and was
described by Kaigh and Driscoll (1987). Hosking's paper, a beautiful paper in-
deed, has had an explosive effect in some ®elds. Hoskings's paper has led to
several papers that attempt to explain to those of whom, like us, are less well
versed with the ®ne art of pure statistics, what these linear combinations actually
mean and what advantageous properties they posses. We are referring to two
papers in particular: Royston (1992) and Wang (1996). We present here a dis-
tillation that is brief and, we hope, to the point.

2.1.1
A reminder
First of all, a reminder. Consider a random variable X with a pdf p�x�. The rth
moment of p�x� is de®ned as

E�Xr� �
Z

xrp�x�dx �1�

De®ning the mean and the variance by l and r2, respectively, we obtain (using
Royston's (1992) notation) the usual indices of skewness,

p
b1, and kurtosis,

b2, as

p
b1 � E��X ÿ l�3=r3� �2�

and

b2 � E��X ÿ l�4=r4� �3�
where E� � � denotes expectation.

2.1.2
Definition of L-moments
De®ne Xj:n to be the jth smallest moment in a sample of size n. The L-moments
of X are de®ned by

lr � 1

r

Xrÿ1

j�0

�ÿ1�j r ÿ 1
j

� �
E�Xrÿj:r�; r � 1; 2; . . . �4�

The ®rst four L-moments are then de®ned by

l1 � E�X1:1� �5�
l2 � 1

2E�X2:2 ÿ X1:2� �6�
l3 � 1

3E�X3:3 ÿ 2X2:3 � X1:3� �7�
l4 � 1

4E�X4:4 ÿ 3X3:4 � 3X2:4 ÿ X1:4� �8�

Let us ®rst note that we are estimating linear combination of order statistics.
In fact the L in L-moments represents exactly this linearity. Wang (1996) gives the
following, intuitive, interpretation of L-moments. One value in a sample gives
a feel for the magnitude of X. Two samples, through their difference, give a feel
for the variability of X. Three samples, give an indication of the asymmetry of
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p�x� and, ®nally, four samples, tell us something about the ratio of peak to tails of
p�x�. Akin to the de®nition of conventional normalized moments, s3 � l3=l2 and
s4 � l4=l3 are statistics related to the skewness and kurtosis of the pdf.

2.1.3
Estimating L-moments by means of PWMs
Greenwood et al. (1979) de®ne PWMs (probability weighting moments) as

br �
Z1

0

x�F�FrdF �9�

where F is the cumulative distribution.
In a manner similar to the determination of product moments about the mean

or about the origin, Hosking has shown that the ®rst four L-moments are given by

l1 � b0 �10�
l2 � 2b1 ÿ b0 �11�
l3 � 6b2 ÿ 5b1 � b0 �12�
l4 � 20b3 ÿ 30b2 � 12b1 ÿ b0 �13�

Given ranked samples of X; x1 � x2 � x3 � � � � � xn, Landwehr et al. (1979) have
shown that the unbiased estimator of br is given by

b̂r �
1

n

Xn

iÿ1

�iÿ 1��iÿ 2� � � � �iÿ r�
�nÿ 1��nÿ 2� � � � �nÿ r� xi �14�

The L-moments may now be computed by means of Eq. (14).
At this stage, Wang (1996) points out that this procedure is not particularly

ef®cient or clear. In other words, PWMs obscure the intuitive understanding of L-
moments. Wang makes the point that how L-moments are de®ned appears to be
unrelated to how they may be estimated and he suggests a more logical approach
that he calls the direct method.

2.1.4
Direct estimation of L-moments
Consider as a speci®c example the estimation of l2, Eq. (6). For each combination
of any two values from a population of size n, we form the average of all dif-
ferences between larger and smaller. Clearly, by examining Eq. (6), we see that
this average is simply equal to 2l2. Similar considerations apply to the other L-
moments. Wang now shows us a method of covering all possible combinations,
that may be large even for small sample sizes, to ef®ciently compute the direct
estimators of L-moments.

