
ORIGINAL ARTICLE

WebSpec: a visual language for specifying interaction
and navigation requirements in web applications

Esteban Robles Luna • Gustavo Rossi •

Irene Garrigós

Received: 11 January 2011 / Accepted: 29 May 2011 / Published online: 24 June 2011

� Springer-Verlag London Limited 2011

Abstract Web application development is a complex and

time-consuming process that involves different stakeholders

(ranging from customers to developers); these applications

have some unique characteristics like navigational access to

information, sophisticated interaction features, etc. How-

ever, there have been few proposals to represent those

requirements that are specific to Web applications. Conse-

quently, validation of requirements (e.g., in acceptance tests)

is usually informal and as a result troublesome. To overcome

these problems, we present WebSpec, a domain-specific

language for specifying the most relevant and characteristic

requirements of Web applications: those involving interac-

tion and navigation. We describe WebSpec diagrams, dis-

cussing their abstraction and expressive power. With a

simple though realistic example, we show how we have used

WebSpec in the context of an agile Web development

approach discussing several issues such as automatic test

generation, management of changes in requirements, and

improving the understanding of the diagrams through

application simulation.

Keywords Web requirements � Interaction � Testing �
Simulation � Code generation

1 Introduction

Several studies [1, 2] in industrial cases have shown the

importance of requirements in Web application develop-

ment. Unfortunately, in this kind of applications, require-

ments are generally described in informal documents (e.g.,

use cases [3]) shared by the different stakeholders of the

project, which are very poor to express the particularities of

the Web (e.g., their interactive and navigation-driven nat-

ure). The fact that development teams are usually multi-

disciplinary (including customers, visual designers,

developers, QA staff, etc.) and that Web application

requirements change very fast (e.g., as the result of early

users’ feedback) makes things even harder.

The fast evolution of Web applications poses additional

constraints to allow continuous and timely application

testing against the requirement specification [2]. In this

context, capturing and modeling requirements should be

efficient enough to accomplish the time constraint. More-

over, requirement artifacts have to be easily understood to

be validated by stakeholders prior to the development, in

order to avoid future wastes of time. Moreover, as in

‘‘ordinary’’ software, during the development process, the

application has to be checked in order to validate that new

requirements have been correctly implemented without

‘‘breaking’’ previous ones.

In the context of model-driven Web engineering

approaches [4–8], the aforementioned concerns have not

been generally taken into account [9]. As a consequence,

Web applications developed with these methodologies

might suffer well-known problems such as outdated

E. Robles Luna (&)

LIFIA, Facultad de Informática, UNLP, La Plata, Argentina

e-mail: esteban.robles@lifia.info.unlp.edu.ar

E. Robles Luna

CICPBA, Buenos Aires, Argentina

G. Rossi

Conicet, La Plata, Argentina

e-mail: gustavo@lifia.info.unlp.edu.ar

I. Garrigós

Lucentia Research Group, DLSI, University of Alicante,

Alicante, Spain

e-mail: igarrigos@dlsi.ua.es

123

Requirements Eng (2011) 16:297–321

DOI 10.1007/s00766-011-0124-1

requirements, unfeasibility to check that the application

fulfills the requirements and it might be difficult to handle

fast evolution.

Existing languages to model Web requirements, e.g.,

user interaction diagrams [4] and extended use cases [10],

are useful to capture important aspects of Web applications

like navigation or interaction issues; however, they are at

most used to document the application [3] or in some cases

to help deriving the first version of the domain or naviga-

tion models [11, 12] and generally do not consider either

evolution or validation (see Sect. 6 for further details).

To tackle these problems, we have developed WebSpec, a

multipurpose domain-specific language used to capture

navigation, interaction, and UI (User Interface) features in

Web applications. To improve the requirements capture,

WebSpec is used in conjunction with mockups (sketches of

UI) to provide realistic UI simulations. Also, to allow fast

requirements’ validation in the final application, the asso-

ciated WebSpec tool automatically derives a set of interac-

tion tests. Finally, WebSpec enforces change management

support, which could be used to improve the development

cycle by automating structural changes in the application.

Since WebSpec diagrams are intuitive and simple, they are

suitable to drive discussions between stakeholders. The

WebSpec language supports a powerful composition model,

improving their scalability for complex applications.

Finally, the WebSpec metamodel is open-ended, therefore

allowing to broaden the scope of features that can be rep-

resented in a diagram (as an example, we have extended the

metamodel to incorporate rich interactions).

In this paper, we present the WebSpec formalism,

describing its components and the role they play in the

development process; we emphasize on its novel features

and show how to:

• simulate the application using WebSpec and mockups

to improve their understanding between the different

stakeholders and reduce elicitation times.

• derive tests from WebSpec diagrams to reduce require-

ment validation times.

• capture requirement changes and use them to semi/

automatically upgrade the application and maintain

quality standards.

Additionally, we present a tool we have developed to

create and manage WebSpec diagrams and describe in

more details how WebSpec’s features have been

implemented.

The rest of the paper is structured as follows: in Sect. 2,

we present WebSpec, its concepts, and syntax. In Sect. 3,

we show how WebSpec is used in different activities in the

development cycle by improving requirement’s elicitation,

helping to automatically validate the requirements and

manage their changes. Section 4 shows the WebSpec

Eclipse plugin covering the implementation of its features.

In Sect. 5, we present a case of study showing how Web-

Spec has been used for the development of a Web appli-

cation for the postgraduate area of the College of Medicine

in the University of La Plata. Section 6 presents related

work, and finally in Sect. 7, we conclude and present fur-

ther work.

2 WebSpec: a DSL to capture interactive Web

requirements

Web applications tend to change fast and it is hard for

development teams to adapt to those changes easily. As part

of the solution, the proliferation of agile practices [13] has

improved the overall process as they have a continuous

feedback from the different stakeholders. In these practices,

requirements are captured informally [3] and as a conse-

quence checking if they have been correctly implemented is

sometimes impossible [1, 2]. Usually, development teams

add manually created tests not only to check software arti-

facts but also to guide design decisions like in TDD (test-

driven development) [14]. When the application evolves and

the number of implemented requirements grows, tests are

particularly necessary in order to verify that every unchan-

ged requirement remains implemented in the application

(known in the literature as regression testing [15]).

In order to capture Web requirements, researchers have

borrowed use cases and user stories [13] from the software

engineering field and try to use/adapt them in the Web

engineering field (e.g., extended use cases). These artifacts

allow describing the requirements in semi-structural/natu-

ral language making them flexible and appropriated to

interact with customers. However, they do not help to

describe UI aspects that are essential in Web applications,

and as a consequence, the validation of their correct real-

ization in the application is performed manually. More-

over, validation is only performed over the last set of

implemented requirements (due to the fact that the time

spent on validating every requirement grows (in the best

case) linearly with respect to the number of requirements

implemented), and thus those side effects that affect pre-

vious requirements are not detected until a user finds a bug

in the application.

On the other hand, there are more formal languages [4,

16] that help to specify interactive requirements more

precisely, making easier for the development team to

implement them since they usually provide some kind of

automatic derivation of the basic application’s structure

(e.g., the topology of pages and the links between them).

However, they usually do not provide automatic derivation

of tests and those that are related with a specific model-

driven Web engineering approach (MDWE) [17] tend to be

298 Requirements Eng (2011) 16:297–321

123

tightly coupled to the other modeling constructs of the

approach. To make matters worse, many times they are too

abstract or complex to be used or understood by customers

and therefore unrealistic to be used in real life projects.

To tackle these problems, but preserving the advantages

of the aforementioned languages, we have developed

WebSpec. WebSpec is a visual language that has support

for simulation (Sect. 3.2) helping customers visualize the

requirement prior to its implementation. Requirement val-

idation is done automatically (Sect. 3.3) by running a test

suite obtained from the requirements specification, which is

independent of the implementation technology used as it is

based on Web browsers and not in the technology used to

develop the application. As any formal language, it also

provides derivation of some parts of the application (Sect.

3.4) to a particular technology (GWT [18], Seaside [19],

etc.) all integrated in its supporting tool, the WebSpec

Eclipse plugin (Sect. 4).

WebSpec is a visual domain-specific language [20] that

allows specifying navigation, interaction, and UI Web

requirements. The main artifact for specifying require-

ments is the WebSpec diagram (Sect. 2.1), which can

contain interactions (Sect. 2.2), navigations, and rich

behaviors (Sect. 2.3). As one of the main motivations of the

language is automatic test derivation, we borrow the idea

of generator [21] to specify properties that the application

must satisfy. For example, any of the following properties

‘‘the price of a product must be a positive number’’ or ‘‘a

valid username is a string of length between 8 and 16

composed of letters and numbers’’ can be specified using a

generator. A generator (Sect. 2.4) provides a simple and

reusable way to describe a data set (by extension or com-

prehension); it can be interpreted as a function that returns

a random element of the specified set. For example, a string

generator configured with minimum length of 8 and max-

imum length of 16 could be used to obtain valid usernames

for the aforementioned case (e.g., ‘‘administrator’’).

Finally, WebSpec diagrams can be composed (Sect 2.5) to

cope with complexity and at the same time to allow reuse

of requirements.

