
Annals of Operations Research 138, 235–257, 2005
c° 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

An Accelerated Iterative Method with Diagonally
Scaled Oblique Projections for Solving Linear
Feasibility Problems

N. ECHEBEST
M.T. GUARDARUCCI opti@mate.unlp.edu.ar
Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina

H.D. SCOLNIK∗ hugo@dc.uba.ar
Departamento de Computación, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires,
Argentina

M.C. VACCHINO
Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina

Abstract. The Projected Aggregation Methods (PAM) for solving linear systems of equalities and/or in-
equalities, generate a new iterate xk+1 by projecting the current point xk onto a separating hyperplane
generated by a given linear combination of the original hyperplanes or halfspaces. In Scolnik et al. (2001,
2002a) and Echebest et al. (2004) acceleration schemes for solving systems of linear equations and inequal-
ities respectively were introduced, within a PAM like framework. In this paper we apply those schemes in
an algorithm based on oblique projections reflecting the sparsity of the matrix of the linear system to be
solved. We present the corresponding theoretical convergence results which are a generalization of those
given in Echebest et al. (2004). We also present the numerical results obtained applying the new scheme to
two algorithms introduced by Garcı́a-Palomares and González-Castaño (1998) and also the comparison of
its efficiency with that of Censor and Elfving (2002).

Keywords: projected aggregation methods, exact projection, incomplete projections, oblique projections

The class of convex feasibility problems (CFP) consisting in finding an element of a
non-empty closed C convex set which is a subset of <n , and

C =
\m

i=1
Ci ,

is the intersection of a family of closed convex subsets Ci , i = 1, 2, . . . , m of the n-
dimensional Euclidean space, have many applications in various fields of science and
technology, particularly in problems of image reconstruction from projections (Censor,
1988; Herman and Meyer, 1993). Solving systems of linear equalities and/or inequalities
is one of them. A common approach to such problems is to use projection algorithms

∗Corresponding author.

236 ECHEBEST ET AL.

(Bauschke and Borwein, 1996). That methodology is particularly useful when the projec-
tions onto Ci can be easily computed, as for instance in the particular case of hyperplanes
or halfspaces. This last observation leads, in more general cases, to generate for each
iterate xk a suitable closed convex set Hk , such that C ⊂ Hk , which facilitates the com-
putation of the exact projection onto it. The choice of the sets Hk may have a significant
influence on the convergence rate of the algorithms. Furthermore, Garcı́a-Palomares
and González-Castaño (1998) have proposed an incomplete simultaneous projections
algorithm (IPA), for obtaining an approximate projection of xk onto special convex sets
Sk

i , C ⊂ Sk
i , i = 1, 2, . . . , q, arising from the separation of subsets of the violated

constraints. They have defined the next iterate by means of the projection of xk onto a
hyperplane H k strictly separating C , generated by means of a combination of separating
hyperplanes H k

i relative to the incomplete projections onto each set Sk
i . That approach has

also been followed in our paper (Echebest, 2004) in which we present an accelerated iter-
ative projection method for solving the problem defined by Ax ≤ b, A ∈ <m×n, b ∈ <m .
That method, whose general scheme is similar to the IPA algorithm, is an extension of the
projection methods for solving systems of linear equations given in Scolnik et al. (2001,
2002a). The basic idea introduced is to consider at the current iterate the generated sepa-
rating hyperplane, deeper than the one given in Garcı́a-Palomares and González-Castaño
(1998), forcing the new iterate to lie on the convex region defined by it.

In this paper we apply that acceleration scheme in an algorithm based on oblique
projections and weighting matrices reflecting the sparsity of the linear system. The new
acceleration schemes here presented appear in the algorithm ACEOP when exact oblique
projections are made, and later on they are applied to a more general method called
ACIOP, both for computing incomplete oblique projections onto each block as well as
for obtaining the new iterate xk+1.

In Section 1 the acceleration scheme for solving systems of linear inequalities is
presented and applied to an algorithm that employs exact oblique projections. Also, the
main results leading to an improved rate of convergence are proved. In subsection 2 we
apply the acceleration scheme to the ACIOP algorithm, that uses incomplete oblique
projections onto blocks of inequalities. In Section 2 the numerical results obtained with
the new methods are given, showing the efficiency of the acceleration scheme. The last
section summarizes the conclusions.

