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METRIC APPROXIMATIONS OF UNRESTRICTED WREATH PRODUCTS

WHEN THE ACTING GROUP IS AMENABLE

JAVIER BRUDE 1,2 and ROMÁN SASYK 1,3

Abstract. We give a simple and unified proof showing that the unrestricted wreath product of a
weakly sofic, sofic, linear sofic, or hyperlinear group by an amenable group is weakly sofic, sofic, linear
sofic, or hyperlinear, respectively. By means of the Kaloujnine-Krasner theorem, this implies that group
extensions with amenable quotients preserve the four aforementioned metric approximation properties.
We also discuss the case of co-amenable groups.

1. introduction

Given two groups G and H, their unrestricted wreath product G ≀≀H is, by definition, the semidirect
product (

∏

H G) ⋊θ H, where H acts on the direct product
∏

H G by shifting coordinates as follows:
θh
( (

x
h̃

)

h̃∈H

)

:=
(

x
h̃

)

hh̃∈H
, for

(

x
h̃

)

h̃∈H
∈ ∏

H G. The purpose of this article is to provide a simple
and unified proof of the following statement.

1.1. Theorem. Let H be an amenable group and let G be a group.

(1) If G is weakly sofic, G ≀≀H is weakly sofic.
(2) If G is sofic, G ≀≀H is sofic.
(3) If G is linear sofic, G ≀≀H is linear sofic.
(4) If G is hyperlinear, G ≀≀H is hyperlinear.

By means of the Kaloujnine-Krasner theorem, [12], and by keeping in mind that these four metric
approximation properties pass to subgroups and are preserved under taking direct products, it is easy
to see that Theorem 1.1 and the next result are equivalent.

1.2. Corollary (Extension Theorem). Let G be a group with a normal subgroup N such that the
quotient G/N is amenable. If N is weakly sofic, sofic, linear sofic, or hyperlinear; then G is weakly
sofic, sofic, linear sofic, or hyperlinear, respectively.

The sofic and hyperlinear cases of Theorem 1.1 have been proved by Arzhantseva, Berlai, Finn-Sell,
and Glebsky in [2], where they also gave the application of the Kaloujnine-Krasner theorem mentioned
above. Some of the extension results are older. Indeed, the sofic one is due to Elek and Szabo in [7]
and the linear sofic one is due to Arzhantseva and Păunescu in [3]. More recently, in [11], Holt
and Rees showed that certain metric approximations on groups, including weakly sofic, are preserved
under taking extensions with amenable quotients. In a slightly different direction, in [10], Hayes and
Sale proved that the restricted wreath product of a group G having one of the metric approximation
properties listed in Theorem 1.1 by an acting sofic group, preserves the approximation property of G.

In [2, §4.3] the authors explained why their techniques could not deal with the weakly sofic case of
Theorem 1.1. The motivation of the present article was to see whether ideas we used in [4, §5], some of
which can be traced back to [10, 11], would serve to give a direct proof of this fact, without requiring
the result on extensions of [11]. Here we achieve this in a self-contained manner that also allows us to
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2 J. BRUDE, R. SASYK

deal with the four cases of Theorem 1.1 in a unified way. The reasons that make our proof simple are,
on the one hand, the systematic use of the notion of abstract metric approximations, considered first by
Arzhantseva in 2008 (see [1]) and on the other hand, that we deal directly with metric approximations
of

∏

H G rather than building them locally from metric approximations of G. This is done in Section
3. The last ingredient in our proof, which might be useful in other contexts, appears in Section 4.
There we provide explicit group monomorphisms from certain auxiliary metric groups constructed in
Section 3, to metric groups belonging to the classes defining the metric properties of Theorem 1.1, in
a way that the metric is distorted in a controlled manner.

The Extension Theorem 1.2 admits a more general form where N is replaced by a (not necessarily
normal) subgroup H and the hypothesis of the amenability of G/N are replaced by the assumption
that the left regular action of G on G/H is amenable. In the literature, this is sometimes referred as H
being co-amenable in G, (see, for instance, [14]), and this is how we will call it in this article. In Section
5 we discuss why even the more general version of the Kaloujnine-Krasner theorem [13], might not
be suitable to prove this variant for co-amenable subgroups. Nonetheless, we provide a unified proof
of this more general form of the Extension Theorem by adapting the work done with permutational
wreath products in Section 3 and in a manner which allows us to use the results of Section 4.

2. Metric approximation in groups

In this section we give a very brief account of some basic notions of metric approximation in groups
needed in this article. Given a group G, a map δ : G \ {1} → (0,∞) is called a weight function for G.

2.1. Definition. Let G be a group with a weight function δ and let K be a group with a bi-invariant
metric d. Given F ⊆ G, ε > 0, and a map φ : G→ K such that φ(1) = 1, we say that

(1) φ is (F, ε, d)-multiplicative if d(φ(g)φ(g′), φ(gg′)) < ε for all g, g′ ∈ F ;
(2) φ is (F, δ, d)-injective if d(φ(g), 1) ≥ δ(g) for all g ∈ F \ {1};
(3) φ is (F, ε, d)-free for a function ρ(ε) if d(φ(g), 1) ≥ ρ(ε), for all g ∈ F \ {1}.

2.2. Definition ( [19, Definition 1.6]). Let C be a class of groups with bi-invariant metrics. A group
G is C-approximable or has the C-approximation property, if it has a weight function δ such that, for
each finite set F ⊆ G and each ε > 0 there exist (K, d) ∈ C and an (F, ε, d)-multiplicative function
φ : G→ K which is also (F, δ, d)-injective.