WebSpec is formally defined in the metamodel shown

in Fig. 1. For the sake of conciseness, we avoid the

Expression and Widget hierarchies but the reader could

find more information in ‘‘Appendix’’. A diagram

(instance of the class Diagram) comprises Interactions and

Transitions (either Navigation or RichBehavior) instances.

An Interaction instance knows its name, forward transi-

tions, and its associated interface mockup. A Transition

knows its source and target interaction, its precondition,

and the sequence of Action instances that triggers them.

Finally, an Interaction knows its root widget container,

which can contain many AbstractWidget (Widget or

Container) instances. Each widget can also be associated

with its representation in the mockup using its location

attribute.

In the following subsections, we will introduce the

aforementioned concepts using an example of an e-com-

merce application. The language will be described with a

simple user story: ‘‘As a customer, I would like to search

products by name and see its details’’.

2.1 WebSpec diagrams

A WebSpec diagram defines a set of scenarios that the Web

application must satisfy. It can contain two main elements:

interactions and transitions (which can be in turn naviga-

tions or rich behaviors). Interactions represent points

where the user can interact with the application, and

transitions represent a movement from one point of inter-

action to another. Therefore, a WebSpec diagram could be

seen as a graph where interactions are the nodes of the

graph and transitions represent the edges. A scenario is

represented by a sequence of interactions and transitions,

e.g., \interaction1, navigation1, interaction2, rich1, inter-

action3[that defines a possible path of interactions

between the user and the Web application.

Fig. 1 WebSpec simplified

metamodel

Requirements Eng (2011) 16:297–321 299

123

Figure 2 shows a WebSpec diagram for our exemplar

user story. The diagram is constructed iteratively between

the customer and the analyst by having several meetings.

Since the use of WebSpec is not tight to any particular

development process, we can use the techniques that are

common in unified development approaches or traditional

customers meetings typical of agile development approa-

ches to build them. Their construction could be improved

by using mockups and simulating the application (Sect.

3.2); however, we expect that with some training, the

customer would be able to solely build a diagram. The

diagram of Fig. 2 defines the navigation paths that the user

can follow from the home page to the search results page

and then to the details of the products. Also, the user is able

to go back to the search results page from the detail of the

product or go back to the home page.

The set of scenarios that the diagram specifies is

obtained by traversing the diagram using the DFS algo-

rithm [22]. The algorithm starts from a set of special nodes

called ‘‘starting’’ nodes (Sect. 2.2) and follows the edges

(transitions) of the graph (diagram). Typically, one or more

diagrams could be related with the same user story to

specify concrete scenarios that the Web application must

satisfy. In the following subsections, we elaborate the

contents of the diagram.

2.2 Interactions

An interaction represents a point where the user can

interact with the application by using its interface objects

(widgets). Formally, they represent the state of a Web page

either when it is loaded when the user navigates to it or

when it has changed as a consequence of a rich behavior

(Sect. 2.3). Interactions have a name (unique per diagram)

and may have widgets such as labels, list boxes, buttons,

radio buttons, check boxes, and panels. Labels define the

content (information) shown by an interaction. There are

two types of widgets that allow defining widgets compo-

sition: ListPanel and Panel. A ListPanel represents a rep-

etition of the elements that it contains, and the Panel

defines a simple placeholder that can contain any simple or

composed widget. Interactions are graphically represented

with a rounded rectangle (Fig. 3), which contains the

interaction’s name and widgets. A WebSpec diagram must

have at least one starting interaction represented with

dashed lines.

To specify which properties must be satisfied by the

application, we use invariants (Boolean expressions) on the

diagrams’ interactions. Every interaction (either implicitly

or explicitly) defines an invariant that specifies which

properties must be satisfied in the set of scenarios specified

by the diagram (in case that we do not define one explicitly,

it is implicitly assumed that the invariant is true). Boolean

expressions may refer to the following elements:

• Widgets properties: Any property of a widget that is

contained in the interaction. For example, ProductDe-

tail.productName.text refers to the text value of the

productName widget and is valid if is contained in the

invariant of the ProductDetail interaction.

• Variables: When we need to refer to a value or the

property of a previous interaction in the scenario, we

Fig. 2 Webspec diagram of the Search by name scenario

Fig. 3 WebSpec’s interaction

300 Requirements Eng (2011) 16:297–321

123

need to store them in variables, e.g., productName :

= ‘‘ipod’’ or productName := ProductDetail.product-

Name.text. We refer to the value of the variables using

the following syntax ${variableName} inside

invariants.

• Generators: As we will show in Sect. 2.4, generators

can be referenced using the following syntax $gener-

atorName$, e.g., productName := $prods$.

• Composed expressions: It is possible to compose

expressions using (&&), or (||), implications (?) and

negations (!). Please, refer to the ‘‘Appendix’’ for the

complete grammar.

As an example, the ProductDetail interaction of Fig. 2

defines an invariant (marked with the I icon near the

interaction’s name): ProductDetail.productName.text =

${productName} that states that the text of the product-

Name label must be equal to the value of the productName

variable. To improve the clarity of the diagram, we avoid

showing them directly as the expressions could be quite

complex. Instead, interactions are marked with an icon and

the expression could be edited by changing the interac-

tion’s property in our Eclipse tool (Sect. 4).

To improve the understanding of the diagrams by the

different stakeholders, we can associate interactions with

mockups and WebSpec widgets with their concrete UI

elements in the mockup. Using this association, we can

switch between the specifications in WebSpec with an

exemplar UI that will help to understand the requirements.

Mockups can be created with tools such as Balsamiq [23],

Axure [24], or plain HTML and can be developed by or

with the participation of customers. For example in Fig. 4,

we show a mockup of the product details page created with

Balsamiq. The mockup shows the information that must be

presented on that page: the product name, its description,

price and the links to the home and search results. Figure 5

shows a simple association between the mockup of Fig. 4

with its corresponding interaction and widgets of Fig. 2.

2.3 Specifying the application’s behavior

Usually, the behavior of Web applications is exercised

either by navigating from one page to another or by local

(interface) changes that may not involve navigation to a

new page. These behaviors are perceived by the user by

changes in its browsing history or in the UI, respectively;

therefore, we will call them Interactive behaviors (Sect.

2.3.1). On the other hand, there are behaviors that are not

directly perceived by the user and are triggered as a con-

sequence of navigating from one page to the other.

Examples of such behaviors are sending an email, charging

Fig. 4 Product details mockup

created with Balsamiq

Fig. 5 Association between a

mockup and its corresponding

interaction

Requirements Eng (2011) 16:297–321 301

123

a credit card, or even making a search in Google using the

Google’s API; these can be informally specified in Web-

Spec using either notes or by associating WebSpec’s ele-

ments with use cases (Sect. 2.3.2).

2.3.1 Interactive behaviors

When the user navigates from one page to another, a new

element in its browsing history is added allowing him to go

back to the previous page. During requirements elicitation,

these elements are easily identified by the analyst in the

customers’ vocabulary when they say ‘‘In this page, I

would like to allow users to go back to the previous page’’.

In WebSpec, a navigation is graphically represented

(Fig. 6) with gray arrows while its name, precondition, and

triggering actions are displayed as labels over them. In

particular, its name appears with a prefix of the character

‘#’, the precondition between {} and the actions in the

following lines. We must remark that the idea behind the

transitions’ actions (either navigations or rich behaviors) is

that the execution of them produces the transition between

interactions and not in the other way. A transition should

be understood like: ‘‘if the precondition holds and the user

executes the sequence of actions, then the application

should transit to the target interaction’’.

A navigation from one interaction to another can be

activated if its precondition holds, by executing the

sequence of triggering actions such as clicking a button and

adding some text in a text field. As well as invariants,

preconditions can reference variables declared previously

in the diagram. Actions are written according to the fol-

lowing syntax: var := expr | actionName(arg1,… argn) (a

complete BNF [25] grammar can be found in the

‘‘Appendix’’).

Traditional hyperlink navigation is represented with no

precondition (indeed, an always true precondition) and

with only one action click (a link widget), as illustrated

with the ProductDetail to Home navigation in Fig. 2. An

example of a more complex sequence of actions is the

search navigation (Fig. 2):

The first sentence assigns the data generated by the

productNames generator (denoted between $) in the

productName variable (for later use). In the second sen-

tence, the content of the productName variable is typed in

the searchField text field, and finally in the third sentence,

the search button is clicked.

On the other hand, the application may change its UI

state as a consequence of some actions performed by the

user (e.g., on some interface widgets). For example, when

the mouse is ‘‘on’’ a widget, some additional information

might pop-up, or while entering text in a field, the text

might be auto-completed. These ‘‘local’’ changes are

common in the so-called rich Internet applications [26],

and it is nowadays usual that customers pose requirements

of this type, either explicitly (‘‘I want an auto-complete

feature in this field’’) or implicitly (‘‘I want that informa-

tion appears as in Amazon.com’’). These ‘‘rich’’ behaviors

are being increasingly used not only in Web 2.0 applica-

tions but also in traditional, e.g., e-commerce, ones.

In a Web application, a rich behavior is perceived by a

local change in the UI of the Web application, and it does

not add a new element in the browsing history. To specify

a rich behavior in Webspec, we use a red-dashed arrow

(Fig 7) though it has the same properties that a navigation

has (name, precondition, and actions).

