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1. Procedures and equations for adsorption isotherms and Kkinetics.

Both, arsenic mass loading on the porous adsorbent materials (mg/g) and removal

percentage from the initial solutions used (%) were obtained using Equations 1 and 2,

_ Co—Ct :
qct = (ﬂ) Equation 1
|4
Re = Lot * 100 Equation 2
0

where q;is the amount of arsenic loaded (mg/g), Co is the initial As(V) concentration in
the solution (mg/L), Ct is the concentration at time t in the solution (mg/L), V is the

volume (L), M is the porous material dose (g) and Re the removal percentage (%).

2. Equilibrium adsorption isotherms and adsorption kinetics.

Langmuir isotherm model assumes monolayer adsorption over uniformly distributed
active sites with identical affinity towards the adsorbate, which once occupied cannot
participate in further adsorption events. One of the most useful parameters that can be
extracted from the Langmuir treatment is the so-called adsorbent saturation capacity,
which corresponds to the extrapolation of adsorbate loading for maximum concentration
limit values. On the other hand, Freundlich model isotherm allows for description of
surfaces having heterogeneously distributed energies for adsorption sites and, in contrast
with the Langmuir model, there is no loading saturation in the high concentration limit,
nor the equation reduces to Henry’s law for the low concentration limit. The linearized
Langmuir and Freundlich equations, which were used for fitting experimental data are
presented below (Equations 3 and 4):
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where, Ce is the adsorbate equilibrium concentration (mg/L), qe is the adsorbed quantity
per adsorbent unit mass (mg/g), Kv is the Langmuir constant (L/mg), qm is the theoretical

monolayer saturation capacity (mg/g), and Kr and n are the Freundlich constants, which



are proportional to the adsorption capacity and the adsorbent adsorption energy,

respectively.

Concentration time evolution for the time span between 0.15 and 48 hours was followed
using different adsorbent amounts (16, 100, and 400 mg/L), and initial arsenic
concentrations of 0.2 mg/L with fixed pH = 7.0. The solids obtained after established

adsorption equilibrium were washed and dried for further characterization.

q(t) = q.(1 — exp(—k, *t) (pseudo-first order) Equation 5
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Generally speaking, adsorption in a porous solid involves three sequential steps: (i)
transport of the adsorbate from bulk solution to adsorbent particle external surface (film
transport), (ii) transport of the adsorbate within the pore network present on the adsorbent
particle (intra-particle diffusion), and (iii) adsorption on the active site on the adsorbent
pore wall surface. Since the relative importance of each step may depend both on,
operating conditions (such as mixing speed, temperature and adsorbate concentration)
and adsorbent characteristics (such as particle size, adsorption energies and surface area);

simple models would naturally give only a rough description for the uptake rate.



3. Characterization techniques used

Vibrational spectroscopy (FTIR). Vibrational spectra of initial and Arsenic-exposed
MOFs were obtained in order to gain insight interactions dominating the adsorption
process. Measurements were carried with a FTIR-Varian 660 infrared spectrometer using

single-point ATR configuration with a ZnSe crystal.

X-ray diffraction (WAXS). Crystalline structure of initial and As-exposed MOFs were
studied using wide angle X-ray scattering (WAXS). The SAXS/WAXS system (INIFTA,
project “Nanopymes”, EuropeAid/132184/D/SUP/AR-Contract 331—-896) is a XEUSS
1.0 HR (XENOCS, Grenoble) equipped with a microfocus X-ray source and a Pilatus 100
K detector (DECTRIS AG, Switzerland).

ICP and XPS experiments. Arsenic was determined using a surface sensitive technique,
X-ray Photoelectron Spectroscopy (XPS), and a bulk-averaged technique, lon Coupled
Plasma Spectroscopy (as performed on pre-digested liquid samples). XPS experiments
were carried in a SPECS Sage HR 100 spectrometer equipped with non-monochromatic
X-ray source (Aluminum Ko line of 1486.6 eV energy and 300 W); while ICP
experiments were carried in a ICP-MS (iCAP-Q, Thermo) Inductively coupled plasma
mass spectrometer equipped with collision/reaction cell and Kinetic Energy
Discrimination (KED) that allowed to remove most of isobaric interferences that can

affect to the limit of detection of several elements.

Thermogravimetric Analysis (TGA). Experiments for the evaluation of thermal
stability of the solids after Arsenic adsorption were carried on a Q-500 TA apparatus

under 40 mL/min N> flow at a 10 K/min temperature ramp.

Transmission Electron Microscopy (TEM). Experiments for the evaluation of size and
morphology of Fe-BTC synthesized materials were carried using a JEM 1200EX 1I (Jeol)

apparatus.