1. Algorithms and convergence properties

Consider the non-empty convex set C characterized by a system of m linear inequalities

C := ©
x ∈ <n : aT

i x ≤ bi , i = 1, 2, . . . , m
ª

(1)

The matrix of the system will be denoted by A ∈ <m×n , and kxk will be the 2-norm of
x ∈ <n . We will assume that each row aT

i of A is such that kaik = 1. We will use the

ACCELERATED ITERATIVE METHOD WITH DIAGONALLY SCALED OBLIQUE PROJECTIONS 237

notation x∗ for any feasible solution of Ax ≤ b. For i = 1, 2, . . . , m, we define

Ci = ©
x ∈ <n : aT

i x ≤ bi , bi ∈ <ª
, and PCi (x) = argminy∈Ci

kx − yk.
Given a diagonal matrix G = diag(gl), with gl > 0 for l = 1, . . . , n, let kxk2

G =
xT Gx be the associated norm. The oblique projection (G-projection) of x ∈ <n onto Ci

with respect to G is defined by means of PG
Ci

(x) = argminy∈Ci
kx − ykG . Solving the

minimization problem leads to

PG
Ci

(x) = x + min
¡
0, bi − aT

i x
¢

aT
i G−1ai

G−1ai

The general scheme of a parallel projection algorithm for finding an element of C is as
follows (Garcı́a-Palomares and González-Castaño, 1998).

Given xk , we define the set of violated constraints J k := { j : aT
j xk − b j > −θ},

where θ is zero or a fixed positive constant.This set is splitted into subsets J k
1 , J k

2 , . . . , J k
q ,

such that J k = Sq
i=1 J k

i , leading to the corresponding subsets of inequalities

Sk
i := ©

x ∈ <n : aT
j x ≤ b j , j ∈ J k

i

ª
(2)

In the exact projection methods for each Sk
i the projection of xk ,

yk
i = argminy∈Sk

i
ky − xkkG

is calculated.
As an alternative, Garcı́a-Palomares and González-Castaño (1998) proposed an

algorithm (IPA) for obtaining approximate projections yk
i of xk onto sets Sk

i , i =
1, 2, . . . , q, satisfying

[x∗ ∈ C] ⇒ £°°yk
i − x∗°°

G < kxk − x∗kG
¤

(3)

This condition is in particular satisfied if yk
i is the exact projection onto Sk

i .
In order to assure convergence to a solution of C , the next iterate xk+1 is defined

using a combination of the directions dk
i = yk

i − xk , dk = Pq
i=1 wk

i dk
i , wk

i ≥ 0,Pq
i=1 wk

i = 1. Then the next iterate is defined as xk+1 = xk + ωkλkdk , where η ≤ ωk ≤
2 − η, 0 < η ≤ 1, and λk depends on the chosen algorithm.

The value defined for λk in Garcı́a-Palomares and González-Castaño (1998), when
ωk = 1, determines that the next iterate coincides with the projection of xk onto a
strictly separating hyperplane of C . In the following, we will describe the adaptation of
the algorithms IPA and EPA, given in Garcı́a-Palomares and González-Castaño (1998),
to systems of linear inequalities considering oblique projections, a choice of {wk

i }q
i=1,

η ≤ ωk ≤ 2 − η, 0 < η ≤ 1.

Algorithm 1. Parallel Incomplete projections Algorithm (IPA) (k-th iteration).
Given xk /∈ C , 0 < θ < 0.1, 0 < η ≤ 1.

238 ECHEBEST ET AL.

• Define J k := { j : aT
j xk − b j > −θ}, and qk = card(J k).

Define sets Sk
1 , Sk

2 , . . . , Sk
q according to (2).

• For i = 1, 2, . . . , q in parallel
Compute yk

i such that it satisfies (3): kyk
i − x∗kG < kxk − x∗kG

Define dk
i = yk

i − xk

End For.
• Define dk = Pq

i=1wi
kdk

i ,
Pq

i=1 wi
k = 1, wk

i ≥ 0. Calculate

λk =
Pq

i=1w
k
i

°°dk
i

°°2
G

2kdkk2
G

(4)

• Define xk+1 = xk + ωkλkdk , η ≤ ωk ≤ 2 − η.

Remark 1. When ωk = 1, the iterate xk+1 is the oblique projection of xk onto the
separating hyperplane

H k :=
(

x : (Gdk)T (x − xk) =
qX

i=1

wk
i

°°dk
i

°°2
G

2

)
(5)

that is a combination of the separating hyperplanes

H k
i :=

½
x :

¡
Gdk

i

¢T
(x − xk) = kdk

i k2
G

2

¾
(6)

When the yk
i are the exact projections onto each intermediate set Sk

i , the algorithm is
denoted EPA (Exact Projections Algorithm) in Garcı́a-Palomares and González-Castaño
(1998). The modified value of λk , with oblique projections,

λk =
Pq

i=1w
k
i

°°dk
i

°°2
G

kdkk2
G

. (7)

corresponds to the definition of xk+1 as the oblique projection onto the separating hy-
perplane; that is a combination of those arising from the exact projections onto each
Sk

i .
Something characteristic of the PAM methods for linear systems, like those in

Garcı́a-Palomares (1993) and Scolnik et al. (2002a), is the definition of xk+1 = xk +λkdk ,
with λk satisfying λk = argminλkxk + λdk − x∗k2

G .

