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Stochastic Modeling of Variably Saturated Transient
Flow in Fractal Porous Media1

Luis Guarracino2 and Juan E. Santos2,3

This work presents the application of a Monte Carlo simulation method to perform an statistical analysis
of transient variably saturated flow in an hypothetical random porous media. For each realization of
the stochastic soil parameters entering as coefficients in Richards’ flow equation, the pressure head
and the flow field are computed using a mixed finite element procedure for the spatial discretization
combined with a backward Euler and a modified Picard iteration in time. The hybridization of the
mixed method provides a novel way for evaluating hydraulic conductivity on interelement boundaries.
The proposed methodology can handle both large variability and fractal structure in the hydraulic
parameters. The saturated conductivity Ks and the shape parameter αvg in the van Genuchten model
are treated as stochastic fractal functions known as fractional Brownian motion (fBm) or fractional
Gaussian noise (fGn). The statistical moments of the pressure head, water content, and flow components
are obtained by averaging realizations of the fractal parameters in Monte Carlo fashion. A numerical
example showing the application of the proposed methodology to characterize groundwater flow in
highly heterogeneous soils is presented.
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INTRODUCTION

Groundwater flow and contaminant transport are significantly influenced by het-
erogeneous soil properties. At field scale, soils parameter distributions are subject
to uncertainty due the high degree of spatial variability and the relatively small
number of subsurface observations. For this reason, in the last two decades, the
theory of stochastic processes has been used to study the effect of spatial variability
in water flow and solute transport.

One of the most widely used methods to solve stochastic flow equations is
based on Monte Carlo simulation. In the Monte Carlo approach a set of realiza-
tions of the stochastic soil parameters with a given statistical characterization is
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synthetically generated. For each realization a deterministic flow problem is solved
using a numerical method. After a large number of realizations the statistical mo-
ments of the computed variables are calculated. The Monte Carlo method can
handle complex geometries and deal with extremely large variability in stochastic
parameters, avoiding the commons limitations of the perturbation approach. Its
main disadvantage is associated with the computational cost. Analysis of water
flow and solute transport in highly heterogeneous aquifers were presented by Ünlü,
Nielsen, and Biggar (1990), Hassan, Cushman, and Delleur (1998), Salandin and
Fiorotto (1998), Naff, Haley, and Sudicky (1998), and Harter and Yeh (1998).

The objective of this work is to present a numerical procedure to simulate
transient groundwater flow in heterogeneous fractal porous media. Field measure-
ments shows that the soil parameters have a high degree of spatial variability and
exhibit long range correlations that are better described by stochastic fractals in-
stead of the classical Gaussian processes. Consequently a Monte Carlo simulation
method is needed to tackle this problem. A robust numerical procedure that be
able to handle large discontinuities in the coefficients of the flow equations at the
grid level is also required. The use of a mixed finite element method for the spatial
discretization of the flow equations is especially suitable for the latter purpose.

Groundwater flow in variably saturated soils is assumed to be described by
Richards equation (Richards, 1931), a highly nonlinear parabolic equation. Stan-
dard finite element methods for solving Richards equation have been used by Celia,
Bouloutas, and Zarba (1990), Allen and Murphy (1985) among others. Recently,
mixed finite element methods have been employed to simulate groundwater flow
both for saturated (Beckie, Wood, and Aldama, 1993; Mosé and others, 1994) and
unsaturated conditions (Bergamaschi and Putti, 1999; Chounet and others, 1999).

In this paper Richards equation is solved using a hybridized mixed finite
element procedure. Because of the high nonlinearity of the equation, quadrature
rules for computing integrals are required. When a trapezoidal quadrature is used,
the nonlinear coefficients in Richards equation need to be evaluated on interelement
boundaries. The hybridization of the mixed finite element introduces a new variable
(a Lagrange multiplier) associated with the values of the potential on interelement
boundaries. Using the Lagrange multipliers to evaluate the nonlinear coefficients
provided us with a natural and numerically efficient procedure that allows to handle
the large discontinuities and high spatial variability related to the fractal structure
of the hydraulic parameters, avoiding the usual approach of performing averages
or the common assumption that the nonlinear coefficients are constant over the
elements.