X-ray absorption experiments and modelling. EXAFS/XANES experiments were
carried at the DO8B-XAFS2 beam line of the Laboratério Nacional de Luz Sincrotron
(CNPEM-LNLS, Campinas, Brazil). All the experiments were performed in transmission
mode using ionization chambers as photon detectors. All the experiments were performed
at 22 °C. Every spectrum was obtained as the average of, at least, three individual runs.
Real-time energy calibration was achieved using an iron foil (Fe K-edge, at 7112 eV) and

a gold foil (Au® Ls-edge at 11919 eV, for As K-edge). Spectra pre-processing, and model



fitting and scattering path calculation was done using the routines coded in the
DEMETER suite.! Local structure corresponding to Ferric-acetate (Fe K-edge) and
sodium Arsenate(V) (As K-edge) were used as suitable models for scattering path

calculations.?

4. FTIR characterization.

Spectra taken on powder samples prepared with dried F-300 adsorbent before and after
exposure to 80 ppm As(V) solutions are depicted in Figure S1. Results clearly show the
appearance of new absorption intense features centered at 794 cm™! attributable to As-O
or Fe-O-As vibrational, and 660 cm™ corresponding to asymmetrical As-O stretching
modes.>* Conditions used for the exposure are identical to those described in the
adsorption experiments protocol (see manuscript section 2.3). Briefly, solutions were
prepared from stock solutions of As(V) as arsenate (AsO4>") 500.0 ppm concentration,
and adjusted to pH=7.0. Also, it can be mentioned the appearance of a mild feature

centered at 1750 cm™!, which may be assigned to C=O stretching on the BTC linker.
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Figure S1. FTIR spectra from F-300 solid both after and before exposure to As(V) solutions.



5. Adsorption experiments and comparison with benchmark materials.

See table S1 were different materials and performances are compared for Arsenic
adsorption.’

Table S1. Comparison between different Arsenic loadings achieved with iron-based materials in the recent
literature.
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6. Structural and chemical characterization using WAXS, TEM and X-ray
absorption experiments.

Figure S2 shows WAXS experiments for comparison of the structure of Fe-BTC (both
after and before exposure to As(V) solutions) with MIL-100 (Fe) calculated diffractogram
obtained from reported crystalline structure.
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Figure S2. Comparison between diffraction patterns obtained for Fe-BTC porous solids versus MIL-
100(Fe), both after and before exposure to 80 ppm As(V) aqueous solutions



In Figure S3 TEM images of Fe-BTC materials featuring octahedral morphologies can be
observed. The size distribution presents some polydispersity, although this might be
expected due to the lack of HF directing agent in the synthesis.

Figure S3. Transmission Electron Microscopy images of as prepared Fe-BTC material at different
magnifications.



In Figure S4, EXAFS experiments corresponding to a comparison between Fe-BTC
porous materials exposed to 0.2 ppm to 80 ppm As(V) solutions are displayed. Arsenic
K-edge XANES experiments corresponding to reference materials featuring As(IIl) and
As(V) oxidation states, and both F-300 and Fe-BTC after exposure to 80 ppm As(V) stock
solutions were compared (Figure S5). It is clear that no As(III) is present on the adsorbed
phase, thus ruling out the possibility of adsorptive reduction, as both Fe-BTC and F-300
samples feature peaks centered virtually at the same energy values. The EXAFS signals
obtained for Arsenic in both F-300 and Fe-BTC porous materials can be observed in
Figure S6.
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Figure S4. Iron K-edge XANES experiments of Fe-BTC samples loaded with increasingly higher
Arsenic amounts and a its comparison with both Fe(III) acetate and oxide standards.

Scheme S1. Model structures used for the environment of (left) Arsenic and (right) Iron atoms on the
porous support.
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Figure S5. Arsenic K-edge XANES experiments. Both Fe-BTC and F-300 porous samples loaded with
80 ppm As (V) do not show significant differences.
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Figure S6. Arsenic K-edge EXAFS experiments for both F-300 and Fe-BTC porous solids loaded with
80 ppm As(V). Modelling shows no significant differences between both materials.



In figure S7, TGA experiments performed using different arsenic loadings and the effect
on residual percentage at high temperatures can be observed. The most significant weight
loss event in the As(V)-containing sample (after dehydration) occurs at 160 °C, and can
be used as an indication of adsorbate loading in the Fe-BTC sample after exposure. As
expected from the observed high temperature residue (approx. 60%) on the bare arsenate
salt thermogram, As(V)-exposed Fe-BTC samples feature an increased =~ 50% high

temperature residue compared to the = 20% - 30% observed for bare Fe-BTC.
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Figure S7 (top). The effect of increasingly higher amounts of Arsenic on Fe-BTC on the porous support
thermal behavior. (bottom) Thermal decomposition profiles for As(V)-containing salt used
(HNazASO4.7H20).
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