2.1.5
The Wang scheme

l̂1 � 1
nC1

Xn

i�1

xi �15�
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l̂2 � 1

2

1
nC2

Xn

i�1

�iÿ1C1 ÿ nÿiC1�xi �16�

l̂3 � 1

3

1
nC3

Xn

i�1

�iÿ1C2 ÿ 2 iÿ1C1
nÿiC1 � nÿiC2�xi �17�

l̂4 � 1

4

1
nC4

Xn

i�1

�iÿ1C3 ÿ 3 iÿ1C2
nÿiC1 � 3 iÿ1C1

nÿiC2 ÿ nÿiC3�xi �18�

where, as before, x�i�; i � 1; 2; . . . ; n are samples ranked in ascending order and

rCk �
ÿ r

k

� � r!

k!�r ÿ k�! : �19�

For a derivation of these equations, please see Wang (1996).

2.2
Maximum entropy density estimation
A very useful, and perhaps the best, method for conservatively assigning prob-
abilities consists of maximizing the entropy of the unknown distribution subject
to constraints on its moments (Jaynes, 1957). The problem can be solved by
means of Lagrange multipliers in the case that the constraints are given by the
conventional moments (i.e. mean, variance, skewness, kurtosis, etc.). Addition-
ally, a normalization constraint is included. The formulation leads to an un-
constrained problem where the Lagrange multipliers represent the unknowns.

The entropy of a discrete distribution has been de®ned by Shannon (1948) as

H�p� � ÿ
X

i

pi log pi ; �20�

where pi is the probability of one of N possible outcomes of a given experiment.
For a continuous distribution,

H�p; q� � ÿ
Zb

a

p�x� log
p�x�
q�x� dx ; �21�

is known as the relative or cross-entropy (Rietsch, 1977; Shore and Johnson,
1981), where x is a continuous variable that lies in the range �a; b�, and q�x� is
Jaynes' invariant measure. This term represents a state of knowledge against
which one makes comparisons. It is also known as the prior.

In practice, a and b are determined from the data (e.g. minimum and maxi-
mum values of the sample), and the prior is often the uniform distribution on
�a; b� (the least informative prior). A particularly ¯exible method of incorporating
prior information is by means of the principle of minimum relative entropy, that
has found important application in the inversion of linear problems of general
interest (see Woodbury and Ulrych, 1998 for a complete review).

The normalization is written asZb

a

p�x�dx � 1 ; �22�
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and the moment constraints are given byZb

a

xrp�x�dx � lr; r � 1; . . . ;K ; �23�

where lr are estimated from the data using sample statistics. Maximizing Eq. (21)
with an uniform prior subject to the above constraints, leads to

p�x� � exp ÿk0 ÿ
XK

r�1

krxr

" #
: �24�

The Lagrange multipliers kr are obtained by solving a set of K � 1 non-linear
equations. These equations come from replacing the solution, Eq. (24), into each
of the constraints. It is important to note here that the constraints are linear with
respect to the unknown distribution. This allowed us to write Eq. (24) as a
function of kr only.

We propose the use of L-moments instead of C-moments in the maximum
entropy determination of probability densities. The advantages of L-moments
have already been summarized in a previous section and more details can be
found in Hosking (1991) and Royston (1992). Because L-moments are de®ned in
terms of F�x� rather than in terms of p�x�, the constraints cannot be easily
incorporated into the optimization problem through Lagrange multipliers.
Rather, we de®ne the following cost function to be minimized with respect to the
unknown distribution:

U�p�x�; F�x�� � ÿH � a 1ÿ
Zb

a

p�x�dx

0@ 1A2

�
X

r

�lr ÿ l̂r�2
264

375 ; �25�

In Eq. (25), the expression between square brackets is a penalty term (a is a
constant) that takes into account the constraints. Distribution L-moments, lr , are
evaluated using Eqs. (10)±(13) together with Eq. (9), whereas sample L-moments,
l̂r , are computed using Eqs. (15)±(18).