To solve Richards equation, constitutive relationships of hydraulic conduc-
tivity (K ) and water content (θ ) versus pressure head (h) must be specified. One of
the models frequently employed in numerical simulation of water flow is the van
Genuchten model (van Genuchten, 1980); which involve the saturated hydraulic
conductivity (Ks) and a shape parameter αvg. At field scale, these parameters
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show a high degree of spatial variability and need to be characterized using a
statistical approach (Russo and Bouton, 1992; Russo, Russo, and Laufer, 1997).
Neuman (1994), Kemblowski and Chang (1993), and Moltz and Boman (1995)
had reported evidences of fractal structure in saturated hydraulic conductivity (Ks)
distributions. In those works Ks distributions are described employing stochastic
fractal functions, such as fractional Brownian motion (fBm) or fractional Gaussian
noise (fGn).

To illustrate the use of the proposed stochastic model we designed an infil-
tration test in a hypothetical random porous media where both Ks and αvg obey
either fBm or fGn statistics. More specifically, a set of realizations of the stochastic
parameters is synthetically generated using a fractal generator based on a spectral
method. For each realization a deterministic problem associated with Richards
equation is solved using a hybridized mixed finite element method for the spa-
tial discretization combined with a backward Euler and a Picard iteration for the
time discretization. After a large number of realizations the statistical moments
of the pressure head, water content, and flow vector are calculated. To stop the
Monte Carlo method, a criteria based on the stabilization of a global measure of
the variances of the computed variables is proposed.

THE DIFFERENTIAL MODEL FOR VARIABLY SATURATED FLOW

Let� be a bounded porous domain with boundary ∂�. For the spatial Carte-
sian coordinates x = (x, y, z) let θ = θ (x), h = h(x), and q = q(x) denote the
water content, the pressure head, and the flow vector, respectively. It will be as-
sumed that water flow in � is governed by Richards equation (Richards, 1931)
stated in the form

∂θ (h)
∂t

+ ∇ · q = 0, x ∈ �, (1a)

q = −K (h)∇(h + z), x ∈ �, (1b)

with boundary conditions

q · ν = q∗, x ∈ 0N , (2a)

h = h∗, x ∈ 0D, (2b)

and initial condition h = h0, x ∈ �. In the above equations t is the time variable
and the z-axis is considered to be positive upwards. In (2a) ν denotes the unit
outer normal to ∂�; 0D and 0N denote respectively the part of the boundary
where the pressure head values h∗ and the normal component of the flow q∗ are
being specified, with ∂� = 0D ∪ 0N , 0D ∩ 0N = ∅.
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To solve the differential problem (1)–(2) we consider the van Genutchen
model (van Genutchen, 1980):

θ (h) =


θs − θr

[1 + (αvg|h|)n]m + θr, for h < 0

θs for h ≥ 0
(3)

K (h) =
 Ks

{1 − (αvg|h|)n−1[1 + (αvg|h|)n]−m}2

[1 + (αvg|h|)n]m/2 for h < 0

Ks for h ≥ 0
(4)

where θr and θs are the residual and saturated water contents, respectively; n and
αvg are shape parameters; and m is given by the relation m = 1 − 1/n.

The first step to approximate the solution of the flow equations is to discretize
in time (1) using a backward Euler method coupled with a modified Picard iteration
scheme (Celia, Bouloutas, and Zarba, 1990) as follows:

θn+1,i − θn

1tn + Cn+1,i

1tn δhi+1 + ∇ · qn+1,i+1 = 0, x ∈ �, (5a)

qn+1,i+1

K n+1,i + ∇(hn+1,i + δhi+1 + z) = 0, x ∈ �, (5b)

where the superscripts n and i denote time and iteration level, respectively;1tn =
tn+1 − tn is the time step; δhi+1 = hn+1,i+1 − hn+1,i ; θn+1,i = θ (hn+1,i ); Cn+1,i =
( ∂θ
∂h )n+1,i ; and K n+1,i = K (hn+1,i ).

A HYBRIDIZED MIXED FINITE ELEMENT PROCEDURE

Let us consider the solution of the flow equations (5) using a hybridized mixed
finite element method for the case in which the domain � is a rectangle. Let T h̃

be a nonoverlapping partition of� into rectangles� j , j = 1, . . . , n j , of diameter
bounded by h̃. Also, set 0 jk = ∂� j ∩ ∂�k , 0 j = ∂� j ∩ ∂�.