Remark 2. If x∗ is a solution to the system Ax ≤ b, the ideal value of λk satisfying

min
λ

kxk + λdk − x∗k2
G

ACCELERATED ITERATIVE METHOD WITH DIAGONALLY SCALED OBLIQUE PROJECTIONS 239

requires to compute the solution of the problem

min
λ

kxk − x∗k2
G − 2λ(Gdk)T (x∗ − xk) + λ2kdkk2

G (8)

by means of

λk = (Gdk)T (x∗ − xk)

kdkk2
G

. (9)

In general, the value of such an optimal λ cannot be obtained by a practical formula. The
formulas appearing in (4) and (7), introduced in Garcı́a-Palomares and González-Castaño
(1998) correspond to the related problem (8), avoid this difficulty.

1.1. Algorithm ACEOP: Exact projections

Given Ax ≤ b, we consider as in Censor et al. (2001a) a matrix G = diag(1/s j), such
that each s j denotes the number of nonzero elements of column j , for j = 1, . . . , n.

We consider a particular case of the EPA algorithm, fixing ωk = 1, θ = 0,
card(J k

i) = 1, for all i = 1, 2, . . . , qk , where qk = card(J k). Now, each set Sk
i (2)

corresponds to a violated constraint in xk .
The exact G-projection of xk onto each halfspace Sk

i , i = 1, 2, . . . , qk , is easily
calculated by yk

i = PG
C j(i)

(xk), if j(i) is the original index of the corresponding inequality
of the system (1).

From hereafter we denote by rk
j the difference b j − aT

j xk , and β j = aT
j G−1a j .

Remark 3. In particular, when yk
i = PG

C j(i)
(xk) we get dk

i = yk
i −xk = rk

j(i)G
−1a j(i)/β j(i),

being β j(i) ≥ minl=1,...,n sl ≥ 1, and rk
j(i) = b j(i) − aT

j(i)x
k < 0, i = 1, 2, . . . , qk .

It is useful to point out that if x∗ is a solution to Ax ≤ b, (Gdk
i)T (x∗ − xk) =

(Gdk
i)T (x∗− yk

i + yk
i −xk) ≥ kdk

i k2
G , considering (Gdk

i)T (x∗− yk
i) ≥ 0 as a consequence

of the convexity of Sk
i , the definition of dk

i and 1 ≤ β j(i) ≤ m.

From the assumptions made in this subsection, we can get the following results

Lemma 1. Given xk, J k = { j : b j − aT
j xk < 0}, qk = card(J k). If dk = Pqk

i=1 wk
i dk

i ,
dk

i = yk
i − xk ,

Pqk

i=1 wk
i = 1, wk

i = 1/qk , then

(i) For each i = 1, . . . , qk , dk
i = rk

j(i)G
−1a j(i)/β j(i), denoting j(i) the original index

of the system of inequalities (1) corresponding to i.
(ii) For each i = 1, . . . , qk , rk

j(i) = b j(i) −aT
j(i)x

k ≥ aT
j(i)x

∗ −aT
j(i)x

k , if x∗ is a solution
to Ax ≤ b.

(iii) (Gdk)T (x∗ − xk) = Pqk

i=1 wk
i (Gdk

i)T (x∗ − xk) =
Pqk

i=1 wk
i r k

j(i)a
T
j(i)(x

∗ − xk)/β j(i),
(iv) (Gdk)T (x∗ − xk) ≥ Pqk

i=1 wk
i (rk

j(i))
2/β j(i) > 0,

240 ECHEBEST ET AL.

(v) If xk+1 = xk + λdk , λ > 0 then

kxk+1 − x∗k2
G = kxk − x∗k2

G − 2λ(Gdk)T (x∗ − xk) + λ2kdkk2
G ≤ (10)

kxk − x∗k2
G − 2λ

qkX

i=1

wk
i

¡
rk

j(i)

¢2
/β j(i) + (λ)2kdkk2

G (11)

(vi) If λk is the argmin of (11), then

λk =
Pqk

i=1 wk
i

¡
rk

j(i)

¢2±
β j(i)

kdkk2
G

(12)

Furthermore

kxk+1 − x∗k2
G = kxk − x∗k2

G − 2λk(Gdk)T (x∗ − xk) + (λk)2kdkk2
G,

satisfies (13)

kxk+1 − x∗k2
G ≤ kxk − x∗k2

G − αk, where (14)

αk = λ2
kkdkk2

G =
¡ Pqk

i=1 wk
i

¡
rk

j(i)

¢2±
β j(i)

¢2

kdkk2
G

(15)

(vii) xk+1 = xk +λkdk, with λk given by (12) is the projection of xk onto the hyperplane
(

x : (Gdk)T (x − xk) =
qkX

i=1

wk
i

¡
rk

j(i)

¢2

β j(i)

)
(16)

(viii) Moreover, (16) is the separating hyperplane of xk with respect to C .