Figure 8 is an extension of Fig. 2, which shows a spec-

ification for the Hover detail pattern [27] in the search result

list. This pattern gives more information about an item

when the user puts its mouse over it. In this case, a detail of

the product is shown (SearchResultsProductHover interac-

tion) and allows the user to navigate to the product details

page. Notice that from an interaction reached as a conse-

quence of a rich behavior, we can also have navigations and

rich behaviors to other interactions (SearchResult-

sProductHover interaction to ProductDetail interaction).

2.3.2 Dealing with ‘‘non-interactive’’ behaviors

Most Web application requirements are related with

interactive aspects that can be specified using invariants

and actions. However, as said before, there are some sce-

narios that may have important ‘‘hidden’’ behaviors (not

perceived directly by the user from an interaction point of

view) and that are important to be specified.

To capture this kind of requirements, Webspec can be

combined with two different artifacts (depending on the

needed level of detail) for specifying hidden behavior. If

we need to specify simple functionality that does not

Fig. 6 WebSpec’s navigation Fig. 7 Rich behavior specification in WebSpec

302 Requirements Eng (2011) 16:297–321

123

require complex business rules, we can use informal notes

that can be added to the diagram and/or linked to inter-

actions or transitions. Notes provide an easy way of

specifying some details that will not be perceived from a

user point of view. Figure 9 adds a note to the search

navigation to explain that the search operation should be

implemented by integrating with Google Search.

On the other hand, there are some complex cases, such

as Web service calls, credit card transactions, etc., that can

not be detailed using notes. We have identified the fol-

lowing categories:

• Complex integrations between Web (or other kind of)

applications are usually difficult to achieve and gener-

ally involve details such as APIs or other contracts and

format of exchange data. In these cases, it is better to

use detailed documents about these requirements.

• Low level technical details such as the information that

needs to be stored in log files as part of a business

process of the application. This information is generally

stored in files on the server and therefore does not show

up during user interaction.

• Any application’s behavior that is not perceived from a

UI point of view such as generating a PDF report with

statistical data about the user’s activity.

In all these cases, WebSpec allows linking interactions

and transitions with use cases for a more complete

description of the requirement (see the association between

Interaction and Transition classes with UseCaseReference

in the metamodel of Fig. 1).

2.4 Specifying properties with generators

With WebSpec, it is possible to specify general and con-

crete application properties. A concrete property is speci-

fied with one or more scenarios that use constant values in

Actions (e.g., type(Login.username, ‘‘admin’’) and/or

Invariants (Home.messages.text = ‘‘Welcome admin’’).

One the other hand, sometimes it is necessary to specify

more complex properties like ‘‘an error must be shown if

the user tries to add a comment larger than 150 characters

to a product’’ for any comment (any string of at least 150

characters).

To specify general properties, we can create the diagram

with concrete values and then abstract them using gener-

ators. Generators are necessary to map abstract scenarios

(those without concrete values) to concrete scenario

instances (with the corresponding data distribution). This

mapping is used during test generation (Sect. 3.3) and

simulation (Sect. 3.2). A generator helps to define which

are the valid data sets for the different scenarios and help

the development team (as it is a formal definition of a data

set) to implement each scenario accordingly to the expec-

ted logic.

Fig. 8 Hover detail in SearchResults interaction

Fig. 9 Note explaining Search
implementation details

Requirements Eng (2011) 16:297–321 303

123

Following the idea of QuickCheck [21], we extract the

data used for specifying interaction requirements into

generators. If a property in a WebSpec diagram holds, then

it must hold for any element that could be generated by a

generator. A generator is a function that can be called from

transition actions (e.g., $productNames$) and generates

data. For example, Fig. 2 has one generator that generates

product names for searching purposes. A generator can also

be seen as a definition of a set by comprehension; for

example, the generator usernames = all the strings of

length between 8 and 16 that contains letters or numbers

({aaaaaaaa, aaaaaaab, …}).

With the aim of specifying different types of require-

ments, WebSpec provides a variety of generators based on

the ones QuickCheck already provides; though adding a

new generator is not a hard task. Next, we detail the gen-

erators actually provided in WebSpec:

• One of many strings: The user can specify a set of

strings and the generator chooses one with uniform

distribution probability. For example, if the generator is

configured with ‘‘Home’’, ‘‘Ipod’’, ‘‘Smartphone’’, the

generator could generate the string ‘‘Ipod’’.

• One of many numbers: Similar to one of many strings,

for example, the user can configure the generator with

4, 5, 8, 10.5, 2, -1 and the generator could generate the

number 8.

• Uniform distribution of numbers: The user configures

minimum and maximum values and the generator picks

a number in the continuous interval with equal

probability. For example for the interval [3.76, 15],

the generator could generate the number 8.7.

• Random string: The user configures the minimum and

maximum length of the string and the generator

generates a random string with a length in the specified

interval. For example for the interval [2, 10], the

generator could generate ‘‘agfasg’’.

• One of many arrays: The user configures a set of arrays

and the generator chooses one with equal probability of

being chosen. We use arrays when there are interde-

pendencies between data. For example, the arrays of

valid users that have username and password: [admin,

admin], [john, johnpass], [root, superuser]; thus, the

generator could generate the array: [admin, admin].

Each of these generators has a visual representation

shown in Fig. 10.

2.5 Diagrams’ composition

When the application grows, new requirements may refer

to previous described (and perhaps finer grained)

requirements. Let us assume that we have the following

requirements expressed as user stories: ‘‘As an adminis-

trator, I would like to search for users by email in order to

ban them’’ and ‘‘As an administrator, I would like to

check the user’s activity searching them by email’’. Both

refer to some functionality of the administrator regarding

actions they would like to perform: search by email,

banning, and check user’s activity. Figure 11a and b

shows the WebSpec diagrams corresponding to each

requirement.

Notice that both diagrams have a common sequence of

interactions and transitions that sets the preconditions to be

able to express the requirement. In this case, the subpath—

Login ? AdminHome ? SearchUser—is common to

both diagrams and its main intent is to login with an admin

user and search for a user in the system. The interactions

and navigations that follow this subpath are the ones that

actually express the requirement.

To improve the understanding and scalability via com-

position, we define the concept of operation as a path that

can be composed in other diagrams or operations. Fig-

ure 12 shows the definition of the LoginAsAdmi-

nAndSearchForUser operation.

As a consequence, the diagrams of Fig. 11a and b can be

written in a more short way as shown in Fig. 13a and b.

These diagrams are the composition between the LoginA-

sAdminAndSearchForUser operation and the subpaths of

Fig. 11a and b.

2.6 WebSpec guidelines

When using WebSpec for Web requirements specification,

diagrams tend to grow with the time, thus hindering

comprehension; as a consequence, we have written several

simple guidelines to be taken into account during the

development process:

• Similar interactions: When two or more diagrams have

an interaction with the same name, we will assume that

two interactions denote the same point of interaction.

In this way, when a stakeholder looks at two different

diagrams and they see interactions with the same name,

they will know that they denote the same point of

interaction improving comprehension.

• Explicit specification: If a widget w is present in the

interaction A of diagram D1 and widget w is absent in

the interaction A of diagram D2, then it does not mean

that the widget has been deleted. Indeed, it means that

the widget is not meaningful for the specification.Fig. 10 Different types of WebSpec’s generators

304 Requirements Eng (2011) 16:297–321

123

• User story/Use case association: As the application

evolves, the number of diagrams tends to grow quickly;

thus, it is important to keep track of which user story

gives origin to a diagram. This could be easily done by

linking a diagram with its corresponding user story (see

the association between Diagram and UserStoryRefer-

ence in Fig. 1).

As an example, we have added a new diagram to the one

in Fig. 2 that specifies the register User story. Figure 14

shows the Register user story, and it shows a Home

interaction which has the same name to the one previously

created in Fig. 1. According to the first guideline, they refer

to the same point of interaction. Also, the two versions of

the Home interaction have different widgets inside: a

search button and a searchField field in one case and a

register link in the second one. According to the second

guideline, the absence of the search button in Fig. 14 does

not mean that the widget has been deleted. If we want to

specify that the widget is not visible then, the widget has to

be added to the interaction and the invariant must contain

an expression like: !Home.search.visible

3 WebSpec in use

In the previous sections, we have presented the language

and the way in which we specify interactive requirements

in Web applications; in this section, we explain how

Webspec is used in the development cycle. As an intro-

duction, we detail how a diagram that has cycles and

specifies infinite scenarios is used in practice (Sect. 3.1).

Next, we show WebSpec’s features such as simulation of

the application (Sect. 3.2), requirement validation (Sect.

3.3), and requirement changes (Sect. 3.4).

Fig. 11 a Ban user diagram. b Check User’s activity diagram

Fig. 12 LoginAsAdminAndSearchForUser operation

Fig. 13 a Refactored Ban user
diagram. b Refactored Check
User’s activity diagram

Requirements Eng (2011) 16:297–321 305

123

3.1 Bounding infinite scenarios

As the diagram of Fig. 2, WebSpec’s diagrams may specify

an infinite set of scenarios when they have cycles. For

example, the diagram of Fig. 2 has a short cycle between

SearchResults and ProductDetail interactions. So if the

diagram specifies such infinite scenarios how are we going

to simulate the application or validate that the requirements

are correctly implemented? In both cases, we have adopted

a pragmatic approach; as the scenarios are infinite and

either the simulation or validation would not end, we prune

those ‘‘infinite’’ paths according to a maximum occurrence

(constant) of an interaction. Therefore, a scenario can

either end on an interaction with no transition or when the

number of occurrences of an interaction reaches a maxi-

mum number set per diagram.