For l ≥ 0 let V l and W l be the Raviart–Thomas–Nedelec (Douglas and
Roberts, 1985; Nedelec, 1980; Raviart and Thomas, 1977) mixed finite element
space of index l associated with T h̃ , i.e.,

V l = {v ∈ H (div, �) : v|� j ∈ Pl+1,l × Pl,l+1},
V l

0 = {v ∈ V l and v · ν = 0 on0N },
W l = {ψ ∈ L2(�) : ψ |� j ∈ Pl},

where Pm denote the polynomials of total degree not greater than m and Pm,n
denotes the polynomials of degree not greater than m in the x-variable and not
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greater than n in the z-variable. In order that elements v ∈ V l be in H (div, �)
their normal components must be continuous across the interelement boundaries
0 jk . The algebraic problem associated to the mixed finite element procedure for
the approximate solution of (5) consists of the solution of a linear system of
equations for the coefficients of the expansion of the flow vector and pressure head
in a basis of V l

0 × W l . Following Arnold and Brezzi (1985), we will simplify the
algebraic form associated with the mixed method by eliminating the constraint
imposing the continuity of the normal components of the flow vector across the
interior boundaries and enforcing the required continuity instead using a Lagrange
multiplier. Thus we introduce a space of Lagrange multipliers 3l which elements
λ are associated with the potential h + z at the interelement boundaries 0 jk . Let

3l = {λ : λ|0 jk = λ jk ∈ Pl(0 jk)},
V l

−1 = {v ∈ L2(�) : v|� j ∈ Pl+1,l × Pl,l+1},
V l

0,−1 = �
v ∈ V l

−1 and v · ν = 0 on0N 	
.

Next, to obtain a hybridized form of the mixed method we multiply (5a) by
ψ ∈ W l and integrate over �. Also, we multiply (5b) by v ∈ V l

0,−1 and integrate
over �, using integration by parts at the element level in the second term in the
left-hand side of (5b) and the fact that the Lagrange multipliers are associated with
the potential h + z on 0 jk . Note that we cannot use integration by parts globally
in� because functions in V l

0,−1 do not have divergence defined globally in L2(�).
Thus, if Q and H denote the discrete water flow and pressure head, the

hybridized mixed finite element procedure is defined in the following fashion:
Let (Qn, H n, λn) ∈ V l

−1 × W l ×3l be given and such that (Qn, H n) satisfies (2).
Then, given (Qn+1,0, H n+1,0, λn+1,0) ∈ V l

−1 × W l ×3l , find (Qn+1,i+1, H n+1,i+1,

λn+1,i+1) ∈ V l
−1 × W l ×3l such that

Z
�

�
θn+1,i − θn

1tn + Cn+1,i

1tn δHi+1
�
ψ d�

+
X

j

Z
� j

∇ · Qn+1,i+1ψ d� = 0, ψ ∈ W l , (6a)

Z
�

Qn+1,i+1

K n+1,i · v d�−
X

j

Z
� j

(δHi+1 + H n+1,i + z)∇ · v d�

+
Z
0D

(h∗ + z)v · ν dσ +
X

jk

Z
0 jk

λ
n+1,i+1
jk v · ν dσ = 0, v ∈ V l

0,−1, (6b)
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Qn+1,i+1 · ν = Q∗, x ∈ 0N , (6c)X
jk

Z
0 jk

µQn+1,i+1 · ν dσ = 0, µ ∈ 3l . (6d)

Note that Equation (6d) is equivalent to the condition that Qn+1,i+1 ∈ H
(div, �). In (6c) Q∗ is an approximation to q∗ defined locally on 0N as Q∗|0 j =
Q∗

j for 0 j ⊂ 0N , where Q∗
j is determined by the relation hQ∗

j − q∗, ϕi0 j = 0,
ϕ ∈ Pl(� j ).