All integrals appearing in the above equations are computed numerically by
means of Gauss±Legendre M-point quadrature, where M is the number of points
x1; x2; . . . ; xM, in �a; b�, with which we approximate the distribution, and cor-
respond to the roots of the Gauss±Legendre polynomial (see for example Press
et al. (1992)). In practice, we found it very useful to write all unknowns in terms
of increments di, that is

Fi � Fiÿ1 � di; F0 � 0; i � 1; . . . ;M ; �26�
and compute pi using central ®nite differences:

pi �
�F2 ÿ F1�=�x2 ÿ x1� � d1=�x2 ÿ x1� i � 1
�Fi�1 ÿ Fiÿ1�=�xi�1 ÿ xiÿ1� � �di � di�1�=�xi�1 ÿ xiÿ1�;

i � 2; . . . ;M ÿ 1
�FM ÿ FMÿ1�=�xM ÿ xMÿ1� � dM=�xM ÿ xMÿ1� i � M ,

8>><>>:
�27�
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in such a way that the cost function (25) can be expressed in terms of di only.
Note that setting 0 � di � 1 is very convenient for ensuring that the Fi's are
monotonically increasing and the pi's are all positive. Then we write

H ' ÿ
XM

i�1

pi log piwi ; �28�

andZb

a

p�x�dx '
XM

i�1

piwi : �29�

where wi are the weights of the Gauss±Legendre quadrature. Finally, L-moments
are computed through the PWMs using

br �
Z1

0

x�F�FrdF �
Zb

a

xFr�x�p�x�dx '
XM

i�1

xiF
r
i piwi : �30�

In summary, the optimization problem consists of ®nding the unknown incre-
ment vector d, such that U�d� is minimum. Since the cost function U�d� is highly
non-linear, we can either solve the problem by means of a linearization approach,
that may depend strongly on a good initial guess, or by using a global optimi-
zation algorithm (for example, simulated annealing). Since we believe that the
solution of the C-moments problem is, indeed, a good initial guess, we use a local
convergent algorithm to minimize the cost function. Here, given dj at iteration j,
we compute Fj and pj using Eqs. (26) and (27) respectively. We then compute H
and the constraint terms (including the PWMs) as described above.

3
Examples
We now illustrate the behavior of the non-parametric density estimation using the
maximum entropy criterion with C- and L-moment constraints. We choose two
distributions that re¯ect only kurtosis and both skewness and kurtosis, and a
mixture of two distributions that re¯ects both skewness and kurtosis, too. Clearly,
this is a rather limited investigation, but, we are primarily interested in some
broad rather than detailed conclusions. Field data examples are also considered.
We examine some realizations of re¯ection coef®cients obtained from well logs,
and log-hydraulic conductivity values from an aquifer. All ®gures also show the
pdf derived using a kernel approach, speci®cally the Epanechnikov kernel (Sil-
verman (1986)), for comparison.

3.1
Symmetric distribution
The ®rst example illustrates the method for samples of various sizes drawn from a
Laplace distribution, with and without outliers. The Laplace probability density
function with location n and scale s is given by

p�x� � 1

2s
exp�ÿjxÿ nj=s� : �31�
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This distribution has
p

b1 � 0 and b2 � 24s2. For the experiment we set s � 0:5
and generated 120 realizations of sample sizes between 10 and 250, and
estimated the density function using the ®rst four C-moments and L-moments,
respectively. The results of calculating the skewness and kurtosis coef®cients from
the derived pdf 's, as well as the root-mean square (rms) error between true
and estimated pdf, are shown in Fig. 1 (1st and 2nd rows). We can observe that
the L-moments solution yields smaller rms error for all sample sizes, though the
resulting C-moments derived from the density function are no better than the
sample C-moments. Although the kurtosis is less biased towards smaller values,
its variance is larger than that of the sample kurtosis. A possible explanation for
this behavior is that C-moments contain much more information regarding the
tail of the distribution than the L-moments. On the contrary, L-moments are
insensitive to the tails of the distribution and thus provide more information for
modeling the body of the distribution.