A countable group is C-approximable if and only if it is embeddable in a metric ultraproduct of groups
in C. Hence, the importance of this notion comes from its relation to major open challenges in math-
ematics like the Connes’ embedding problem for group von Neumann algebras and the Gottschalk’s
surjunctivity conjecture, (see [19, Proposition 1.8] and references therein).

2.3. Examples. We list the four metric approximation properties studied in this article.

(1) A group is weakly sofic, [9], if it is C-approximable when C is the class of finite groups with
bi-invariant metrics.

(2) A group is sofic, [7, 21], if it is C-approximable when C is the class of finite symmetric groups
endowed with the normalized Hamming distance

dHamm(σ, τ) :=
1

|A| |{a ∈ A : σ(a) 6= τ(a)}| , for σ, τ ∈ Sym(A).

(3) A group is linear sofic, [3], if it is C-approximable when C is the class of invertible matrices of
finite rank on a field K endowed with the rank distance given by

drk(A,B) :=
1

n
rank(A−B) , for A,B ∈ GLn(K).
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(4) A group is hyperlinear, [15, 18], if it is C-approximable when C is the class of unitary matrices
on a finite dimensional Hilbert space endowed with the Hilbert-Schmidt distance, dHS, that is
induced by the Hilbert-Schmidt norm

‖A‖2 :=

√

√

√

√

1

n

n
∑

i,j=1

|〈Avi, vj〉|2 , for A ∈ B(H), where {v1, . . . , vn} is an ONB of H.

In these examples, (F, δ, d)-injectivity can be replaced by a more manageable condition. Rather
than requiring a weight function δ that depends on G, this gets replaced in each case as follows:

(1) weakly sofic: φ is (F, ε, d)-free for a constant function ρ(ε) := α ∈ R>0, (this follows easily from
the definition). By scaling the metric d, it can be assumed that α = 1 and diam(K) = 1;

(2) sofic: φ is (F, ε, dHamm)-free for the function ρ(ε) := 1− ε, (see [6, Proposition 4.4]);
(3) linear sofic: φ is (F, ε, drk)-free for the function ρ(ε) := 1/4 − ε, (see [3, Proposition 5.13]);
(4) hyperlinear: φ is (F, ε, dHS)-trace preserving, namely |tr(φ(g))| ≤ ε for all g ∈ F \ {1}, where,

for A ∈ B(H) and {v1, . . . , vn} an ONB of H, tr(A) := 1
n

∑n
i=1〈Avi, vi〉, (see [18, Proposition

2.5], and Remark 4.5 in this article).

One of the advantages of having these alternative definitions is that each one is a uniform condition,
in the sense that, unlike a weight function, they do not depend on the particular group G that is C-
approximable. For instance, it is easy to show that the four metric approximations given in Examples
2.3 are preserved under taking finite direct products. But then, freeness implies that they are also
preserved under taking direct products.

3. Approximations using permutational wreath products

Given a group K with a bi-invariant metric d for which diam(K) ≤ 1 and a finite set B, consider
the permutational wreath product K ≀B Sym(B). On a few occasions we will denote with a dot “ ·” the
permutational action of Sym(B) on

⊕

BK. In [11, §5] (see also [10, Proposition 2.9]) the authors
introduced the following function

(3.1) d̃(((xb)b∈B , τ), ((yb)b∈B , ρ)) := dHamm(τ, ρ) +
1

|B|
∑

b∈B

τ(b)=ρ(b)

d(xτ(b), yτ(b))

and showed that it is a bi-invariant metric in K ≀BSym(B), and with this metric diam(K ≀BSym(B)) =
1.

3.1. Proposition. Let H be an amenable group and let G be a group with the property that for every
ε′ > 0 and for every finite set F∏

H G ⊆ ∏

H G, there exist a group (K, d) ∈ C of diameter bounded by 1

and a function ϕ :
∏

H G→ K with ϕ(1) = 1 that is (F∏
H G, ε

′, d)-multiplicative and (F∏
H G, ε

′, d)-free

for certain function ρ(ε′), independent of K.
Then, given ε > 0 and a finite set F ⊆ G ≀≀H, there exist a finite set B ⊆ H, a group (K, d) ∈ C and

a function Φ : G ≀≀H → K ≀B Sym(B) that is (F, ε, d̃)-multiplicative and (F, ε, d̃)-free for the function
ρ̃(ε) := min(1− ε/3, ρ(ε/3)).

3.2. Remark. (1) The hypothesis on G in Proposition 3.1 is satisfied if G is C-approximable, when
C is any of the families in Examples 2.3, (see §4.3 for a discussion on the hyperlinear case).

(2) The most natural hypothesis on G would have been that
∏

H G is C-approximable. However,
with this condition, given the weight function δ for

∏

H G, our proof would only produce
something like a weight function for G ≀≀H that depends on B and ε, and this is not enough
to conclude (F, δ, d̃)-injectivity for G ≀≀H.



4 J. BRUDE, R. SASYK

(3) The obstruction just mentioned gives a partial indication of why our proof can not be adapted
to show, for instance, that the class of MF groups, (namely groups that are C-approximable
when C is the class of unitary matrices endowed with the operator norm, see [5, Definition 2.7]
and [20, §4]) is stable under taking extensions with amenable quotients.