Set hn+1 ≡ hn+1,∞, with hn+1,∞ denoting the value of the pressure head after
convergence of the Picard iteration has been achieved for a prescribed tolerance,
and define qn+1, H n+1,Qn+1 in a similar fashion. Then using the fact that a back-
ward Euler scheme is first order correct in time, the results given in Douglas and
Roberts (1985) imply that

kH n+1 − hn+1kL2(�) ∝ h̃l+1 + maxn1tn,

kQn+1 − qn+1kL2(�) ∝ h̃l+1 + maxn1tn.

The method (6) was implemented for the lowest-order index case l = 0. The
corresponding degrees of freedom are the values of the pressure head H n+1 at the
center of the rectangles � j and the values of the normal component of the water
flow vector Qn+1 and the Lagrange multipliers λn+1 at the mid points of the sides
of � j .

To compute the first term in the left-hand side of (6b) we employ the following
trapezoidal quadrature rule:

Z
� j

Qn+1,i+1

K n+1,i · v d� ≈ Area of� j

4

4X
k=1

Qn+1,i+1

K n+1,i · v
����
0 jk

, (7)

where 0 jk , k = 1, . . . , 4, are the four boundaries of the rectangular element � j .
Using this quadrature rule we obtain a linear system for the values of the pressure
head H n at the mid points of the rectangles � j , so that in the case l = 0 the
procedure (6) may be regarded as a cell-centered finite difference scheme.

Numerical computation of (7) requires the evaluation of the nonlinear func-
tion K (h) on the interelement boundaries; as explained in the Introduction section,
to obtain accurate values of h we employed the Lagrange multipliers associated
with the potential at those boundaries, i.e., on the interior boundary 0 jk we ob-
tained K n+1,i using the rule K n+1,i |0 jk = K (λn+1,i

jk − z). This novel way of treating
nonlinearities provides a natural approach to treat numerically the nonlinearity of
K (h) and its high degree of spatial variability (related to the fractal structure of the
hydraulic parameters Ks and αvg) and is more accurate than the assumption of
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constancy of K (h) over each element as done in (Bergamaschi and Putti, 1999;
Chounet and others, 1999).

Numerical solutions of the proposed algorithm were validated in Guarracino
(2001) by comparison with analytical solutions presented by Ross and Parlange
(1994) and Strivastava and Yeh (1991), including the calculation of the numerical
flux across a discontinuity in K (h). Also a dynamic time step control which signif-
icantly improved the CPU efficiency was implemented. The time step is increased
or decreased depending of the number of iterations required for the Picard iteration
to converge.

GENERATION OF FRACTALS USING THE SPECTRAL METHOD

Following Russo and Bouton (1992) and Russo, Russo, and Laufer (1997)
we assume that, for F = Ks or F = αvg, logF(x) =< logF > + f (x), where<>
denotes the mean value and the fluctuation f (x) is a stochastic process. Further
we assume that f (x) is either a fBm or a fGn stochastic process.

The spectral density S f (k) of a fBm/fGn process f (x) in a finite two-
dimensional domain can be express (Hassan, Cushman, and Delleur, 1998; Moltz,
Liu, and Szulga, 1997):

S f (k) =


σ 2

f (2 − β)

4π2
¡
k2−β

max − k2−β
min

�|k|β
, kmax < |k| < kmin

0, elsewhere
(8)

where k is the spatial frequency (wave number), σ 2
f is the variance of f (x); kmin

is a lower frequency cutoff which is determinated by the diameter of�; kmax is an
upper frequency cutoff proportional to the inverse of the finite element mesh size;
and β is a parameter related to the fractal dimension D by the formula

β =
(

8 − 2D for a fBm,
6 − 2D for a fGn.

(9)

To generate a fBm or a fGn realization we follow the ideas presented by
Hassan, Cushman, and Delleur (1998) and Voss (1988). First a set of uniformly
distributed random numbers associated with the center of each cell of the finite
element mesh is obtained using a random number generator. Then the fast Fourier
transform (FFT) of this set of numbers is taken and the resulting numbers are
multiplied by a transfer function proportional to [S f (k)]1/2 in the wave number
space. Finally, taking the inverse FFT a set of numbers with the desired spectral
density (8) is obtained.
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Figure 1 shows normalized 2D realizations of fBm and fGn stochastic pro-
cesses f (x) in a square domain of side length 10 m for several fractal dimensions
D and σ 2

f = 0.1, with darker pixels corresponding to higher values of f . As ex-
pected, as the fractal dimension D increases we have more heterogeneity in the
values of f .