Figure 2 compares the resulting pdf for 10 independent realizations of sample
size 150. The sharp peak of the Laplace distribution is recovered more accurately
using L-moment than C-moment constraints. Table 1 summarizes the mean and
standard deviations of the resulting skewness, kurtosis, and rms error for 100
independent realizations of sample size 150.

Fig. 1. Skewness, kurtosis and rms error of the estimated pdf 's with C- and L-moments
constraints for samples drawn from a Laplace distribution without outlier (1st and 2nd
rows), and with outlier at X � 2:5 (3rd and 4th rows)
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The same experiment was repeated but adding a single outlier point at X � 2:5.
The results are shown in Fig. 1 (3rd and 4th rows). The bias towards higher
moment values is now very clear, even for the larger sample sizes. Though C-
moments derived from the L-moment constrained pdf have large variance, they
are less sensitive to the presence of the outlier. The rms error is also smaller and
the shape of the true distribution is more accurately recovered, as may be seen in
Fig. 2. Note the failing to reproduce the left shoulder of the pdf in the C-moment
constrained case. This is because the right tail is ¯atter so as to ®t the high
kurtosis values.

3.2
Skewed distribution
In the next example we used a Log-normal distribution with parameters n and s:

p�x� � 1

s
�����
2p
p �xÿ n� exp ÿ log�xÿ n�2=2s2

� �
; x � n : �32�

n has been selected in such a way that l � n� exp�s2=2� � 0 for convenience. For
s � 0:4, we obtain n � ÿ1:083;

p
b1 � 1:32 and b2 � 6:24. The results of the

simulations for sample sizes between 10 and 250 are depicted in Fig. 3 (1st and
2nd rows). As observed from the ®gure, both methods perform well in terms of
the resulting C-moments and estimated distributions, though the C-moment
constrained pdf error curve shows less variability. Figure 4 shows 10 realizations
using sample sizes of 150, and Table 2 summarizes mean and standard deviations
for 100 realizations.

The computations were repeated with the addition of a single outlier at
X � 5:0. As expected the C-moments are heavily biased toward larger values, as
illustrated in Fig. 3 (3rd and 4th rows), especially for smaller data samples. The
bias is smaller in the L-moment case, while the error is not much different from
the no outlier case.

3.3
Bimodal distribution
Perhaps the major impact of using L-moments instead of C-moments can be best
appreciated by the following example. Random samples have been drawn from a
mixture of two Gaussian distributions N�ÿ1; 0:2� and N�1:0; 0:2�, where the
proportion of the mixture was 40% and 60%, respectively. We run the same
experiment as in the previous examples and the results are displayed in Figs. 5
and 6. Here, we added a single outlier at X � 7:0. In all cases the rms error of the
L-moment constrained pdf is signi®cantly smaller that the C-moment counter-
part. At the same time, the conventional skewness and kurtosis measures

Table 1. Mean and standard deviation of the resulting skewness, kurtosis, and rms error
for 100 independent realizations of sample size 150 for the Laplace pdf. Primes indicate
outlier

p
b1 rpb1

b2 rb2
rms rrms

C 0.02 0.62 5.62 2.23 0.135 0.015
L 0.09 0.76 9.21 4.56 0.084 0.007
C¢ 2.49 0.48 21.23 3.68 0.153 0.014
L¢ 1.32 0.69 14.44 4.08 0.088 0.026
true 0.00 ± 6.00 ± ± ±
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obtained from the resulting L-moment constrained pdf show less sensitivity to
sample size and outliers than the sample statistics. In some cases, the two modes
of the distribution can only be well-resolved using L-moments, as illustrated in
Fig. 6. When the outlier has been added, both the C-moment (constrained) and
the kernel pdf 's fail to reproduce the true distribution.

Although not shown here, the use of a larger sample size does not affect
signi®cantly the estimation of the pdf using C-moments, unless more than the
®rst four moments are utilized. On the other hand, the ®rst four L-moments
appear to contain more complete information about the distribution shape than
the ®rst four C-moments. In this case, and as opposed to L-moments, C-moments
are very sensitive to the tails of the distribution, and not very good at charac-
terizing its center, as shown in Fig. 5 and Table 3.