To have a better idea of what pruning means in this

context, let us look at our example of Fig. 2; we will allow a

path to contain as much as two occurrences of the same

interaction in the path. We have chosen that number because

we would like to have concrete scenarios where the user

goes through the same interaction more than once. In order

to compute the scenarios, we start transversing the diagram

starting from the starting interactions and following the

diagram using the DFS algorithm. Therefore, the algorithm

starts from the Home interaction and follows the Sear-

chResults and ProductDetail interactions. The paths shown

below are the ones computed by the algorithm. In the first

case, the algorithm stops because either if we add Home or

SearchResults interactions, we will violate the maximum

occurrences of two elements. The same applies for the 2nd

path. The paths computed are shown next:

Home ! SearchResults ! ProductDetail ! Home

! SearchResults ! ProductDetail

Home ! SearchResults ! ProductDetail

! SearchResults ! ProductDetail ! Home

If the diagram has cycles, WebSpec forces to define a

maximum number of occurrences for the same interaction.

The number to be set really depends on the requirement we

are specifying; for instance if we are specifying the add to

cart requirement (which is an important requirement of an

e-commerce application), we may allow 10 occurrences of

the same interaction when trying to validate them on the

final application just to be a bit more sure that the

application behaves as expected.

3.2 Improving team understanding with WebSpec

and Mockups

With the aim of improving the requirement elicitation

phase, WebSpec diagrams allow the simulation of the

application under development. Simulation is important to

bridge the gap between the understanding of customers and

analysts about requirements, thus helping to get real

feedback from them. Usually, requirement artifacts [28]

require some level of knowledge from customers to be

fully understood, causing understanding problems during

elicitation that are handled lately when the application is

under active development.

Understanding a WebSpec diagram may not be a simple

task; it takes time and requires the knowledge of Web-

Spec’s concepts, e.g., variables and interactions. To ame-

liorate this scenario, WebSpec provides some interesting

features such as mockup associations (Sect. 2.2) and

invariants specification, which allow simulating the appli-

cation in a rather rigorous way to improve their under-

standing between stakeholders during elicitation. Our

simulation basically opens a Web browser with the

developed mockups and shows descriptions and performs

actions that show how a hypothetical user would interact

with the application. It is rigorous, because differently from

the simulation provided by tools such as Balsamiq [23], we

not only show transitions between the pages but also exe-

cute real actions and provide descriptions of what would be

the real output of the application, directly over mockups.

These descriptions are generated automatically from the

WebSpec diagrams, and they are easy to understand

because they are written in natural language. In this way,

Fig. 14 Register WebSpec’s

diagram

306 Requirements Eng (2011) 16:297–321

123

from every WebSpec diagram, a set of simulations is

automatically generated that can be used at any time by

customers to understand the meaning of the diagram and

suggest changes or improvements to the analyst.

The interaction between the development team and the

customer starts by specifying a diagram and usually

involves the creation of some mockups. During this pro-

cess, each interaction and its widgets are associated with

their corresponding elements in the mockup as shown in

Sect. 2.2. Afterward, an automatic transformation is

applied over the diagram obtaining a set of scenarios. Then,

a simulation is derived from each scenario and captured as

instances of the metamodel shown in Fig. 15.

A simulation contains several steps (items) that must be

executed (on the Web browser) to simulate the scenario.

Those items are the following:

• OpenMockup: it opens the mockup in the specified URL.

• ExecuteAction: Executes the action over an already

opened mockup with some arguments.

• ShowDescription: Shows the description at a specific

position.

• ShowGeneralDescription: Shows the description cov-

ering the full page.

Each simulation is created following the sequence of

interactions and transitions of a concrete scenario. Next,

we show a simplified version of the transformation algo-

rithm written in natural language:

Line 1 creates the simulation model; for every item

(interaction or transition) in the path (2), if it is an inter-

action (3), we show its associated mockup (4) and show the

predicate of its invariant to describe which properties must

hold (e.g., ‘‘The label should have the value ‘John’) (5); if

the item is a transition, we show the precondition (7), and

for every action, we simulate it (08–10).

As an example, let us consider the scenario Home

? SearchResults ? ProductDetail ? Home ? SearchRe-

sults ? ProductDetail. As the model generated by the

algorithm includes 16 instances of SimulationItem, we show

next a text representation of the same instances so that they

can be easily understood.

After an instance of the Simulation metamodel is cre-

ated, the application can be simulated inside a Web

browser by opening mockups in the browser, showing

descriptions and performing actions on it. In Sect. 4, we

provide details of how this feature has been implemented in

our Eclipse plugin.

3.3 Requirements validation

New requirements must be validated to guarantee their

correct implementation while previous ones still work as

intended. However, it is hard to perform this task effi-

ciently, therefore keeping the requirements updated is

extremely important.

A well-known way of validating requirements consists

in running automated tests (that express the requirements)

over the application. If one of these tests fails, then a

requirement is not satisfied by the application. In particular,

interaction tests play an important role in industrial settings

as they execute a set of actions in the same way a user

would do on a real Web browser; thus, their use is con-

tinuously growing [29]. As an example, in a recent work,

we have introduced the use of interaction tests in the

WebTDD test/model-driven approach [30].

The test suite (a set of test cases) is built from a Web-

Spec diagram by creating a test for each scenario that the

application must satisfy. To capture the basic concepts of

tests, we have created a metamodel (Fig. 16), which is

independent of the automated test technology used. The

metamodel contains the Test and TestSuite classes that

conceptualize a test and a set of tests. A Test has a

sequence of actions: assertions on interface objects or

actions performed by the user over the application. Both

cases are covered by the TestItem hierarchy.Fig. 15 Simulation metamodel

Requirements Eng (2011) 16:297–321 307

123

To build the test suite, we transform each scenario into a

SimpleTest (see Fig. 16) by executing the following sim-

plified version of the algorithm. Similar to simulations, we

use generators to generate data according to the specifica-

tion when an expression references it. The TestSuite is

obtained by simple composition (see the composition

relationship in the metamodel of Fig. 16) of the previous

SimpleTest instances.

The algorithm works as follows: line 1 creates the test

model and line 2 generates the action to open the appli-

cation. For each element in the path, if it is an interaction

(4), we assert its invariant (5); if it is a transition (7), we

execute the actions that allow us to navigate from one

interaction to another (7–9).

To better illustrate these ideas, let us consider a

specific scenario: Home ? SearchResults ? Product-

Detail ? Home ? SearchResults ? ProductDetail.

Applying the previous algorithm to the scenario produces

a test model with 16 TestItem instances; we show a

textual version of the model so that it can be better

understood.

After an instance of the test metamodel is created, the

application can be validated using a technology-dependent

interaction test framework, which operates on a Web

browser. In Sect. 4, we provide further details about the

implementation of test derivation in our Eclipse plugin.

As aforementioned, Web applications tend to change

very fast, thus recording requirements changes is important

to improve the development process. In the next subsec-

tion, we show how requirement changes are captured (Sect.

3.4.1) and later used to ease the evolution of the application

under development (Sect. 3.4.2).

3.4 Requirement changes

3.4.1 Capturing requirement changes

Capturing requirements changes is an important feature to

predict their impact in the application. Though some

mature requirement artifacts [3] provide extensions to

support change management, in the Web engineering field,

this issue has been often ignored (see Sect. 6 for details).

In WebSpec, changes are recorded into change objects

that group a set of changes. Change objects are created

even in the initial stage (when a diagram is being created).

WebSpec diagrams can suffer different coarse-grained

changes, such as the addition or deletion of an interaction

or transition element. These elements can be modified too,

by the addition or deletion of widgets to an interaction,

changes in invariants, etc. As for transitions, we can add or

delete preconditions, change their source, target, or the

actions that triggers them. All these types of possible

changes have been represented in the metamodel of

Fig. 17. When the user modifies the diagram, a change

object is created and the sequence of changes is recorded as

instances of this metamodel.

As an example, let us suppose that we add a Register

interaction with its widgets and a link to it from the Home

interaction (Fig. 18). The change in the diagram generates

a new change object, which has the following elements:

the new interaction (Register), a new navigation (Home

? Register), a new link (register) in the Home interaction,

and set of widgets in the Register interaction.

In the following section, we show how changes in the

requirements help to upgrade the application under devel-

opment to satisfy the new requirements.

Fig. 16 Test metamodel

308 Requirements Eng (2011) 16:297–321

123

3.4.2 Using requirement changes to ease application

evolution

Though handling requirement changes serves for multiple

useful purposes, we will focus on how to semi-automati-

cally upgrade the application using them. Since change

objects represent changes at the WebSpec level (require-

ments), we decouple the process of upgrading the appli-

cation by providing different effect handlers. An effect

handler is a component responsible of mapping the changes

in the diagrams to a concrete technology and storing the

trace links between the WebSpec elements and the tech-

nology ones.