Figure 2 shows the covariance C f (τ ) of the fractal fields f (x) in Figure 1 com-
puted using a discrete form of the formula C f (τ ) = h( f (x + τ ) − h f i)( f (x) −
h f i)i and 500 realizations. Both for fBm and fGn distributions the correlation
length diminishes as the fractal dimension D increases. In the case of a fGn,
when D approaches the value 2.5 the process tends to the classical Gaussian noise
characterized by having as covariance a Dirac distribution (Fig. 2(b)).

MONTE CARLO SIMULATIONS OF WATER FLOW

The application of the Monte Carlo simulation method to characterize the
transient variably saturated flow consists in solving Richards equation for a large
number of realizations of the stochastic processes Ks and αvg. We computed the
variance of the pressure head, water content, and the water flow at the cell centers
of the finite element mesh and observed that the variance values stabilized after
a certain number of realizations. Thus we adopted the criteria of stopping the
Monte Carlo simulation when a global measure of the variance of the pressure
head, water content, and the water flow over the domain � have converged to
asymptotic values within a small tolerance. More specifically, for s = h, θ, qx , qz
we defined the spatial average of the variance of s as follows:

σ 2,m
s

 =
"

1
n j

n jX
j=1

¡
σ 2,m

s j

�2
#1/2

, (10)

where σ 2,m
s j

denotes the variance of s computed at the center of the subdomain� j

after m-realizations. Thus, setting1σ 2,m
s = kσ 2,m

s − σ 2,m−1
s k, we consider that the

Monte Carlo simulation converges when for a given � sufficiently small we have
that

1σ 2,m
s

1σ
2,4
s

≤ �. (11)

Once the convergence has been achieved we proceed to compute the statistical
moments of the variables of interest. For the stochastic variable s we computed the
mean value hs j iN and variance σ 2,N

s j
associated with the center of the subdomain

� j and the covariance C N
s j sk

associated with the centers of the subdomains� j and
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Figure 1. Realizations of fBm distributions for (a) D = 2.05, (b) D = 2.25, (c) D = 2.45 and
fGn distributions for (e) D = 2.05, (f) D = 2.25, (g) D = 2.45.
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Figure 2. Covariance functions of fBm and fGn distributions for
D = 2.05, 2.25, and 2.45.

�k after N Monte Carlo realizations using the relations

hs j iN = hs j i = 1
N

NX
m=1

sm
j , (12a)

σ 2,N
s j

= 1
N − 1

NX
m=1

¡
sm

j − hs j i
�2 = N

N − 1
�h(s j )2i − (hs j i)2�, (12b)

C N
s j sk

= 1
N

NX
m=1

(s j − hs j i)(sk − hski) = hs j ski − hs j ihski. (12c)
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Table 1. Parameters of the van Genuchten Model

Ks (cm/s) αvg (cm−1)

hFi 1.22 × 10−3 0.075
σ 2

f 0.2 0.10

Note. n 1.89; θs 0.41; θr 0.065.

To illustrate the use of the Monte Carlo method and the performance of the
hybridized mixed finite element procedure, we will consider the water flow in a
rectangular domain � of 12 m in the horizontal direction by 8 m in the vertical
direction. The water table is considered to be horizontal and located at a depth of
6 m. We consider a hydrostatic initial condition (q = 0). At the upper boundary
of � (surface, z = 8 m) we specify a constant infiltration rate of 12 mm/day over
an interval of size 6 m at the center of this boundary. At the bottom (z = 0) and
lateral boundaries of�we specified the values of the pressure head corresponding
to the hydrostatic state. For the constitutive relations we use the van Genuchten
model with parameter values corresponding to a sandy loam obtained by Carsel
and Parrish (1988) and given in Table 1, where we also give the values for the
variance of Ks and αvg used for the generation of the corresponding fractal fields.