3.4
Field examples
We obtained interesting results while computing C- and L-moment derived pdf 's
for some realizations of re¯ection coef®cients obtained from well logs in the
Campos basin, offshore Brazil (Rosa and Ulrych, 1991). We examined many
different logs but show the results of only one for obvious reasons. These results
are, however, remarkably representative. Figure 7 (top row) shows the derived

Fig. 3. Skewness, kurtosis and rms error of the estimated pdf's with C- and L-moments
constraints for samples drawn from a Log-normal distribution without outlier (1st and 2nd
rows), and with outlier at X � 5:0 (3rd and 4th rows)
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pdf 's when the whole sample containing 1000 points is considered. Figure 7
(bottom row) shows the results when the pdf 's are computed with 100 point non-
overlapping windows to avoid non-stationary effects in the computation. Apart
from a single 100 point realization that yields a broad bell shaped distribution on
both the C- and L-moment pdf 's, the L-moment derived pdf 's show more con-
sistency, sample to sample.

A second ®eld example consists of log-hydraulic conductivity values from the
Borden aquifer in Ontario, Canada. This particular data set, and subsequent
interpretations have sparked considerable controversy in the literature (Sudicky,
1986). Domenico and Schwartz (1998, p. 38) make the point that ``there is no
hard and fast rule that hydraulic conductivity is log-normally distributed, or for
that matter are other parameters''. Indeed, Woodbury and Sudicky (1991) show
that other distributions may be appropriate for a valid description of the hy-
draulic conductivity. Woodbury and Sudicky (1991, Figs. 1, 2) also note the
presence of outliers in the data set, i.e. values of ln-K of less than ÿ6:0, and that
the data set has a signi®cant negative skew. What is then, the effect of outliers
on the parametric modeling of such a data set? In Fig. 8 we present the esti-
mated pdf 's using 100 samples out of the total data set of 1188 values of ln-K
data (solid line). The sub-sampling procedure is used to examine statistics from
a data set affected by correlation (Woodbury and Sudicky, 1991). In this

Fig. 5. Skewness, kurtosis and rms error of the estimated pdf 's with C- and L-moments
constraints for samples drawn from a mixture distribution without outlier (1st and 2nd
rows), and with outlier at X � 7:0 (3rd and 4th rows)
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particular case, there is almost no visual difference between the C- and the L-
moment solutions. The calculations were also repeated including a single outlier
at ln-K � ÿ7:0 (dashed line), and at ln-K � ÿ1:0 (dotted line), in order to
simulate possible data errors. In the second case (outlier at ln-k � ÿ1:0),
sample skewness and kurtosis go from ÿ0:31 and 3.02 to 1.92 and 14.48, re-
spectively. On the contrary, skewness and kurtosis derived from the L-moments
constrained pdf are 0.53 and 5.83 respectively, values that are much closer to
those of the no-outlier case (see Table 4).

4
Summary and conclusions
We have attempted to answer, or at least explore, the question of how C- and L-
moments are related. The approach we have used is to compare these moments by
means of the pdf 's that can be computed by using them as constraints in the
inversion. First, we summarize in the form of a partial list, some of the properties
of L-moments as reported in the literature.

Table 2. Mean and standard deviation of the resulting skewness, kurtosis, and rms error
for 100 independent realizations of sample size 150 for the Log-normal pdf. Primes indicate
outlier

p
b1 rpb1

b2 rb2
rms rrms

C 1.23 0.34 5.33 1.89 0.034 0.013
L 1.21 0.35 5.37 1.95 0.036 0.017
C¢ 2.92 0.29 18.76 3.35 0.038 0.007
L¢ 2.11 0.37 11.45 2.91 0.048 0.017
true 1.32 ± 6.24 ± ± ±