To keep the discussion at a conceptual level and show a

concrete example, let us assume that the application under

development is designed with classes and that we already

have a version of the application. In Fig. 19, we show a

class diagram of the classes involved in the UI model of

our application before applying the change of Sect. 3.4.1.

To upgrade the application after the changes, we need to

define a mapping between the changes in WebSpec to the

concrete implementation. In a class-based design, we have

defined the following mapping:

• New Interaction: A new class is created.

• New Widget: A new instance variable and a creational

method are created.

• Update Interaction/Widget name: The class or instance

variable is renamed.

• Delete Interaction: The class is deleted if no other class

references it.

• Delete Widget: The instance variable and the creational

method are deleted if the instance variable has no

references.

Using the previous mapping, we upgrade the UI model

automatically and obtain a new UI model, which is shown

in Fig. 20. The RegisterView class is created with its

corresponding instance variables. Also, the HomeView

class is modified with a new instance variable register that

contains the link to the Registerview. In the following

section, we show our implementation plugin and explain

some details of its implementation.

Fig. 17 Change metamodel

Fig. 18 Adding a register page

to our E-commerce application

Fig. 19 Class diagram of the UI model before applying the change

Requirements Eng (2011) 16:297–321 309

123

4 Tool support

A WebSpec tool has been implemented as an Eclipse

plugin using EMF [31] and GMF [32] technologies; it is

currently available as an open source project.1 The plugin

supports the following features:

• Creation of WebSpec diagrams: a visual editor allows

creating, modifying, and updating diagrams. The proper-

ties of the elements can be modified by selecting each item

and updating the property editors in the properties view.

• Association with HTML mockups: taking advantage of

the Eclipse framework, HTML mockups are files inside

the project. The editor allows selecting an interaction

and associating it with the HTML file. Association

between Webspec’s widgets and HTML widgets is

performed by editing the location property of Web-

spec’s widget.

• Simulation of the application: Using the previous

association, the plugin opens the mockups in the Web

browser and shows descriptions of what is the expected

behavior. This feature has been implemented by extend-

ing the Selenium [33] communication mechanism and

using a JQuery plugin [34] for showing the descriptions.

• Selenium test derivation: As previously shown, each

diagram is transformed into a test model. Then, the

plugin allows the translation of the test model into a

Selenium test.

• Change recording: Using the EMF observer pattern

[35], we hook on all changes that are performed in the

diagram and the plugin creates a change model. The

user of the plugin can set when should the plugin start

recording changes and when not. When some changes

are captured and the user stops recording, the change

model is stored into a file for later use.

• Generation/Update of GWT and Seaside UI classes:

Finally, using the previous stored change model, the UI

model can be generated. Currently, the plugin allows

the generation of GWT and Seaside classes and handles

not only a first version of changes but also an

incremental set of changes.

Figure 21 shows a screenshot of the WebSpec’s Eclipse

plugin. In the following subsections, we provide more

details regarding the implementation of the aforementioned

features in the plugin.

4.1 Dealing with simulation

The simulation feature comprises three elements: transfor-

mation between WebSpec and Simulation models, associa-

tion with mockups, and execution of the simulation. The

transformation between WebSpec and the Simulation models

has been implemented directly in Java as it was much simpler

to deal with path computing algorithms than using QVT.

Mockups association has been easily implemented by

taking advantage of the Eclipse environment. We add a

new property for interactions and widgets and a file dialog

to let the user choose the right HTML mockup.

The actual simulation aspect was more complex and

required the extension to the Selenium framework. We used

the existing communication mechanisms of Selenium to open

the Web browser and execute actions. As shown in Fig. 22,

we show descriptions over the mockups by using a JQuery

plugin. To make it work, we had to extend the Selenium

framework to load these libraries and actually show the

descriptions when necessary. We must notice that the same

mockup (which could be richer than the interaction since it

has more widgets) could be used in multiple and different

simulations. Our approach maintains the mockup as it is

without removing any existing widgets because doing so will

confuse the stakeholders about their presence or absence.

4.2 Requirements validation

The support for requirements validation has been imple-

mented in a two phase process: transformation from

WebSpec to Test models, and test derivation to a specific

automated test technology. The transformation between

the models has been implemented by taking advantage of

the existing simulation architecture (the transformation

Fig. 20 Upgraded version of the UI model after applying the change

1 http://code.google.com/p/webspec-language/.

310 Requirements Eng (2011) 16:297–321

123

http://code.google.com/p/webspec-language/

module), since both transformations use path computing

algorithms.

In order to perform test derivation to a specific tech-

nology, we transformed the test models into a plain text

representation of the test. The plugin currently supports

Selenium, and we are working on the derivation to Web-

driver [36]. As an example, we show next the generated

code for the Selenium framework for our example

scenario:

Line 1 opens the application in the Web browser. Lines

02–04 search for Ipod product, lines 05–06 select the first

product, and finally, line 07 asserts that the selected

product has the name Ipod. Lines 08–09 navigate to the

Home page. Lines 10–12 search for book product, lines

13–14 select the first product, and finally, line 15 asserts

that the selected product has the name book. Line 16

navigates to the Home page.

4.3 Requirement changes

When a diagram is modified, we record its changes and

store them in change files. A change file is a serialization

version of the change model presented in Sect. 3.4.1 in

XML format. To capture the changes, we use the observer

pattern and incrementally build the change model; after-

ward, we serialize it into an XML file.

Changes are read and used to upgrade the application

models by effect handlers (a component that is able to map

changes in the WebSpec level to technology ones), the plugin

supports the generation of classes and methods compatible

with Seaside and GWT, and we are actively working to

provide a derivation to WebRatio design models [37].

As an example of the use of effect handlers, we next

show how to use the change objects of our exemplar

Fig. 21 WebSpec’s eclipse

plugin

Fig. 22 WebSpec’s simulation

Requirements Eng (2011) 16:297–321 311

123

upgrade (Add a register functionality) to generate classes

and methods in GWT. For the sake of conciseness, we

show the new RegisterView class created by the GWT

effect handler. Basically, lines 09–15 define the instance

variables representing the widgets, and lines 21–29 ini-

tialize the objects with the proper GWT classes. Also,

notice that RegisterView extends VerticalPanel (a GWT

base class for implementing UIs).

5 Case study

5.1 Introduction

We have used the WebSpec plugin to assist the develop-

ment of an application for the postgraduate area of the

College of Medicine in the University of La Plata. The

development team is composed of two developers, one

analyst and a project manager using as a development

approach an updated version of WebTDD [30] (suitable for

code-based development). WebTDD is an agile test-driven

development approach with strong emphasis on using

mockups and tests to drive the development process.

The requirements were obtained from one person (the

head of the college), thus avoiding any conflict resulting

between different stakeholders. The project was divided in

sprints (as in most agile approaches) in which we tackle a

set of requirements delivering a running application to the

customer. In our case, we had six sprints to implement

several user stories though here we only show the first three

sprints. Each sprint was delivered within 2 weeks, thus

gathering quick feedback from the customer. The first three

sprints tackle the following user stories:

• Sprint 1

• Login: As a user, I would like to login in the

application using my gmail account.

• Log out: As a user, I would like to log out from the

application.

• Create user: As an administrator, I would like to

create users with roles of administrators or doctors.

• Sprint 2

• Create patient: As an administrator, I would like to

create new patients describing their personal

information.

• Create hospitalization: As an administrator, I would

like to create a hospitalization for a patient and

assigning it to an existing doctor.

• Update patient status: As a doctor, I would like to

update the status of the patient according to its vital

signs.

• Close hospitalization: As an administrator, I would

like to close a hospitalization when a patient leaves

the hospital.

• Sprint 3

• Notify doctor about pending patient status: As an

administrator, I would like to notify a doctor by

email when it forgets to update a patient status.

• Update patient: As a doctor, I would like to be able

to update the patients’ personal information.

• Assign doctor to hospitalization: As an administra-

tor, I would like to change the assignation of a

patient to a doctor.

• Report about patients by doctor: As an administra-

tor, I would like to see a report about how many

patients have been attended by each doctor filtering

by dates, doctor and sex.

5.2 WebSpec use

WebSpec was used across the development cycle to

specify the whole set of requirements since they all

involved with interaction features. For each user story, we

created a set of WebSpec diagrams to specify them, and

in some cases such as ‘‘Notify doctor about pending

patient status,’’ we have added some notes to the diagram

to specify behavior not perceived from the UI (e.g.,

sending emails). Mockups were used in conjunction with

WebSpec only on the first sprint mainly to define the UI

of the application. On the other hand, the test suite that

312 Requirements Eng (2011) 16:297–321

123

was obtained from the diagrams and grew along the

sprints was used to drive the development cycle and to

avoid breaking existing functionality. Since WebSpec

already provides derivation to GWT, we have used a

solution based on the following technologies to imple-

ment the application: GWT, Spring, and Hibernate. We

took advantage of the automatic evolution of the struc-

tural part of the UI classes handled by WebSpec, and

therefore, we only needed to code those aspects related

with UI behavior and business logic.

As an example of the use of WebSpec, we show how a

requirement is captured, implemented, and validated using

the formalism in our case study; we have chosen one

requirement in which we have used all of the language’s

features: ‘‘As an administrator, I would like to create users

with roles of administrators or doctors’’. We start the

development cycle creating mockups and specifying the

user story using WebSpec in an iterative basis; we acti-

vated WebSpec’s change management to take advantage

and derive the GWT classes using our GWT effect handler.