For the spatial discretization we employed a uniform mesh of 48 × 32 sub-
domains. The total simulation time for each realization was 15 days in order to
develop an infiltration front in the upper part of the domain. The experiments were
run on an IBM SP2 computer at Purdue University used as a single processor
machine, with an average simulation time for each realization of 5 min. We ran a
total of 1000 Monte Carlo simulations and then computed all statistical moments
at T = 15 days as explained before.

Figures 3 and 4 display realizations of the fractal conductivity field Ks corre-
sponding to the values in Table 1 for fBm and fGn distributions, respectively, and
fractal dimension D = 2.2. The conductivity values show a high degree of hetero-
geneity, with an order of magnitude variation between minimum and maximum
values. Also, as expected, we observe more persistence in the fBm than in the fGn
realization of Ks.

In Figures 5 and 6 we show the water content θ at T = 15 days for a single
realization of Ks and αvg for fBm and fGn distributions and fractal dimension
D = 2.2. In both cases it is clearly observed the effects of the local heterogeneities
on the water content distribution in the soil.

Figures 7 and 8 display the corresponding flow fields for the same single
realization, where we can observe the water motion where the infiltration is taking
place (upper part of the domain), while in the rest of the domain the flow is negligi-
ble. In both figures the formation of preferential pathways by soil heterogeneities
is clearly observed.
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Figure 3. Realization of a permeability field Ks generated using fBm
distributions.

Figure 4. Realization of a permeability field Ks generated using fGn
distributions.
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Figure 5. Realization of a water content field generated using fBm
distributions.

Figure 6. Realization of a water content field generated using fGn
distributions.
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Figure 7. Realization of a water flow field generated using fBm distributions.

In Figures 9 and 10 we show the average and varianceσ 2
θ of the water content θ

at T = 15 days for the case of an fBm distribution and fractal dimension D = 2.2.
Notice that σ 2

θ vanishes in the saturated zone since in this region θ (h) = θs. The
variance σ 2

θ attains its maximum values close to the water table, in the region
known as the capillary fringe. This result shows the influence of the variability of
soil parameters when studying variations in water table position. The variance σ 2

θ

also shows significative values along the infiltration front as is also mentioned by
Ferrante and Yeh (1999).

Figures 11 and 12 display the average value and the variance of the vertical
component qz of the flow vector. It can be observed that the maximum values of
the variance σ 2

qz
are located in the region where the infiltration is taking place.

Figure 8. Realization of a water flow field generated using fGn distributions.
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Figure 9. Mean water content field for fBm distributions and 1000 Monte
Carlo realizations.

Figure 10. Variance of water content field for fBm distributions and 1000
Monte Carlo realizations.
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Figure 11. Mean qz field for fBm distributions and 1000 Monte Carlo
realizations.

Figure 12. Variance of qz for fBm distributions and 1000 Monte Carlo
realizations.
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Figure 13. Position of the points Pi , i = 1, . . . , 4 selected for the statistical
analysis.

Next we present an experiment that illustrates the stabilization of the vari-
ance mentioned above. To show this behavior we selected, somewhat arbitrar-
ily, four points as follows: P1 = (5.875, 6.625) in the infiltration region, P2 =
(5.875, 6.125) approximately on the infiltration front, P3 = (5.875, 5.625) about
0.5 m below the infiltration front, and P4 = (5.875, 2.125) above the water table
(Fig. 13). Figure 14 shows the variance σ 2

θ of the water content assuming fBm dis-
tributions and D = 2.2 at time T = 15 days; it can be observed that the variance
values stabilizes at the four points after 500 realizations. The same stabilization
effect was observed for the other variables (h, qx , qz), for fGn distributions, and
other fractal dimensions.

Next we analyze the behavior of the variance of the water content (σ 2
θ ) for the

case in which, for each realization of the stochastic permeability field Ks, the pa-
rameterαvg is a random constant over the domain�with average value 0.075 cm−1

and variance of ln(αvg) equal to 0.10. This simplification (that contradicts the ex-
perimental evidence presented by Russo and Bouton (1992) and Russo, Russo, and
Laufer (1997)) is done by Tartakovsky, Neuman, and Lu (1999) to study stochastic
unsaturated flow using a Kirchhoff transformation. Figure 15 shows values of σ 2

θ

at the point P1 as a function of the number of Monte Carlo realizations for the
case in which αvg is either a constant over the domain � for each realization or a
fBm process with D = 2.2. As expected, σ 2

θ stabilizes much earlier in the former
case. In particular, this figure shows that the numerical procedure is robust and
capable to handle local heterogeneities in the parameter αvg, used to represent local
variability of the capillary relations in the unsaturated zone (c.f. (3)).
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Figure 14. Stabilization of the water content variance at P1, P2, P3, and P4.