Proof. (i)–(iii) follow immediately from the definitions and the stated hypothesis. In
order to prove (iv) we just have to take into account that for all i = 1, 2, . . . , qk , rk

j(i) < 0,
together with Remark 3 and (i)–(iii). By simple comparison (v) follows from (iv). The
first part of (vi) follows directly by finding the argmin of problem (11).

The remaining results follow just replacing argmin in (11). For proving (vii) it is
enough to replace xk+1 in (16). For proving (viii) consider the inequality given in (iv).

That inequality shows that (16) is a separating hyperplane of C when
Pqk

i=1
wk

i (rk
j(i))

2

β j(i)
6= 0.

�

Lemma 2. Given xk, if dk = P
j∈J k wk

j d
k
j , where dk

j = PG
C j

(xk) − xk for all j ∈ J k,

and xk+1 = xk + λkdk , λk =
P

j∈Jk wk
j kdk

j k2
G

kdkk2
G

, then the sequence {xk} satisfies

kxk+1 − x∗k2
G ≤ kxk − x∗k2

G − αk, where (17)

αk = λ2
kkdkk2

G =
Ã

X

j∈J k

wk
jkdk

j k2
G

!2,
kdkk2

G . (18)

ACCELERATED ITERATIVE METHOD WITH DIAGONALLY SCALED OBLIQUE PROJECTIONS 241

Proof. It follows from (vi) of the previous Lemma. �

The following results are needed for justifying the acceleration scheme that will be
applied to the EPA algorithm with unitary blocks and exact G-projections.

Lemma 3. Given xk, Jk = { j : b j − aT
j xk < 0}, dk, λk and xk+1 as defined in

Lemma 2, then

(i) (x∗ − xk+1)T Gdk ≥ 0.
(ii) (x∗ − xk+1)T Gdk ≥ P

j∈Jk
wk

j r
k
j r

k+1
j /β j .

(iii) rk+1
j = rk

j − λkaT
j dk, j ∈ J k .

(iv)
P

j∈Jk
wk

j r
k
j r

k+1
j /β j = 0.

Proof. Using the definition of xk+1 and λk in (x∗ − xk+1)T Gdk, (i) follows.
Due to the fact that (x∗ − xk+1)T Gdk = P

j∈Jk
wk

j r
k
j aT

j (x∗ − xk+1)/β j(i), and
considering aT

j x∗ ≤ b j , we get (x∗ − xk+1)T Gdk ≥ P
j∈Jk

wk
j r

k
j (b j − aT

j xk+1)/β j(i) =P
j∈Jk

wk
j r

k
j r

k+1
j /β j(i).

To prove (iv) we substitute (iii) in
P

j∈Jk
wk

j r
k
j r

k+1
j /β j(i). Then, replacing

the expression of λk in
P

j∈Jk
wk

j (r
k
j)2/β j − λk(

P
j∈Jk

wk
j r

k
j a j

T dk/β j), we getP
j∈Jk

wk
j r

k
j r

k+1
j /β j = 0. �

Lemma 4. Given xk, consider J k, dk, λk and xk+1 as defined in Lemma 2.
If J k+1 := { j : aT

j xk+1 > b j }, J k+1
1 := { j : j ∈ J k+1, aT

j xk ≤ b j }, and

J k+1
2 := J k+1 T

J k, then

(i) For all j ∈ J k+1
1 , aT

j dk > 0.
(ii) If t k+1

1 := P
j∈J k+1

1
wk+1

j r k+1
j G−1a j/β j , then (t k+1

1)T Gdk < 0.

(iii) If t k+1
2 := P

j∈J k+1
2

wk+1
j r k+1

j G−1a j/β j , the sign of (t k+1
2)T Gdk tends to be negative

when the negative residuals of the constraints increase in absolute value. On the other
hand, it tends to be positive when |rk+1

j | < |rk
j |.