(4) It was drawn to our attention that Proposition 3.1 is similar to [11, Theorem 5.1]. The main
differences in the statements are that we deal with the concrete group G ≀≀H rather than with
extensions with amenable quotients, (and this will simplify the proof), that we use the notion
of freeness rather than the in principle more restrictive notion of discrete C-approximation
introduced in [11], and that we do not require stability of the class C under permutational
wreath products. These last two differences indicates why [11, Theorem 5.1] serves to prove
only the weakly sofic case of Theorem 1.1. Finally, the statement and the proof of Proposition
3.1 will easily be adapted to get a stronger conclusion in the hyperlinear case, (see Remark 4.5
and the proof Theorem 1.1(4)).

Proof of Proposition 3.1. Call proj∏
H G and projH the projection maps from G ≀≀H to

∏

H G and H,

respectively. Let F ⊆ G ≀≀H be a finite subset and let ε > 0. Define F0 := F ∪ {1} ∪ F−1 and let
FH := projH(F0). Since H is amenable, there exists a finite subset B ⊆ H such that

|hB △B|
|B| ≤ ε/6 , for all h ∈ F 2

H := FH .FH(3.2)

Let σ : H → Sym(B) be defined as

(3.3) σ(h)b :=

{

hb if hb ∈ B

γh(hb) if not, where γh : hB \B → B \ hB is a fixed bijection.

It is easy to see that σ is (FH , ε/3, dHamm)-multiplicative and (FH , ε/3, dHamm)-free for the function
ρ′(ε/3) = 1− ε/3.

Let θ denote the shift action of H on
∏

H G. In what follows it will be handy to keep in mind that
since θ is an action, θhθh′ = θhh′ for all h, h′ ∈ H.

By the hypothesis on the group
∏

H G, given the finite set

(3.4) F∏
H G :=

⋃

x∈proj∏
H G(F0)

b∈B

θb−1(x),

there exist a group (K, d) ∈ C of diam(K) ≤ 1 and a function ϕ :
∏

H G → K with ϕ(1) = 1 that is
(F∏

H G, ε/3, d)-multiplicative and (F∏
H G, ε/3, d)-free for a function ρ independent of K. Define

Φ : G ≀≀H → K ≀B Sym(B)

(x, h) 7→ ((ϕθb−1(x))b∈B , σ(h))

Claim: Φ is (F0, ε, d̃)-multiplicative and (F0, ε, d̃)-free for the function ρ̃(ε) = min(1− ε/3, ρ(ε/3)).

We will first prove that Φ is (F0, ε, d̃)-multiplicative. To that end, take (x, h), (x′, h′) ∈ F0. On the
one hand

Φ
(

(x, h)(x′, h′)
)

= Φ
(

xθh(x
′), hh′

)

=
(

(

ϕ
(

θb−1(x)θb−1h(x
′)
))

b∈B
, σ(hh′)

)

and on the other hand

Φ(x, h)Φ(x′, h′) =
(

(ϕ (θb−1(x)))b∈B , σ(h)
)(

(

ϕ
(

θb−1(x′)
))

b∈B
, σ(h′)

)

=
(

(

ϕ (θb−1(x))ϕ
(

θ(σ(h)−1b)−1(x′)
))

b∈B
, σ(h)σ(h′)

)

.
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Then

d̃
(

Φ((x, h)(x′, h′)),Φ(x, h)Φ(x′, h′)
)

= dHamm(σ(hh
′), σ(h)σ(h′)) +

(3.5)

+
1

|B|
∑

b∈B
σ(hh′)b=σ(h)σ(h′)b

d
(

ϕ
(

θ(σ(hh′)b)−1(x)θ(σ(h)σ(h′)b)−1h(x
′)
)

, ϕ
(

θ(σ(hh′)b)−1(x)
)

ϕ
(

θ(σ(h′)b)−1(x′)
))

.

Since σ is (FH , ε/3, dHamm)-multiplicative, it follows that dHamm(σ(hh
′), σ(h)σ(h′)) < ε/3. It only

remains to bound the second summand of (3.5). To that end, we will partition the set B in two
disjoint subsets, one in which we can control the sum because all its summands are small, and another
in which we can control the sum because the subset itself is small and diam(K) ≤ 1.

On the one hand, if hσ(h′)b ∈ B then by the definition of σ given in (3.3), we have that σ(h)σ(h′)b =
hσ(h′)b, and so (σ(h)σ(h′)b)−1h = (σ(h′)b)−1. Since, by (3.4), θ(σ(hh′)b)−1(x), θ(σ(h′)b)−1(x′) ∈ F∏

H G,

we conclude that for all b ∈ σ(h′)−1(B ∩ h−1B)

(3.6) d
(

ϕ(θ(σ(hh′)b)−1(x)θ(σ(h)σ(h′)b)−1h(x
′)), ϕ

(

θ(σ(hh′)b)−1(x)
)

ϕ(θ(σ(h′)b)−1(x′))
)

< ε/3.

On the other hand, if b ∈ σ(h′)−1(B \ h−1B), this subset is small because by (3.2) we have that

(3.7) |σ(h′)−1(B \ h−1B)| = |B \ h−1B| < ε

6
|B|.

Partitioning the set B in the disjoint subsets σ(h′)−1(B ∩h−1B) and σ(h′)−1(B \h−1B) and replacing

(3.6) and (3.7) in (3.5) gives d̃
(

Φ((x, h)(x′, h′)),Φ(x, h)Φ(x′, h′)
)

< 5/6 ε.

Let us now prove that Φ is (F0, ε, d̃)-free for the function ρ̃. If h ∈ FH \ {1} then

d̃(Φ(x, h), 1) ≥ dHamm(σ(h), 1) ≥ 1− ε/3 ≥ ρ̃(ε).