Figure 16 shows a log–log plot of the increments 1σ 2,m
s as function of the

number of realizations m for s = θ, h, qx , qz . The figure shows that to obtain one
order of magnitude in the error reduction in the calculation of the moments we
need to increase in one order of magnitude the number of Monte Carlo realizations.

Finally, the covariance of the vertical component of the flow qz in the hor-
izontal and vertical directions is displayed in Figures 17 and 18, respectively, at
the points P1, P2, and P3. It can be observed that the covariances depend on the
point and the direction at which are being calculated, showing numerically that the
flow field is not stationary. Also note that in Figure 18 the covariance tends to zero

Figure 15. Influence of the parameter αvg on the stabilization of the water content
variance at P1.
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Figure 16. Convergence of the Monte Carlo simulation method.

near z = 8 m, i.e., close to the surface. This is due to the fact that the boundary
condition imposed at such boundary is deterministic and of Neumann type; below
the infiltration front the covariance also vanishes because the initial condition cor-
responds to the hydrostatic case (q = 0). The covariance of the flow components
are needed for the calculation of the macrodispersion coefficients (Dagan, 1989).
This procedure is used by Lessoff, Idelman, and Dagan (2000) to study solute
transport for steady state flow.

Figure 17. Covariance of qz in the x-direction computed at the points P1, P2,
and P3.
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Figure 18. Covariance of qz in the z-direction computed at the points P1, P2, and P3.

CONCLUSIONS

A Monte Carlo simulation method for stochastic analysis of transient variably
saturated flow is presented. Richards equation is solved employing a mixed finite
element method. Hybridization of the mixed method provides a novel way to
evaluate the hydraulic conductivity K (h) on interelement boundaries by using
Lagrange multipliers associated with the potential h + z.

A parametric analysis of the model was performed, analyzing the sensitiv-
ity of the dependent variables with respect to representative statistical parameters
such as the fractal dimension and the distribution type (fBm/fGn) of the soil being
modeled. The statistical moments of the water content, pressure head, and water
flow were computed by averaging over realizations of the fractal parameters char-
acterizing the soil heterogeneity. A new practical criteria to stop the Monte Carlo
simulation based on the stabilization of the variances of the computed variables is
also presented.
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Numérique, v. 19, p. 7–32.

Beckie, R., Wood, E. F., and Aldama, A. A., 1993, Mixed finite element simulation of saturated
groundwater flow using a multigrid accelerated domain decomposition technique: Water Resour.
Res., v. 29, p. 3145–3157.

Bergamaschi, L., and Putti, M., 1999, Mixed finite elements and Newton-type linearization for the
solution of Richards’ equation: Int. J. Numer. Methods Eng., v. 45, p. 1025–1046.

Carsel, R. F., and Parrish, R. S., 1988, Developing join probability distributions of soil water charac-
teristics: Water Resour. Res., v. 24, p. 755–769.

Celia, M. A., Bouloutas, E. T., and Zarba, R. L., 1990, A general mass-conservative numerical solution
for the unsaturated flow equation: Water Resour. Res., v. 26, p. 1483–1496.

Chounet, L. M., Hilhorst, D., Jouron, C., Kelanemer, Y., and Nicolas, P., 1999, Simulation of water
flow and heat transfer in soils by means of a mixed finite element method: Adv. Water Resour., v.
22, p. 445–460.

Dagan, G., 1989, Flow and transport in porous formations: Springer, New York, 465 p.
Douglas, J., Jr., and Roberts, J. E., 1985, Global estimates for mixed methods for second order elliptic

equations: Math. Comput., v. 44, p. 39–52.
Ferrante, M., and Yeh, T. C. J., 1999, Head and flux variability in heterogeneous unsaturated soils under

transient flow conditions: Water Resour. Res., v. 35, p. 1471–1479.
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