Table 3. Mean and standard deviation of the resulting skewness, kurtosis, and rms error
for 100 independent realizations of sample size 150 for the mixture pdf. Primes indicate
outlier

p
b1 rpb1

b2 rb2
rms rrms

C )0.33 0.13 1.79 0.16 0.044 0.015
L )0.29 0.12 1.76 0.16 0.032 0.008
C¢ 0.86 0.11 7.79 0.55 0.091 0.001
L¢ )0.37 0.27 2.52 0.80 0.047 0.012
true )0.31 ± 1.74 ± ± ±

Table 4. Skewness and kurtosis for data from the Borden Aquifer

no outlier ln-K = )7.0 ln-K = )1.0

C L C L C L

p
b1 )0.31 )0.24 )1.06 )0.70 1.92 0.53

b2 3.02 3.20 6.27 4.85 14.48 5.83
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1. L-moments, as compared to C-moments, are linear functions of the data and
suffer less from effects of sampling variability, are more robust to outliers
and are less sensitive to sample size (Hosking, 1991). Of particular signi®-
cance is the much larger bias that

p
b1 and b2 exhibit for small sample sizes, in

comparison to L-moment ratios.
2. In general, Royston (1991) points out that whereas

p
b1 and b2 are very sen-

sitive to small and perhaps unimportant perturbations in the tails of the dis-
tribution, s3 and s4 are dependent on changes in the shape of the main portion.

3. A Normal distribution, N�l; r2�, may be described in terms of its L-moments as
l1 � l and l2 � pÿ1=2r. Unfortunately, according to Hosking, an L-moment
analog of covariance is not easily de®ned.

4. Another observation by Hosking that has unfortunate rami®cations for the
inversion problem (see Gouveia et al., 1998), is that no extension of L-mo-
ments to the multivariate case is immediately apparent.

5. Whereas in some cases (Cauchy distribution being an example) C-moments
may not exist, L-moments are guaranteed to exist.

The points enumerated above, clearly describe L-moments as statistics that show
many advantages in comparison to conventional measures. We have also found,
in our simulations, that, in general, L-moments are much less sensitive to sample
size and, in particular to outliers. Perhaps the examples that are illustrated in this
paper do not underline this conclusion, but certainly the work of other re-
searchers as well as many examples that we do not have room to report, strongly
support this observation. Given these properties, we had hoped that pdf 's com-
puted using L-moments could then be used to compute C-moments that would be
more robust measures than those derived from sample statistics. This has not
turned out to be unequivocally so. It is true that the pdf 's derived from L-moment
constraints are ``better'' than those derived from C-moments in a mean squared
error sense. Although it may be argued, from the limited experiments that we
have performed that, when outliers are present in the data, C-moments derived
from pdf 's computed from L-moment constraints show somewhat less bias and a
smaller variance than C-moments computed from samples, the difference is
certainly not dramatic.

The fact that the L-moment derived pdf 's are superior estimates of the true
pdf 's is interesting and may be of importance when the shape of the pdf is the
object of the experiment. The Laplace pdf, for example, serves as a good illus-
tration of the different estimates. It is clear that the L-moment derived pdf shows
much more decisively than the conventional estimate that the pdf may be Lap-
lacian. Such a conclusion can, of course, be then used to parametrically ®t an
actual Laplacian pdf to the data and thereby obtain estimates of the C-moments.
This conclusion is also supported by the mixture of two distributions example,
which demonstrates that L-moments are better for characterizing the main
portion of the distribution than the C-moments.

An observation worth making that stems from our work, and is well demon-
strated by our ®rst three examples, is that the degree to which L-moments are
superior estimates to C-moments, for a given small data sample, depends to a
large extent on the pdf itself. i.e., the robustness of L-moments is, to some extent,
data dependent.

In our limited experience, application of L-moment derived pdf 's to ®eld data
appears to show strong advantages. The derived pdf 's are certainly more con-
sistent when various logs from the same area are compared. The same observa-
tion applies when short data lengths from the same log are considered in order to
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avoid possible non-stationarity. In the case of ®eld data that included an imposed
outlier, L-moment statistics were considerably more robust than the C-moment
counterparts.
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