We are left to show that Φ is (F0, ε, d̃)-free for the function ρ̃ in the case when (x, 1) ∈ F0 \ {1}. Since

x 6= 1, then θb−1(x) ∈ F∏
H G\{1}. Hence d̃(Φ(x, 1), 1) = 1

|B|

∑

b∈B d(ϕθb−1(x), 1) ≥ ρ(ε/3) ≥ ρ̃(ε). �

3.3. Remark. In the proof we never used that θ is the shift action of H on
∏

H G. In fact the very
same statement and proof hold true if we replace

∏

H G by a group, call it E, and we replace G ≀≀H
by a semi-direct product E ⋊θ H. As it was discussed in the introduction, the Kaloujnine-Krasner
theorem implies that both statements are equivalent. In Section 5, we explain why even a stronger
version of the Kaloujnine-Krasner theorem does not seem to be suitable to prove the stronger version
of Corollary 1.2 when the assumptions of N being a normal subgroup of G and G/N being amenable
are replaced by the hypothesis of G having a co-amenable subgroup H. In that section, we instead
prove a more technical variant of Proposition 3.1 which must avoid wreath products and semi-direct
products.

4. Group monomorphisms which control the metrics and proof of Theorem 1.1

In order to prove Theorem 1.1, we apply Proposition 3.1 to the classes C of Examples 2.3 together
with group homomorphisms built in each case to carry the metric structure from (K ≀B Sym(B), d̃)
with (K, d) ∈ C to a group in the class C in a controlled manner.

Proof of Theorem 1.1(1). If G is weakly sofic, then
∏

H G is weakly sofic and it satisfies the hypothesis
of Proposition 3.1 when ρ is equal to the constant function 1. Hence, given ε > 0 and a finite set
F ⊆ G ≀≀H, there exist a finite set B ⊆ H, a finite group K with a bi-invariant metric d, diam(K) = 1,

and a function Φ : G ≀≀H → K ≀B Sym(B) that is (F, ε, d̃)-multiplicative and (F, ε, d̃)-free for ρ̃(ε) =
1− ε/3 ≥ 2/3. Since K ≀B Sym(B) is a finite group, this concludes the proof. �
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4.1. Remark. The proof is constructive in the sense that starting with a given weakly sofic approxima-
tion of G, one can explicitly construct a weakly sofic approximation of

∏

H G, and the proof provides a
weakly sofic approximation of G ≀≀H. This is also the case in the remaining instances of Theorem 1.1.

4.1. The sofic case. We will need the next lemma, a variant of which is present in [10].

4.2. Lemma. Let A,B be finite sets. The function

ψ : (Sym(A) ≀B Sym(B), d̃) → (Sym(A×B), dHamm)

ψ(α, β)(a, b) := (αβ(b)(a), β(b))

is an isometric group homomorphism.

Proof. For (α, β), (α′ , β′) ∈ Sym(A) ≀B Sym(B) and (a, b) ∈ A×B, the following identities show that
ψ is a homomorphism:

ψ(α, β)ψ(α′ , β′)(a, b) = ψ(α, β)(α′
β′(b)(a), β

′(b)) = (αβ(β′(b))(α
′
β′(b)(a)), ββ

′(b));

ψ(α(β · α′), ββ′)(a, b) = ((α(β · α′))ββ′(b)(a), ββ
′(b)) = (αββ′(b)α

′
β′(b)(a), ββ

′(b)).

ψ is an isometry because

dHamm(ψ(α, β), ψ(α
′ , β′)) =

1

|A||B| |{(a, b) ∈ A×B : (αβ(b)(a), β(b)) 6= (α′
β′(b)(a), β

′(b))}|

=
1

|B|
∑

{b∈B:β(b)6=β′(b)}

1

|A| |{a ∈ A : (αβ(b)(a), β(b)) 6= (α′
β′(b)(a), β

′(b))}|

+
1

|B|
∑

{b∈B:β(b)=β′(b)}

1

|A| |{a ∈ A : αβ(b)(a) 6= α′
β(b)(a)}|

= dHamm(β, β
′) +

1

|B|
∑

{b∈B:β(b)=β′(b)}

dHamm(αβ(b), α
′
β(b)) = d̃((α, β), (α′ , β′)). �

Proof of Theorem 1.1(2). If G is sofic, then
∏

H G is sofic and it satisfies the hypothesis of Proposition
3.1 when ρ(ε′) = 1− ε′. Hence, given ε > 0 and a finite set F ⊆ G ≀≀H, there exist a finite set B ⊆ H,
a finite permutational group Sym(A) endowed with the normalized Hamming distance and a function

Φ : G ≀≀H → Sym(A) ≀B Sym(B) that is (F, ε, d̃)-multiplicative and (F, ε, d̃)-free, for ρ̃(ε) = 1− ε/3 ≥
1− ε. Lemma 4.2 implies that ψ ◦Φ : G ≀≀H → Sym(A×B) is a (F, ε, dHamm)-sofic approximation of
G ≀≀H. �

4.2. The linear sofic case. Take a finite setB. ConsiderM|B|n(K) and identify it withM|B|(Mn(K)).
Hence, for A ∈M|B|n(K) and b′, b ∈ B, A(b′,b) ∈Mn(K) denotes the block entry of A at the coordinates
(b′, b). Define

ψ :Mn(K) ≀B Sym(B) →M|B|n(K)(4.1)

ψ(U, τ)(b′,b) =

{

0 if b′ 6= τ(b)

Uτ(b) if b′ = τ(b).