After a few iterations, we obtained the diagram of Fig. 23

and the mockups of Fig. 24.

As the application was not built yet, we used simulation to

double check the expected behaviors with our customer before

implementing them; we show the first four steps in Fig. 25.

Once the requirement has been captured in the diagram

and its changes have been captured in a change object, we

are ready to implement it. First, we apply the change using

the GWT effect handler; we obtain/update the classes of

our code. As an example, we next show in Fig. 26 the code

derived for the Login interaction using our GWT effect

handler.

The effect handler generates the UI part, and then, we

need to complete the implementation manually, till the

application satisfies the requirement. Finally, we need to

check that the requirement is implemented correctly;

therefore, we obtain a test suite from the diagram and run it

against the application. In Fig. 27, we can see the test suite

obtained from the diagram of Fig. 23.

As a summary, Table 1 shows for each sprint the

number of user stories per sprint, the number of test cases

obtained from the diagrams, and if simulation and code

generation were used or not in the sprint.

Simulation was only used in the first sprint to improve

the understanding of the diagrams and show how the

application is going to behave. It was necessary at the

beginning as the customer was not able to understand

the diagrams and helped to reduce the semantic gap

between WebSpec and the application under development

(from the customer’s point of view). After the first sprint,

Fig. 23 WebSpec diagram of our selected user story

Fig. 24 Mockups of our selected user story

Requirements Eng (2011) 16:297–321 313

123

the customer had the basic terminology and was able to

follow a diagram without the necessity of simulation. This

occurred in part because of the nature of the application we

were building: an application with small exposure to external

users and with relative simple navigational behavior.

We must notice that we did not use code generation in

the last sprint as it was a behavioral change that cannot be

automated by the GWT effect handler. The changed was

performed manually in the core business logic of the

application and checked with the test obtained from the

diagrams.

5.3 Advantages and disadvantages

After we finished the 6 sprints of the project, we conducted

a survey with the customer and the development team to

asses the experience of using WebSpec in the development

process.

The customer liked the use of mockups and the simu-

lation features of WebSpec as they gave him a clear picture

of the understanding of the analyst regarding the require-

ments. Though simulation was used in the first sprint, it

helped to define the base UI and behavior necessary to

build the Web application. On the other hand, some dia-

grams were rather complex (specially the list of actions)

and thus hard to understand by the customer. He suggested

providing a simplified view of the diagram in those cases.

In the development team, the most appreciated feature

was the test suite derived directly from the diagrams. The

test suite was used to asses whether the requirements were

correctly implemented during the development cycle and to

check that new code did not break existing functionality.

The test suite grew quickly, and therefore, the time con-

sumed to run the tests also grew. As a criticism to the kind

of tests that WebSpec derives, the development team agree

on the necessity of interaction tests but they prefer small

unit tests to be derived (A feature that WebSpec does not

have yet). As an improvement, the development team

created a continuous build2 to run the test suite. Finally, in

the coding side, mockups and WebSpec diagrams help to

implement the requirement using the code derivation fea-

tures (GWT effect handler) and were appreciated by

developers as it automates UI changes.

Fig. 25 First 4 steps of the

simulation of our selected user

story

Fig. 26 LoginView GWT class generated by effect handler

2 A continuous build is a program that compiles the application and

runs the tests separately without interfering in the developer’s

activity.

314 Requirements Eng (2011) 16:297–321

123

In conclusion, the experience with both customers and

the development team was positive though some features

can be improved such as the language readability and the

generation of unit tests. We expect to improve these fea-

tures in future works.

6 Related work and discussion

As we have previously stated, the specification of inter-

action and navigation requirements is a complex task due

to some unique characteristics of Web applications such

as the need to represent the navigation in information

spaces, the need of describing technical constraints related

to the information flow (e.g., session management), the

rapid evolution of requirements and the participation of

customers and other stakeholders in the development

process (e.g., marketing experts, editorial board, etc.)

[38]. In the last years, a large variety of artifacts have

been employed to capture Web requirements like UML

use cases and sequence diagrams [39], user interaction

diagrams [4], task models [40], and navigation models

Fig. 27 Test suite generated

from the CreateUser diagram

Table 1 Summary of WebSpec

use
Nro user

stories

Nro

WebSpec

Tests

generated

Simulation? Code

generation?

Sprint 1 3 3 10 Yes Yes

Sprint 2 4 3 14 No Yes

Sprint 3 4 4 16 No Yes

Sprint 4 3 4 8 No Yes

Sprint 5 4 5 10 No Yes

Sprint 6 2 1 7 No No

Requirements Eng (2011) 16:297–321 315

123

[8]. It is also worth noting a widespread use of paper-

based mockups to capture requirements related to the user

interface of Web applications [41] which has lead to the

development of advanced tools for sketching and story-

boarding the user interface of Web applications such as

Denim [42] and Balsamiq [23].

However, existing approaches have some drawbacks:

many of them are not suitable to be used as communication

tools with clients, others provide very informal ways of

specifying the requirements, which cannot be then vali-

dated, and some others that provide partial derivation of

domain or navigational models do not deal well with

evolution. In the following subsections, we survey how the

most important Web engineering methodologies support

the specification of requirements and compare the different

requirement artifacts used.

6.1 Requirements in model-driven Web engineering

In [9], Escalona and Koch have investigated how dif-

ferent Web engineering methods support the capture of

requirements. They showed that some methods employ

classical notations to deal with Web requirements, and

others simply ignore this phase in the development

process. It is interesting to notice that requirement arti-

facts might play several roles during the development

process: they can act as communication tools (for elici-

tation requirements with clients), as elements for early

specifications (that should be taken into account during

implementation phases) and as checklists for assessing

whether the final implementation complies the initial

requirements. Requirement checklists can indeed be

employed in regression testing [15] for assessing in a

longer term, the evolution of requirements expressed for

a single application.

Many Web engineering methods, such as UWE [6],

WebML [7], OOWS [5], OOHDM [4], and NDT [43],

include UML use case diagrams for capturing require-

ments. However, use case diagrams are not sufficient for

capturing all the details of Web application requirements.

Therefore, these Web engineering methods have often

included more than one artifact for capturing requirements;

for example, use cases are present in OOHDM in combi-

nation with UIDS [4]. Besides, use cases and activity

diagrams, WebML uses semi-structured textual descrip-

tions to capture additional information that can hardly be

expressed using the former models. Similarly, UWE [6]

proposes extended use cases, scenarios, and glossaries for

specifying requirements, and OOWS [5] combines use

cases with extended activity diagrams with the concept of

interaction points to describe the interaction of the user

with the system.

Other approaches do not consider UML diagrams, such

as WSDM [10] that employs task models using concurrent

task trees and A-OOH [12] that considers the i* framework

[44] in order to specify the requirements model which is

goal-oriented.

Some authors have investigated how to automate the

generation of the system specification from the require-

ments specification; for example, OOWS provides auto-

matic generation of (only) navigation models from the

tasks description, by means of graph transformation rules.

In A-OOH, the conceptual models (e.g., domain and nav-

igation models) are generated by means of QVT [45]

transformations from the requirements specification in i*

models. NDT defines a requirement metamodel and allows

transforming the requirements into conceptual models

(content and navigation models) by using QVT rules [45].

Table 2 summarizes the most relevant development

approaches and which requirements artifacts they use. We

have also added a row indicating the existence of a

requirement analysis tool for the process.

6.2 Requirements artifacts and discussion

In Table 3, we compare the expressive power of some

artifacts with respect to the different aspects that are nee-

ded for representing Web requirements [9]. Next, we will

describe and compare some other important requirement

artifacts.

As shown in Table 3, each artifact includes only part of

the concepts required to express requirements of Web

applications. For example, whilst use cases can be used to

represent functional requirements, mockups (either paper-

based or supported by tools) are more likely to capture and

represent requirements related to the composition of the

user interface. Task models allow expressing fine-grained

functional requirements including navigation, user trans-

actions, and business processes.

All these artifacts are quite similar from what they can

express; however, they have different notations and may

use similar concepts. In order to provide a more uniform

view on the coverage of requirements by each artifact,

Escalona and Koch have proposed a metamodel based on

WebRE profiles [46]. Its main advantage is the automatic

generation of conceptual models (content and navigation

models), which automatically satisfy the requirements.

Notwithstanding, some requirements such as detailed

composition of the user interface and behavior constraints

cannot be fully described with this notation.

316 Requirements Eng (2011) 16:297–321

123

Two widely used artifacts for capturing requirements

in Web engineering are textual templates and use cases.

Textual templates are specified in natural language in a

structured way as tables with predefined fields that the

designer should fill in. Natural language is ambiguous, so

requirements are specified in an imprecise and informal

manner. Also they are difficult to fill in, maintain, and

unsuitable for expression UI aspects. Use cases are also

an ambiguous technique when defining complex

requirements. Usually, they have to be complemented

with other techniques such as textual templates or

activity diagrams, and if special attention is needed to

represent UI concepts, it should be combined with

mockups or UML UI models.