Proof. To prove (i) we consider j ∈ J k+1
1 , rk+1

j = rk
j −λkaT

j dk < 0, and rk
j ≥ 0. Then,

it follows that aT
j dk > 0. As a consequence of (i) t k+1

1 := P
j∈J k+1

1
wk+1

j r k+1
j G−1a j/β j ,

satisfies (t k+1
1)T Gdk < 0. For all j ∈ J k+1

2 , we get rk+1
j < 0 and rk

j < 0. In that case,

the sign of rk+1
j − rk

j = −λkaT
j dk, depends on the sign of aT

j dk . Thus, if aT
j dk < 0

then |rk+1
j | < |rk

j |, while if aT
j dk > 0 the opposite holds. Therefore, since t k+1

2 =P
j∈J k+1

2
wk+1

j r k+1
j G−1a j/β j , the sign of (t k+1

2)T Gdk can be either negative or positive
depending on the absolute values of the negative residuals. �

From Lemma 4 we can infer the direction dk+1, that combines the exact oblique
projections to the violated constraints at xk+1, may satisfy (dk+1)T Gdk < 0. Such

242 ECHEBEST ET AL.

property has been observed in different numerical experiences in almost all iterations.
Considering (ii) and (iii) from the previous Lemma, we see that such a situation is
possible due to the zigzagging appearing when non-violated constraints in a given iter-
ation are violated in the next, and the residuals of those constraints that remain violated
(|rk+1

j | ' |rk
j |) do not decrease in a sensible way.

Moreover, if (dk+1)T Gdk < 0, then the next iterate along the direction dk+1 will lie
outside of the convex region defined by the separating hyperplane (16) which contains
the current point xk+1. This observation led us to define a new algorithm such that the
defined direction takes into account that property.

Lemma 5. Given xk+1, if σ = (dk+1)T Gv < 0, and v = dk, then the direction
d̃k+1 := PG

v⊥dk+1 satisfies

(i) d̃k+1 = dk+1 − (dk+1)T Gdk)
kdkk2

G
dk .

(ii) (Gd̃k+1)T (x∗ − xk+1) ≥ (Gdk+1)T (x∗ − xk+1) > 0.
(iii) kPG

v⊥dk+1k2
G < kdk+1k2

G .
(iv) kPG

v⊥dk+1kG 6= 0

Proof. From the definition of d̃k+1, (i) follows. Multiplying (i) by x∗ − xk+1, and
considering the result of Lemma 3 (i), we get (Gd̃k+1)T (x∗ − xk+1) ≥
(Gdk+1)T (x∗−xk+1). Then, since (Gdk+1)T (x∗−xk+1) ≥ Pqk+1

i=1 wk+1
i (rk+1

j(i))2/β j(i) > 0,

we obtain (ii). The results (iii) and (iv) follow directly from (i) and (ii) respectively. �

Lemma 6. Given xk, v = xk − xk−1, consider J k, dk as defined in Lemma 2.
If (dk)T Gv < 0, and x̃ k+1 = xk + λ̃k d̃k, with d̃k defined as in Lemma 5, and

λ̃k =
Pqk

i=1 wk
i

¡
rk

j(i)

¢2±
β j(i)

kd̃kk2
G

, (19)

then

kx̃ k+1 − x∗k2
G = kxk − x∗k2

G − 2λ̃k(Gd̃k)T (x∗ − xk) + λ̃2
kkd̃kk2

G

satisfies

kx̃ k+1 − x∗k2
G < kxk+1 − x∗k2

G (20)

where xk+1 = xk + λkdk, and λk defined in (12).

Proof. To derive the inequality (20) it is enough to consider the definitions of x̃ k+1, xk+1

and their distances to x∗, kx̃ k+1 −x∗k2
G = kxk −x∗k2

G −2λ̃k(Gd̃k)T (x∗−xk)+ λ̃2
kkd̃kk2

G,

ACCELERATED ITERATIVE METHOD WITH DIAGONALLY SCALED OBLIQUE PROJECTIONS 243

where λ̃k =
Pqk

i=1 wk
i (rk

i)2/β j(i)

kd̃kk2
G

, kxk+1 − x∗k2
G = kxk − x∗k2

G − 2λk G(dk)T (x∗ − xk) +
λ2

kkdkk2
G, with λk =

Pqk
i=1 wk

i (rk
i)2/β j(i)

kdkk2
G

.

The difference kxk+1 − x∗k2
G − kx̃ k+1 − x∗k2

G coincides with
£−2λk(Gdk)T (x∗ − xk) + λk

2kdkk2
G

¤ − £ − 2λ̃k(Gd̃k)T (x∗ − xk) + λ̃2
kkd̃kk2

G

¤
.