4.3. Lemma. ψ is a group homomorphism between GLn(K) ≀B Sym(B) and GL|B|n(K) and satisfies
that

(4.2)
1

2
d̃
(

(U, τ), (U ′, τ ′)
)

≤ drk
(

ψ(U, τ), ψ(U ′, τ ′)
)

≤ d̃
(

(U, τ), (U ′, τ ′)
)

.
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Proof. It is obvious that ψ maps GLn(K) ≀B Sym(B) to GL|B|n(K). A routine matrix computation
shows that it is a group homomorphism. In order to bound drk (ψ(U, τ), ψ(U

′, τ ′)), first observe that
the matrix ψ(U, τ) − ψ(U ′, τ ′) ∈ M|B|(Mn(K)) has at most two nonzero block-entries in each column
and in each row. Moreover, the only columns with one nonzero block-entry are the columns b ∈ B
for which τ(b) = τ ′(b) and the only rows with one nonzero block-entry are the rows b̃ ∈ B such that

τ−1(b̃) = τ ′−1(b̃). With this in mind, let A1 be the submatrix of ψ(U, τ) − ψ(U ′, τ ′) obtained after
removing the rows and columns with exactly two nonzero block-entries and let A2 be the submatrix of
ψ(U, τ)−ψ(U ′, τ ′) obtained after removing the rows and columns with exactly one nonzero block-entry.
Then

(4.3) drk
(

ψ(U, τ), ψ(U ′, τ ′)
)

=
1

|B|nrank(ψ(U, τ) − ψ(U ′, τ ′)) =
1

|B|nrank(A1) +
1

|B|nrank(A2),

and

(4.4)
1

|B|nrank(A1) =
1

|B|
∑

b∈B
τ(b)=τ ′(b)

1

n
rank

(

Uτ(b) − U ′
τ(b)

)

=
1

|B|
∑

b∈B
τ(b)=τ ′(b)

drk

(

Uτ(b), U
′
τ(b)

)

.

If we regard A2 as a block matrix in M|{b∈B:τ(b)6=τ ′(b)}|(Mn(K)) then all its nonzero entries are in
GLn(K); each column b has exactly two nonzero entries, the ones corresponding to the rows τ(b) and

τ ′(b); and each row b̃ has exactly two nonzero entries, the ones corresponding to the columns τ−1(b̃)

and τ ′−1(b̃). Then

(4.5)
1

2
n
∣

∣{b ∈ B : τ(b) 6= τ ′(b)}
∣

∣ ≤ rank(A2) ≤ n
∣

∣{b ∈ B : τ(b) 6= τ ′(b)}
∣

∣,

where the first inequality follows from the simple fact that if a matrix A ∈ Mr(K) has exactly two
nonzero entries in each column and in each row, then rank(A) ≥ r/2. Replacing (4.4) and (4.5) in
(4.3) yield the desired result. �

Proof of Theorem 1.1(3). If G is linear sofic, then
∏

H G is linear sofic, and it satisfies the hypothesis
of Proposition 3.1 when ρ(ε′) = 1/4 − ε′. The proof proceeds as in the sofic case. �

4.3. The hyperlinear case. Identify B(H) with Mn(K) (with K = R or K = C) via the matrix
representation in an orthonormal basis {v1, . . . , vn}. It is clear that the function ψ defined in (4.1) can
be regarded as ψ : B(H) ≀B Sym(B) → B(⊕B H) and that ‖ψ(U, τ)‖22 = 1

|B|

∑

b∈B ‖Ub‖22. Recall that

the diameter of the unitary group in the Hilbert-Schmidt metric is 2. Then the appropriate metric in
U(H) ≀B Sym(B) is the one obtained by scaling the second summand in (3.1) by 1/2. We still call this

metric d̃.

4.4. Lemma. ψ is a group homomorphism between U(H) ≀B Sym(B) and U(
⊕

B H) and satisfies that

(4.6) d̃
(

(U, τ), (U ′, τ ′)
)

≤ dHS

(

ψ(U, τ), ψ(U ′, τ ′)
)

≤ 2

√

d̃ ((U, τ), (U ′, τ ′)).
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Proof. It is obvious that ψ maps U(H) ≀B Sym(B) to U(⊕B H). Moreover, on the one hand

‖ψ(U, τ) − ψ(U ′, τ ′)‖22 =
1

|B|
∑

b∈B
τ(b)6=τ ′(b)

∥

∥

∥Uτ(b)

∥

∥

∥

2

2
+

∥

∥

∥U ′
τ ′(b)

∥

∥

∥

2

2

+
1

|B|
∑

b∈B
τ(b)=τ ′(b)

∥

∥

∥Uτ(b) − U ′
τ(b)

∥

∥

∥

2

2

= 2dHamm(τ, τ
′) +

1

|B|
∑

b∈B
τ(b)=τ ′(b)

dHS

(

Uτ(b), U
′
τ(b)

)2

≤ 4d̃(ψ(U, τ), ψ(U ′, τ ′)),

on the other hand, by the Cauchy-Schwarz inequality, we have that

2dHamm(τ, τ
′) +

1

|B|
∑

b∈B
τ(b)=τ ′(b)

dHS

(

Uτ(b), U
′
τ(b)

)2
≥ 2dHamm(τ, τ

′) +









1

|B|
∑

b∈B
τ(b)=τ ′(b)

dHS

(

Uτ(b), U
′
τ(b)

)









2

≥ 2dHamm(τ, τ
′)2 + 2









1

2|B|
∑

b∈B
τ(b)=τ ′(b)

dHS

(

Uτ(b), U
′
τ(b)

)