As a way to overcome some of the problems of using

natural language while capturing interaction aspects, user

interaction diagrams [4] (UID) were proposed. UIDs help

to define the interactions that the user has with the Web

application. Despite the fact that they are formally

defined, the actions that produce navigations are descri-

bed in a non-structural fashion. As a consequence, UIDs

can only be used for capturing requirements and do not

help to validate them. As aforementioned, requirement

artifacts are not updated if they do not help during the

development process thus making the validation process

harder.

In the requirements engineering field, I* [44] is widely

used to model the expectations, needs, and goals of the

users and making design decisions from the very beginning

of the development phase. Recently, we have proposed an

extension [12] to express navigation and UI requirements

as stereotypes of goals and tasks. However, our approach is

not suitable for communication with clients as require-

ments are describe in an abstract way and do not described

precisely UI aspects. As a consequence, those details are

discussed with customers too late.

Table 2 Requirements artifacts in Web engineering approaches

Approach NDT WebML UWE OOWS WSDM A-OOH WebTDD

Textual templates X

Use cases X X X X X

Activity diagram X X

Task diagrams X X

I* X

User stories X

Mockups X

WebSpec X

Other techniques FRT Concept maps

Derivation of the application or models X X X X X

Requirements analysis tool NDT-tool No MagicUWE OOWS-suite No Eclipse plugin Eclipse plugin

Table 3 Expressiveness power of requirement artifacts for Web applications

Concept Artifacts used for representing requirements

Use cases Task models WebRE WebSpec Mockups I* extension

Behavior

Navigation Dependencies

between UC

Dependencies

between tasks

Navigation Navigation arrows Arrows Navigation

requirement

Process Use cases Tasks WebProcess WebSpec diagram – Service

requirement

User

interaction

Functional

requirements

Interactive tasks User transaction Action – –

Constraints OCL Lotus operators OCL Precondition and

invariants

Annotated

text

OCL

Information

flow

– Data transfer

between tasks

Data transfer in user

transaction

Data transfer between

interactions

–

Requirements Eng (2011) 16:297–321 317

123

In the agile track, user stories and mockups are the

typical way of capturing requirements because they

improve the communication with clients, since they

allow specifying a prototypic user interface. The story

describes informally the requirement that the client has

and sets a starting point to talk and discuss requirements

with clients. If these artifacts are not combined with a

test-based development approach, checking if a require-

ment is still satisfied by the application after several

iterations would be impossible. The main drawback of

using these artifacts solely is that tests are written

manually and by deducing the behavior from an informal

textual representation.

MoLIC [16], though not explicitly defined for the Web

field, was devised to represent the human–computer

interaction as the set of conversations that users may (or

must) have with the system (more precisely, with the

designer’s deputy) to achieve their goals. The main aim of

MoLIC is to support the designers’ reflection on the

interactive solution being conceived. As it was proposed

for human usage, MoLIC is not a formal, computer-pro-

cessable model. Molic diagrams are similar to WebSpec’s;

however, WebSpec is a formal language and Molic is not.

Therefore, you cannot derive a test suite or simulate the

application using mockups as in WebSpec. Also, MoLIC

seems good for communication with stakeholders but due

to its lack of automatic features, it tends to be an overhead

if it is used in agile methodologies. WebSpec meanwhile

can be used in both Agile and more cascade style of

approaches due to its automatic features.

According to industrial studies [1, 2], one of the main

problems of the current use of requirements artifacts for

Web applications is that it is impossible to validate that

the requirement has been implemented correctly. There-

fore, we strongly believe that obtaining a test suite from

the requirement specification is important to validate new

and old requirements (regression testing) in the applica-

tion and most important when the application grows

during its life cycle. In this aspect, WebRE is the only

approach that provides test derivation from the specifi-

cation, though it is tightly coupled with the NDT devel-

opment approach. In WebSpec, we can derive a test suite

that can be used with any development approach as tests

are derived in Selenium. When the test suite is run, it

opens a Web browser and executes actions over it as a

user would do it making it a technology independent

approach. Even an application written manually in PHP

could be validated with the tests generated from a Web-

Spec diagram.

As a summary, Table 4 shows a comparison between the

features of each requirement artifact. We have included the

features that we think are needed for actively using

requirements during the development cycle (simulation,

test derivation, and application derivation). Many of the

requirement artifacts provide some type of derivation of the

application, either class or model derivation. However,

most of them do not help to validate that the requirements

they express were correctly implemented and also to

improve the interaction between the different members of

the development team (simulation). With WebSpec, we

expect that requirements artifacts play a key and important

role mainly acting as drivers during the whole development

cycle.

7 Concluding remarks and further work

In this paper, we have presented a detailed and complete

definition of the WebSpec domain-specific language.

Webspec allows building requirements artifacts used to

capture navigation, interaction, and UI features in Web

applications independently of the underlying software

development process.

We have shown examples of how to specify navigation

and rich behaviors, and we have briefly described how we

can scale up when thousands of requirements are specified

with WebSpec by using its composition features. We have

shown how a Web application can be simulated when using

WebSpec with mockups by presenting the mockups and

showing descriptions over them. An interesting property of

WebSpec diagrams is that test suites that validate the

specified requirements are obtained automatically from the

diagram (e.g., a selenium test suite). Finally, changes in the

requirements are captured in change objects and then by

using a specific effect handler, a set of classes/models are

created or updated. In this case, we have shown the code

Table 4 Comparison of the

features of each requirement

artifact

Use

cases

Task

models

WebRE WebSpec Mockups i*

Simulation X X

Technology independent test derivation X

Derivation of the application or models X X X X

318 Requirements Eng (2011) 16:297–321

123

generated by the GWT effect handler. In Sect. 5, we have

shown how we have used WebSpec in the context of an

agile approach like WebTDD to develop an application in

several sprints while deriving part of the GWT code and

using the derived test to validate the correct behavior of the

application.

We are currently working on several research lines to

improve WebSpec both from an internal perspective

(intrinsic to the language and its features) and from more

external (related with other approaches and development

processes). Our first effort is to complete a set of testing

frameworks for WebSpec, so that we can give more

flexibility to development teams. These frameworks

include Watir [47] and Webdriver [36]. On the other

hand, we are improving support for a set of technologies

to be used to automatically manage implementation

changes. Right now, we support Seaside (Smalltalk based)

and GWT (Java based), but we are also working on PHP,

Ruby, and .NET.

Also, we have obtained some preliminary results on

several areas that need further research. First, from an

internal perspective, we proposed a small extension to

specify usability in the language [48, 49] and personali-

zation requirements by means of special variables [50]. In

the first case, usability is a distinctive feature in the current

competitive market to attract more users (e.g., in social

networks like facebook, sonico, or myspace). Allowing to

express usability aspects in the diagrams helps to define a

test suite that the application must satisfy. On the other

hand, personalization is pretty important for e-commerce

applications, and therefore, specifying this kind of

requirements is critical. Our approach is simple and lets

specifying the most basic personalization scenarios. How-

ever, we are in the preliminaries of this work, which needs

further research for example to automate the definition of

reusable personalization patterns.

Second, according to the definition of [52], WebSpec

can be considered a requirement artifact that should be

used on a late requirement analysis phase. Therefore, we

have proposed in [51] the use of WebSpec with an early

phase with i*. Our work proposes an automatic valida-

tion algorithm of the i* model based on the association

between WebSpec and the goals and tasks of the i*

model. However, the derivation process can still be

improved by mixing the derivation process of domain

and navigation classes proposed in [51], with the navi-

gation and UI derivation process of WebSpec. As a

consequence, we could automatically derive the three

design models that most model-driven development

approaches for Web applications support (domain, navi-

gation, and UI models).

Finally, in [53], we have presented an approach to derive

a complete structural UI model/class from a mockup.

Though the approach is independent from WebSpec, our

first experiments have shown that when used together with

WebSpec, we can obtain a more complete derivation of the

application.

Appendix: WebSpec’s grammar

Requirements Eng (2011) 16:297–321 319

123

References

1. McDonald A, Welland R (2001) Web engineering in practice. In:

Proceedings of the fourth WWW10 workshop on web engineer-

ing, pp 21–30

2. Lowe D (2003) Web system requirements: an overview. J Requir

Eng 8(2):102–113. http://dx.doi.org/10.1007/s00766-002-0153-x

3. Jacobson I (1992) Object-oriented software engineering: a use

case driven approach. ACM Press/Addison-Wesley, Boston

4. Rossi G, Schwabe D (2008) Modeling and implementing web

applications using OOHDM. In: Rossi G, Pastor O, Schwabe D,

Olsina L (Eds) Web engineering, modelling and implementing

web applications, Springer, Heidelberg, pp 109–155

5. Valderas P, Pelechano V, Pastor O (2007) A transformational

approach to produce Web applications prototypes from a Web

requirements model. Int J Web Eng Technol IJWET 3(1):4–42

6. Koch N, Zhang G, Escalona MJ (2006) Model transformations

from requirements to web system design. ICWE’06, Palo Alto,

California, USA

7. Ceri S, Fraternali P, Bongio A, Brambilla M, Comai S, Materna

M (2003) Designing data-intensive web applications. Morgan

Kaufman, Waltham

8. Gómez J, Cachero C (2003) OO-H method: extending UML to

model web interfaces. In: van Bommel P (ed) Information

modeling for internet applications. IGI Publishing, Hershey,

pp 144–173

9. Escalona MJ, Koch N (2004) Requirements engineering for web

applications–a comparative study. J Web Eng 2(3):193–212

10. De Troyer O, Casteleyn S (2003) Modeling complex processes

for web applications using WSDM. In: Proceedings of the 3rd

international workshop on web-oriented software technologies.