Reordering this expression we get
"

2

Pqk

i=1 wk
i

¡
rk

i

¢2±
β j(i)

kd̃kk2
G

(Gd̃k)T (x∗ − xk) − 2

Pqk

i=1 wk
i

¡
rk

i

¢2±
β j(i)

kdkk2
G

(Gdk)T (x∗ − xk)

#

−
"¡ Pqk

i=1 wk
i

¡
rk

i

¢2±
β j(i)

¢2

kd̃kk2
G

−
¡ Pqk

i=1 wk
i

¡
rk

i

¢2±
β j(i)

¢2

kdkk2
G

#

The first bracket
"

2

Pqk

i=1 wk
i

¡
rk

i

¢2±
β j(i)

kd̃kk2
G

(Gd̃k)T (x∗ − xk) − 2

Pqk

i=1 wk
i

¡
rk

i

¢2±
β j(i)

kdkk2
G

(Gdk)T (x∗ − xk)

#
≥

c1[1
kd̃kk2

G
− 1

kdkk2
G

], where c1 = 2(Gdk)T (x∗ − xk)
Pqk

i=1 wk
i (rk

i)2/β j(i).

The second bracket coincides with c2[1
kd̃kk2

G
− 1

kdkk2
G

], where c2 =
(
Pqk

i=1w
k
i (rk

i)2/β j(i))2.
Hence, since c1 ≥ 2c2, c2 > 0 and 1

kd̃kk2
G

− 1
kdkk2

G
> 0, we get (20). �

Now, we have the necessary results for presenting the new algorithm. Due to the hy-
potheses of Lemma 6, the iterate xk+1 is defined along the direction d̃k =
PG

v⊥(
Pqk

i=1 wk
i dk

i) where v is the direction Gd̃k−1 from the previous iteration.
Given xk, let us consider J k, card(J k) = qk . We will denote by QG

k the projector
onto the G-orthogonal subspace to v = xk − xk−1. In particular, QG

0 = In, where In is
the identity matrix. The following scheme describes the iterative step (k > 0) of the new
algorithm, in a version not yet adapted to parallel processing.

Algorithm 2. ACEOP (k-th iteration) : Given xk, Jk, QG
k , v = d̃k−1.

• For i = 1, . . . , qk in parallel
Compute yk

i = PG
C j(i)

(xk).

Define dk
i = yk

i − xk .
End For.

• Define dk = Pqk

i=1 wk
i dk

i ,

• Compute σ = vT Gdk

If σ < 0, define d̃k = QG
k (dk), else d̃k = dk.

• Compute xk+1 = xk + λ̃k d̃k, λ̃k defined by (19).

244 ECHEBEST ET AL.

This algorithm can be easily adapted to parallel multiprocessing.
The following Lemma proves that algorithm ACEOP is well defined.

Lemma 7. Given xk, xk 6= x∗, the new direction d̃k and λ̃k as in (19) are well defined.

Proof. It is of interest to consider the case vT Gdk < 0, v = xk − xk−1. Taking into
account (ii) and (iii) of Lemma 5 it follows immediately that d̃k 6= 0 and therefore, λ̃k

is well defined. �

Lemma 8. The sequence {xk} generated by ACEOP satisfies kxk+1 − x∗k2
G ≤

kxk − x∗k2
G − α̃k, where

α̃k = (λ̃k)2kd̃kk2 =
¡ Pqk

i=1 wk
i

°°dk
i

°°2
G

¢2

kd̃kk2
G

, (21)

satisfying α̃k ≥ αk, αk given in (18).

Proof. The result follows using the expressions of λ̃k, the Lemmas 2 and 6. �

1.1.1. Convergence
The convergence of the sequence generated by the algorithm ACEOP to a solution x∗ is
proved applying the theory developed by Gubin et al. (1967).

Denote by d(x, Ci) = kPG
Ci

(x) − xkG the distance between a point x ∈ <n and a
closed convex set Ci ⊆ <n, and define 8(x) = maxi=1,...,m{d(x, Ci)}.

Definition 1. A sequence {xk} is called Fejér-monotone with respect to the set C, if for
any x∗ ∈ C, and for all k ≥ 0, kxk+1 − x∗kG ≤ kxk − x∗kG .

It is easy to check that every Fejér-monotone sequence is bounded. The fundamental
theorem of Gubin et al. (1967), is:

Theorem 1. Let Ci ⊂ <n,be closed convex sets, for all i = 1, . . . , m, C = T
i=1,...,m Ci ,

C 6= ∅. If the sequence {xk} satisfies the properties:

(i) {xk} is Fejér-monotone with respect to C, and

(ii) limk→∞ 8(xk) = 0,

then {xk} converges to x∗, x∗ ∈ C .