2

≥ d̃(ψ(U, τ), ψ(U ′ , τ ′))2. �

4.5. Remark. According to the original definition given by Rădulescu in 2000, a group G is hyperlinear
if it embeds in U(Rω), the unitary group of the ultrapower of the hyperfinite II1 factor R. Rădulescu
showed in [18] (see also [15, Proposition 7.1] for a simpler proof) that this is the same as saying
that the group von Neumann algebra L(G) satisfies the Connes’ embedding problem, namely that
L(G) embeds in Rω. This, in turn, implies that the embedding of G in U(Rω) can be taken to be
an orthogonal embedding, (as a mater of fact, the proof of Rădulescu’s theorem boils down to show
exactly this). Since unitaries in R can be approximated with n×n unitary matrices with n sufficiently
large, it follows that G is hyperlinear if and only if G embeds orthogonally in an ultraproduct of unitary
matrices endowed with the Hilbert-Schmidt norm. When G is countable, translating from the language
of ultraproducts to a finitary version yields the definition of hyperlinear group we gave in Example
2.3(4), with the notion of (F, ε, dHS)-trace preserving defined in (4). By means of the Cauchy-Schwartz
inequality, it is clear that (F, ε, dHS)-trace preserving is equivalent to

(4.7)
√
2− ε < ‖φ(g) − 1‖2 <

√
2 + ε for all g ∈ F \ {1}.

These two inequalities combined just reflect that φ(g) can be taken to be “almost orthogonal” to
1 in the Hilbert-Schmidt norm. After removing the second inequality in (4.7), one gets that φ is

(F, ε, dHS)-free for the function ρ(ε) :=
√
2 − ε and this is what some articles write as part of the

definition of hyperlinear group. Both definitions are equivalent due to Rădulescu’s theorem, however,
a hyperlinear approximation that is (F, ε, dHS)-trace preserving carries more information than one that
is only (F, ε, dHS)-free for the function ρ(ε) =

√
2− ε.

A consequence of the previous remark is that one could use the characterization of hyperlinear
groups in terms of (F, ε, dHS)-freeness to deduce Theorem 1.1(4) from Proposition 3.1 and Lemma 4.4
following the same strategy employed in the sofic and linear sofic cases. We leave this approach as an
exercise. The disadvantage with this approach is that if one starts with a hyperlinear approximation of
G that is (F, ε, dHS)-trace preserving, the proof would only guarantee a hyperlinear approximation of
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G ≀≀H that is (F, ε, dHS)-free for the function ρ(ε) =
√
2− ε. However, minor adjustments to the proof

of Proposition 3.1 are enough to provide a hyperlinear approximation of G ≀≀H that is (F, ε, dHS)-trace
preserving. We sketch them in the next proof.

Proof of Theorem 1.1(4). Consider F0, FH , B, σ and F∏
H G as in the proof of Proposition 3.1, but

in this case we take ε2/24 in (3.2) so that σ becomes an (FH , ε
2/12)-sofic approximation of H. Since

∏

H G is hyperlinear, there exist a finite dimensional Hilbert space H and a function ϕ :
∏

H G→ U(H)
with ϕ(1) = 1 that is (F∏

H G, ε
2/12, dHS)-multiplicative and (F∏

H G, ε
2/12, dHS)-trace preserving.

Keeping in mind that the metric in U(H) ≀BSym(B) is obtained by multiplying the second summand
in equation (3.1) by 1/2, the same proof of Proposition 3.1 shows that the function Φ : G ≀≀H →
U(H) ≀B Sym(B) is (F0, ε

2/4, d̃)-multiplicative. Then, the second inequality in (4.6) implies that
ψ ◦ Φ : G ≀≀H → U(⊕B H) is (F0, ε, dHS)-multiplicative. It remains to show that ψ ◦ Φ is (F0, ε, dHS)-
trace preserving. The basic observation that the trace of a block-matrix is equal to the sum of the
traces of its block-diagonal entries, yields that tr(ψ((Ub)b∈B , τ)) =

1
|B|

∑

b∈B:τ(b)=b tr(Ub). Hence

|tr(ψ ◦Φ(x, h))| = 1

|B|

∣

∣

∣

∣

∣

∣

∑

b∈B:σ(h)b=b

tr(ϕθb−1(x))

∣

∣

∣

∣

∣

∣

≤ 1

|B| |{b ∈ B : σ(h)b = b}| = 1− dHamm(σ(h), 1).

It follows that |tr(ψ ◦Φ(x, h))| < ε2/12 < ε, whenever h ∈ FH \ {1}. On the other hand, if (x, 1) ∈
F0 \{1} then θ−1

b (x) ∈ F∏
H G \{1}. Thus |tr(ψ ◦ Φ(x, 1))| = 1

|B|

∣

∣

∑

b∈B tr(ϕθb−1(x))
∣

∣ < ε2/12 < ε. �

5. The case of co-amenable subgroups

The proof of Elek and Szabó in [7] showing that extensions of the form sofic-by-amenable are sofic
can be adapted easily to show that if a group G has a sofic and co-amenable subgroup H, then G is
sofic. Moreover, there is a seemingly less well-known theorem of Kaloujnine and Krasner [13], stating
that if H < G, then G embeds in H ≀≀ (G/core(H)), (see also [16, Theorem 2.3.1]). Let us emphasize
that H does not need to be normal in none of these statements. Unfortunately, we do not know how
to use this theorem of Kaloujnine and Krasner to show the theorem of Elek and Szabó for co-amenable
groups. For instance it is false that if H is co-amenable on G, then core(H) is co-amenable in G,
(which is the same as saying that the group G/core(H) is amenable) so it seems hard to have some
control on H ≀≀ (G/core(H)). As an example, Monod and Popa showed in [14] that for any countable
group Q, the group H := ⊕n≥0Q is co-amenable in G := Q ≀ Z, the restricted wreath product of Q
by Z. Since core(H) = {1}, taking any non-amenable Q, it follows that G/core(H) is non-amenable.
Moreover, in this example, the theorem of Kaloujnine and Krasner is the trivial statement G < H ≀≀G,
and it is unknown in general whether H ≀≀G is sofic when Q (and hence H and G) are sofic.