Oviedo, Spain. At: http://www.dsic.upv.es/*west/iwwost03/

articles.htm

11. Escalona MJ, Koch N (2006) Metamodeling requirements of web

systems. In: Proceedings of the international conference on web

information system and technologies (WEBIST 2006), INSTICC,

310–317, Setúbal, Portugal

12. Garrigós I, Mazón JN, Trujillo J (2009) A requirement analysis

approach for using i* in web engineering. In: ICWE, LNCS,

5648, pp 151–165

13. Martin RC (2003) Agile software development: principles, pat-

terns, and practices. Prentice Hall PTR, Upper Saddle River

14. Beck K (2002) Test driven development: by example. Addison-

Wesley Signature Series

15. Zheng J (2005) In regression testing selection when source code

is not available. In: Proceedings of the 20th IEEE/ACM inter-

national conference on automated software engineering (Long

Beach, CA, USA, November 07–11, 2005). ASE’05. ACM, New

York, NY, pp 752–755. doi:http://doi.acm.org/10.1145/1101908.

1101997

16. de Paula MG, da Silva BS, Barbosa SD (2005) Using an inter-

action model as a resource for communication in design. In

CHI’05 extended abstracts on human factors in computing sys-

tems (Portland, USA, April 02–07, 2005), pp 1713–1716

17. Rossi G, Pastor O, Schwabe D, Olsina L (2008) Web engineering:

modelling and implementing web applications. Human-computer

interaction series. Springer, London

18. GWT. Available at: http://code.google.com/webtoolkit/. Acces-

sed 2011

19. Seaside. Available at: http://www.seaside.st/. Accessed 2011

20. Fowler M (2010) Domain specific languages, 1st edn. Addison-

Wesley Professional, Boston

21. Claessen K, Hughes J (2000) QuickCheck: a lightweight tool for

random testing of Haskell programs. In: Proceedings of the fifth

ACM SIGPLAN international conference on functional pro-

gramming, vol 35, pp 268–279

22. Bondy JA (1976) Graph theory with applications. Elsevier Sci-

ence Ltd, Amsterdam

23. Balsamiq. Available at: http://www.balsamiq.com/products/

mockups. Accessed 2011

24. Axure—wireframes, prototypes, specifications. Available at:

http://www.axure.com/. Accessed 2011

320 Requirements Eng (2011) 16:297–321

123

http://dx.doi.org/10.1007/s00766-002-0153-x
http://www.dsic.upv.es/~west/iwwost03/articles.htm
http://www.dsic.upv.es/~west/iwwost03/articles.htm
http://doi.acm.org/10.1145/1101908.1101997
http://doi.acm.org/10.1145/1101908.1101997
http://code.google.com/webtoolkit/
http://www.seaside.st/
http://www.balsamiq.com/products/mockups
http://www.balsamiq.com/products/mockups
http://www.axure.com/

25. Chomsky N (2003) Three models for the description of language.

Inform Theory IRE Trans 2(3):113–124

26. Duhl J (2003) Rich internet applications. A white paper spon-

sored by Macromedia and Intel, IDC report

27. Yahoo patterns, http://developer.yahoo.com/ypatterns/

28. Moody D (2009) The physics of notations: toward a scientific

basis for constructing visual notations in software engineering.

IEEE Trans Softw Eng 35(6):756–779. doi:10.1109/TSE.2009.67

29. Maximilien EM, Williams L (2003) Assessing test-driven

development at IBM. In: Proceedings of the 25th international

conference on software engineering (Portland, Oregon, May

03–10, 2003). International conference on software engineering.

IEEE Computer Society, Washington, DC, pp 564–569

30. Robles Luna E, Grigera J, Rossi G (2009) Bridging test and

model-driven approaches in web engineering. In: Proceedings of

the 9th international conference on web engineering. Lecture

notes in computer science, vol 5648. Springer, Berlin, Heidel-

berg, pp 136–150

31. Eclipse EMF. Available at: http://www.eclipse.org/modeling/

emf/. Accessed 2011

32. Eclipse GMF. Available at: http://www.eclipse.org/modeling/

gmp/. Accessed 2011

33. Selenium web application testing system. Available at:

http://seleniumhq.org/. Accessed 2011

34. jQuery: the write less, do more, JavaScript library. Available at:

http://jquery.com/. Accessed 2011

35. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design pat-

terns: elements of reusable object-oriented software. Addison-

Wesley Longman Publishing Co, Boston

36. WebDriver. Available at: http://webdriver.googlecode.com.

Accessed 2011

37. The WebRatio tool suite. Available at: http://www.webratio.com.

Accessed 2011

38. Uden L, Valderas P, Pastor O (2008) An activity-theory-based

model to analyse Web application requirements. Inform Res

13(2). http://informationr.net/ir/13-2/paper340.html

39. Conallen J (2000) Building web applications with UML. Addi-

son-Wesley, Boston, p 300

40. Winckler M, Vanderdonct J (2005) Towards a user-centered

design of web applications based on a task model. In: Proceed-

ings of IWWOST’2005. Porto, Portugal, 12–13 June 2005

41. Flannagan S The paper version of the web. In: Deeplinking,

available at: http://deeplinking.net/paper-web/

42. Lin J, Newman MW, Hong JI, Landay JA (2000) DENIM:

finding a tighter fit between tools and practice for Web site

design. In: Proceedings of the SIGCHI conference on human

factors in computing systems (The Hague, The Netherlands,

01–06 April 2000). CHI’2000. ACM, New York, NY,

pp 510–517

43. Escalona MJ, Aragon G (2008) NDT. A model-driven approach

for web requirements. IEEE Trans Softw Eng 34(3):370–390

44. Yu ESK (1997) Towards modeling and reasoning support for

early-phase requirements engineering. In: Proceedings of the 3rd

IEEE international symposium on requirements engineering

(RE’97). IEEE Computer Society, Washington, DC, USA, p 226

45. QVT. http://www.omg.org/spec/QVT/. Accessed 2011

46. Escalona MJ, Koch N (2006) Metamodeling requirements of web

systems. In: Proceedings of the internacional conference on web

information system and technologies (WEBIST 2006), INSTICC,

pp 310–317, Setúbal, Portugal

47. Watir. Available at: http://watir.com/. Accessed 2011

48. Robles Luna E, Panach JI, Grigera J, Rossi G, Pastor O (2010)

Incorporating usability requirements in a test/model-driven web

engineering approach. J Web Eng (JWE) 9(2):132–156

49. Robles Luna E, Rossi G, Burella J, Grigera J (2010) Incremental

usability improvement in an Agile approach for web applications.

In: Proceedings of the 1st workshop dealing with usabiliy in an

Agile domain, XP’2010 workshop, 2010, Trondheim, Norway

50. Robles Luna E, Garrigos I, Rossi G (2010) Capturing and vali-

dating personalization requirements in web applications. In:

Proceedings of the 1st workshop on the web and requirements

engineering (WeRE 2010), Sydney, Australia

51. Robles Luna E, Garrigos I, Mazon J-N, Trujillo J, Rossi G (2010)

An i*-based approach for modeling and tesing web requirements.

J Web Eng (JWE) 9(4):302–326

52. Alencar FMR, Castro JFB (1999) Integrating early and late-phase

requirements: a factory case study. In: Proceedings of XIII Bra-

zilian symposium on software engineering—SBES99, Floria-

nopólis, SC, Brasil, Outubro 1999, pp 47–61

53. Rivero JM, Rossi G, Grigera J, Burella J, Robles Luna E, Gor-

dillo S (2010) From mockups to user interface models: an

extensible model driven approach. In: Proceedings of the 6th

model-driven web engineering workshop (MDWE 2010), Vienna,

Austria

Requirements Eng (2011) 16:297–321 321

123

http://developer.yahoo.com/ypatterns/
http://dx.doi.org/10.1109/TSE.2009.67
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://seleniumhq.org/
http://jquery.com/
http://webdriver.googlecode.com
http://www.webratio.com
http://informationr.net/ir/13-2/paper340.html
http://deeplinking.net/paper-web/
http://www.omg.org/spec/QVT/
http://watir.com/

	WebSpec: a visual language for specifying interaction and navigation requirements in web applications
	Abstract
	Introduction
	WebSpec: a DSL to capture interactive Web requirements
	WebSpec diagrams
	Interactions
	Specifying the application’s behavior
	Interactive behaviors
	Dealing with ‘‘non-interactive’’ behaviors

	Specifying properties with generators
	Diagrams’ composition
	WebSpec guidelines

	WebSpec in use
	Bounding infinite scenarios
	Improving team understanding with WebSpec and Mockups
	Requirements validation
	Requirement changes
	Capturing requirement changes
	Using requirement changes to ease application evolution

	Tool support
	Dealing with simulation
	Requirements validation
	Requirement changes

	Case study
	Introduction
	WebSpec use
	Advantages and disadvantages

	Related work and discussion
	Requirements in model-driven Web engineering
	Requirements artifacts and discussion

	Concluding remarks and further work
	Appendix: WebSpec’s grammar
	References