Proof. It follows from Lemmas 5 and 6 of Gubin et al. (1967). �

Lemma 9. Any sequence {xk} generated by ACEOP Algorithm, satisfies (i) and (ii) of
Theorem 1, rovided xk 6∈ C, for all k ≥ 0.

ACCELERATED ITERATIVE METHOD WITH DIAGONALLY SCALED OBLIQUE PROJECTIONS 245

Proof. The proof of (i) follows immediately from Lemma 8. Moreover, taking into
account that the sequence {kxk − x∗kG} converges since it is bounded and monotonically
decreasing, α̃k tend to zero when k tend to ∞. Furthermore, considering the results of

Lemma 6 we know α̃k ≥ αk = (
Pqk

i=1 wk
i kdk

i k2
G)2

kdkk2
G

. Since dk is a convex combination of

PG
Ci

(xk) − xk, then kdkk2
G ≤ Pqk

i=1 wk
i kdk

i k2
G (Iusem and De Pierro 1986). Hence, since

α̃k tend to zero, and α̃k ≥ Pqk

i=1 wk
i kdk

i k2
G, we get limk→∞8(xk) = 0. �

1.2. Accelerated incomplete projections algorithm (ACIOP)

In this subsection we apply the acceleration scheme to the ACIOP algorithm, by using
incomplete oblique projections onto blocks of inequalities as in the IPA method described
in Garcı́a-Palomares and González-Castaño (1998). To compute the approximate oblique
projection onto each Sk

i , we use the ACEOP algorithm with a stopping condition such
that it finds a yk

i satisfying the equivalent condition to (3) (one iteration guarantees this).
As a consequence of the procedure to find yk

i , the next result justifies that H̃ k
i is a

deeper separating hyperplane the one given in Garcı́a-Palomares and González-Castaño
(1998).

Denoting by z j the intermediate iterates of ACEOP until obtaining yk
i , and using

z0 = xk, we get

Lemma 10. Given yk
i , x∗ ∈ C . If yk

i − xk = P ji
j=1(z j − z j−1), then

(i) γi = P ji
j=1 kz j − z j−1k2

G > 0,

(ii) kyk
i − x∗k2

G ≤ kx∗ − xkk2
G − P ji

j=1 kz j − z j−1k2
G

(iii) (yk
i − xk)T G(x∗ − xk) ≥ (kyk

i − xkk2
G + γi)/2, with γi > 0

Proof. The first assertion follows immediately because if xk is infeasible, at least one
iteration of ACEOP is performed and, therefore, we obtain the result given in (17).

According to Lemma 2 each intermediate z j satisfies kz j −x∗k2
G ≤ kx∗−z j−1k2

G −
kz j − z j−1k2

G, hence obtaining (ii). Moreover, since
kyk

i − x∗k2
G = kxk − x∗k2

G − 2(yk
i − xk)T G(x∗ − xk) +kyk

i − xkk2
G we derive (iii) using

the inequality (ii). �

This implies that the hyperplane H̃ k
i = {x : (yk

i − xk)T G(x − xk) =
(kyk

i − xkk2
G + γi)/2} is deeper than the equivalent H k

i given in (6) and introduced
in Garcı́a-Palomares and González-Castaño (1998). Likewise, the hyperplane generated
from the convex combination of the previous ones

H̃ k =
(

x : (dk)T G(x − xk) =
qX

i=1

wk
i

¡°°dk
i

°°2
G + γi

¢
/2

)
(22)

246 ECHEBEST ET AL.

where dk
i = yk

i − xk, dk = Pq
i=1 wk

i dk
i , shares the same property when compared to

(5).
In principle, as in the IPA algorithm, the new iterate will be obtained projecting xk

onto the deeper separating hyperplane H̃ k . Taking into account xk is on the separating
hyperplane H̃ k−1, when the new direction dk satisfies (dk)T Gv < 0 and leads to a point
exterior to the halfspace limited by H̃ k−1 containing C, the direction will be modified
by projecting it onto the “correct” region. Such a modification is identical to the one
proposed in the ACEOP algorithm when dealing with the same situation. Therefore, if v

is the direction at step xk − xk−1, and dk satisfies (dk)T Gv < 0, we define
d̃k := PG

v⊥dk, and x̃ k+1 = xk + λ̃k d̃k, being

λ̃k =
Pq

i=1w
k
i (

°°dk
i

°°2
G

+ γi)

2kd̃kk2
G

(23)

the argmin of the problem

kxk − x∗k2 − 2λ

qX

i=1

wk
i

¡°°dk
i

°°2
G + γi

¢±
2 + (λ)2kd̃kk2

G (24)

that is an upper bound of the one given in (8), now using the new direction d̃k .