In spite of this obstruction, we are still able to use the work we have done in the previous sections
to show in a unified way that if H is co-amenable in G, and H belongs to one of the four classes C in
the Examples 2.3, then G is in the same class C as H. We achieve this by replacing each time we used
Proposition 3.1 in Section 4 with the next statement.

5.1. Proposition. Let G be group and let H be a subgroup with the property that for every ε′ > 0
and for every finite subset FH , there exist a group (K, d) ∈ C of diameter bounded by 1 and a function
ϕ : H → K with ϕ(1) = 1 that is (FH , ε

′, d)-multiplicative and (FH , ε
′, d)-free, for certain function ρ,

independent of K. Moreover, suppose that H is co-amenable in G, namely suppose that the left regular
action of G on the left cosets G/H is amenable.

Then, given ε > 0 and a finite set F ⊆ G, there exist a finite set B ⊆ G, a group (K, d) ∈ C and

a function Φ : G → K ≀B Sym(B) that is (F, ε, d̃)-multiplicative and (F, ε, d̃)-free, for the function
ρ̃(ε) := (1− ε/3)ρ(ε/3).
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Proof. Let F ⊆ G be a finite subset and let ε > 0. Since the action of G on G/H defined by
g.xH := gxH is amenable, by the Følner’s condition (see, for instance, [8, 17]), there exists a finite
subset B ⊆ G/H such that

(5.1)
|f.B △B|

|B|
≤ ε/4, for all f ∈ F ∪ F−1 ∪ F 2 ∪ (F−1)2.

Let σ : G→ Sym(B) be defined as

σ(g)b̄ :=

{

g.b̄ if g.b̄ ∈ B

γg(g.b̄) if not, where γg : gB \B → B \ gB is a fixed bijection.

5.2. Claim. σ is (F, ε/4, dHamm)-multiplicative.

Proof of claim. Let f1, f2 ∈ F . Define S := {b ∈ B : f2.b ∈ B} ∩ {b ∈ B : f1f2.b ∈ B}. Note that if
b ∈ S, then σ(f1f2)b̄ = σ(f1)σ(f2)b̄. Moreover,

|B| ≥ |{b ∈ B : f2.b ∈ B} ∪ {b ∈ B : f1f2.b ∈ B}|
≥ |{b ∈ B : f2.b ∈ B}|+ |{b ∈ B : f1f2.b ∈ B}| − |{b ∈ B : f2.b ∈ B} ∩ {b ∈ B : f1f2.b ∈ B}|
≥ 2(1 − ε/8)|B̄| − |S|,

so |B\S|

|B|
≤ ε/4, (in the third inequality we used that, by construction, (5.1) is valid when f = f−1

2 f−1
1 ,

and that (5.1) implies that for every f ∈ F−1 ∪ (F−1)2, |fB ∩B| ≥ (1− ε/8)|B|). Then

dHamm(σ(f1)σ(f2), σ(f1f2)) =
1

|B|
∣

∣

{

b ∈ B : σ(f1f2)b 6= σ(f1)σ(f2)b
}∣

∣

=
1

|B|
∣

∣

{

b ∈ S : σ(f1f2)b 6= σ(f1)σ(f2)b
}∣

∣+
1

|B|
∣

∣

{

b ∈ B \ S : σ(f1f2)b 6= σ(f1)σ(f2)b
}∣

∣

≤ 0 +
|B \ S|
|B|

≤ ε/4. �

Let π : G → G/H be the quotient map and let τ : G/H → G be a section of it. Call B := τ(B).
Let FH :=

(

B−1FB
)

∩ H. By hypothesis, there exist a group (K, d) ∈ C of diameter bounded by 1
and a function ϕ : H → K with ϕ(1) = 1 that is (FH , ε/3, d)-multiplicative and (FH , ε/3, d)-free for
certain function ρ, independent of K. Define

G→ K ≀B Sym(B)(5.2)

Φ(g) :=
(

(

ϕ
(

b−1gτπ(g−1b)
))

b∈B
, τσ(g)π

)

.

Φ is well defined since b−1gτπ(g−1b) ∈ H and it is clear that Φ(1) = 1. (The idea of using
ϕ
(

b−1gτπ(g−1b)
)

is already present in [7]).

Claim: Φ is (F, ε, d̃)-multiplicative and (F, ε, d̃)-free for the function ρ̃(ε) = (1− ε/3)ρ(ε/3).

Let us first prove that Φ is (F, ε, d̃)-multiplicative. In order to shorter the length of the equation
lines, call ψb(g) := ϕ

(

b−1gτπ(g−1b)
)

. Let f1, f2 ∈ F . Then

Φ(f1f2) =
(

(ψb(f1f2))b∈B , τσ(f1f2)π
)

=
(

(

ϕ
(

b−1f1f2τπ((f1f2)
−1b)

))

b∈B
, τσ(f1f2)π

)

and

Φ(f1)Φ(f2) =
(

(ψb(f1))b∈B , τσ(f1)π
) (

(ψb(f2))b∈B , τσ(f2)π
)

=
((

ψb(f1)ψτσ(f−1

1
)π(b)(f2)

)

b∈B
, τσ(f1)σ(f2)π

)
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Let Bf1,f2 := {b ∈ B : f−1
1 .π(b) ∈ B} ∩ {b ∈ B : (f1f2)

−1.π(b) ∈ B}. Observe that if b ∈ Bf1,f2 , then

by the definition of σ, it holds that σ(f−1
1 )π(b) = f−1

1 .π(b) and by the definition of the left regular

action, it holds that f−1
1 .π(b) = π(f−1

1 b) and (f1f2)
−1.π(b) = π((f1f2)

−1b) ∈ B. With this in mind, it
follows that for all b ∈ Bf1,f2

ψ
τσ(f−1

1
)π(b)(f2) = ϕ

(

(τσ(f−1
1 )π(b))−1f2τπ(f

−1
2 τσ(f−1

1 )π(b))
)

= ϕ
(

(τπ(f−1
1 b))−1f2τπ(f

−1
2 τπ(f−1

1 b))
)

= ϕ
(

(τπ(f−1
1 b))−1f2τπ((f1f2)

−1b)
)

.

Since for all b ∈ Bf1,f2 it holds that b−1f1τπ(f
−1
1 b) and (τπ(f−1

1 b))−1f2τπ((f1f2)
−1b) belong to FH

and since ϕ is (FH , ε/3, d)-multiplicative, then

d
(

ψb(f1)ψτσ(f−1

1
)π(b)(f2), ψb(f1f2)

)

< ε/3, for all b ∈ Bf1,f2 .

Hence, partitioning B with the subsets (τσ(f1f2)π)
−1Bf1,f2 and B \ (τσ(f1f2)π)−1Bf1,f2 we get that

d̃(Φ(f1)Φ(f2),Φ(f1f2)) = dHamm(τσ(f1)σ(f2)π, τσ(f1f2)π)+

1

|B|
∑

b∈B
τσ(f1f2)π(b)=τσ(f1)σ(f2)π(b)

d
(

ψτσ(f1f2)π(b)(f1)ψτσ(f−1

1
)σ(f1f2)π(b)

(f2), ψτσ(f1f2)π(b)(f1f2)
)

≤ dHamm(τσ(f1)σ(f2)π, τσ(f1f2)π) +
1

|B|
∑

b∈Bf1,f2

d
(

ψb(f1)ψτσ(f−1

1
)π(b)(f2), ψb(f1f2)

)

+
|B \ (τσ(f1f2)π)−1Bf1,f2 |

|B| .

Since τ is a bijection from B to B with inverse π, it follows that

dHamm(τσ(f1)σ(f2)π, τσ(f1f2)π) = dHamm(σ(f1)σ(f2), σ(f1f2)) ≤ ε/4,

and that

|B \ (τσ(f1f2)π)−1Bf1,f2 |
|B| =

|B \Bf1,f2 |
|B| =

|B \ π(Bf1,f2)|
|B|

.

Moreover, since π(Bf1,f2) = {b̄ ∈ B : f−1
1 .b̄ ∈ B} ∩ {b̄ ∈ B̄ : (f1f2)

−1.b̄ ∈ B}, the first part of the proof

of Claim 5.2 shows that
|B\π(Bf1,f2

)|

|B|
≤ ε/4. Hence

d̃(Φ(f1)Φ(f2),Φ(f1f2)) < ε/4 + ε/3 + ε/4 < ε.

In order to prove that Φ is (F, ε, d̃)-free for the function ρ̃(ε) = (1 − ε/3)ρ(ε/3), take f ∈ F \ {1}
and define Bf := {b ∈ B : σ(f)π(b) = f.π(b) = π(fb)}. It holds that |Bf | = |{b̄ ∈ B : f.b̄ ∈ B}| =
|f−1.B ∩ B| ≥ (1 − ε/8)|B|. Observe that if b ∈ Bf and τσ(f)π(b) = b then τπ(f−1b) = b. Also
observe that for all b ∈ B such that b−1fb ∈ H, it holds that d(ϕ(b−1fb), 1) > ρ(ε/3). Moreover, since
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diam(K) ≤ 1 it follows that ρ(ε) ≤ 1 for all ε. With all this in mind, we proceed to bound d̃(Φ(f), 1).

d̃(Φ(f), 1) = dHamm(τσ(f)π, 1) +
1

|B|
∑

b∈B
τσ(f)π(b)=b

d(ϕ(b−1fτπ(f−1b)), 1)

≥ 1

|B| |{b ∈ Bf : τσ(f)π(b) 6= b}|+ 1

|B|
∑

b∈Bf

τσ(f)π(b)=b

d(ϕ(b−1fb), 1)

≥ 1

|B| |{b ∈ Bf : τσ(f)π(b) 6= b}|+ ρ(ε/3)

|B| |{b ∈ Bf : τσ(f)π(b) = b}|

=
1

|B| |{b ∈ Bf : τσ(f)π(b) 6= b}|+ ρ(ε/3)

|B| (|Bf | − |{b ∈ Bf : τσ(f)π(b) 6= b}|)

=
ρ(ε/3)

|B| |Bf |+
1− ρ(ε/3)

|B| |{b ∈ Bf : τσ(f)π(b) 6= b}|

≥ |Bf |
|B| ρ(ε/3) ≥ (1− ε/8)ρ(ε/3) > (1− ε/3)ρ(ε/3). �
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