We describe in the following the iterative step of the incomplete oblique projections
algorithm ACIOP.

Given xk, denoting by QG
k the projector onto the G-orthogonal subspace to the one

defined by the previous direction v = xk − xk−1, and defining QG
0 = In .

Algorithm 3. ACIOP (k-th iteration). Given xk /∈ C, v = d̃k−1, 0 < θ < 0.1,

0 < η ≤ 1.
• Define Jk = { j : aT

j xk − b j ≥ −θ}, and Sk
i , i = 1, 2, . . . , q.

• For i = 1, 2, . . . , q in parallel
Compute yk

i using Algorithm ACEOP, and compute γi .
Define di

k = yi
k − xk .

End For;
• Define wk

i ≥ 0, such that
Pq

i=1 wk
i = 1.

Define dk = Pq
i=1 wk

i dk
i , and compute σ = (dk)T Gv,

Define d̃k = QG
k (dk) if σ < 0, else d̃k = dk .

Compute λ̃k given in (23).
• Define xk+1 = xk + ωk λ̃k d̃k, with η ≤ ωk ≤ 2 − η.

We are now going to prove the algorithm is well defined and later on the convergence
results.

Lemma 11. Given xk, xk 6= x∗, x∗ ∈ C, the direction d̃k of ACIOP is well defined and
satisfies

ACCELERATED ITERATIVE METHOD WITH DIAGONALLY SCALED OBLIQUE PROJECTIONS 247

(i) (d̃k)T G(x∗ − xk) ≥ (dk)T G(x∗ − xk) > 0, being dk = Pq
i=1 wk

i dk
i .

(ii) kd̃kkG < kdkkG, if dk = Pq
i=1 wk

i dk
i satisfies vT Gdk < 0, where v = d̃k−1,

k ≥ 1.

Proof. For k = 0, d̃0 coincides with the direction given by the IPA algorithm. Assuming
the direction d̃k−1, k > 0, is well defined, it is interesting to analyze the case when
σ = (dk)T Gd̃k−1 < 0. According to the definition, d̃k satisfies d̃k = dk − σ v

kvk2
G

. Thus,

multiplying both sides by G(x∗ − xk), and using (d̃k−1)T G(x∗ − xk) ≥ 0 due to the
definition of xk, we get (d̃k)T G(x∗ − xk) = (dk)T G(x∗ − xk) − vT Gdk

(kvk)2
G

(vT G(x∗ − xk)) ≥
(dk)T G(x∗ − xk) > 0. From this inequality we derive (i) and also that kd̃kkG > 0.
Therefore, the direction is well defined in the special case when its definition modifies the
one of the IPA algorithm. On the other hand, and for the same special case, the following
holds kd̃kkG

2 = kdkkG
2 − (σ 2)/kvk2

G . Thus, d̃k satisfies (ii). �

The differences between ACIOP and IPA are the following:

(1) we calculate yk
i explicitly (algorithm ACEOP);

(2) xk+1 is the oblique projection of xk onto a deeper separating hyperplane;

(3) we preserve the fact that the new iterate does not fall outside of the region defined
by the last separating hyperplane.

In order to theoretically analyze the comparative behaviour of the sequences gener-
ated by the algorithms ACIOP and IPA we proceed in two stages. First, we compare the
step given by ACIOP with the one obtained by an algorithm using the same approximate
projections yk

i , but for defining xk+1 it uses directly dk without projections. Second, we
compare such a sequence with that obtained by the original IPA algorithm with oblique
projections.

For comparison purposes we will denote by x̃ k+1 the ACIOP iterate and by xk+1

the one given by IPA.

Lemma 12. Given xk, yk
i , i = 1, 2, . . . , q, dk, d̃k and λ̃k defined in ACIOP.

If σ = (dk)T Gd̃k−1 < 0, and x̃ k+1 = xk + λ̃k d̃k, then

(i) kx̃ k+1 − x∗kG < kxk+1 − x∗kG if xk+1 = xk + λkdk, and λk =
Pq

i=1w
k
i (kdk

i k2
G+γi)

2kdkk2
G

.

Furthermore,
(ii) If xk+1 is defined as in (i), then kxk+1 − x∗kG < kxk+1 − x∗kG when xk+1 is

obtained using the original λk of Garcı́a-Palomares and González-Castaño (1998),

explicitly stated in (4), λk :=
Pq

i=1 wk
i (kdk

i k2
G)

2kdkk2
G

Proof. To prove the inequality (i) let us consider, kx̃ k+1 − x∗k2
G = kxk − x∗k2

G −
2λ̃k(d̃k)T G(x∗−xk)+λ̃2

kkd̃kk2
G, replacing λ̃k by the expression given in (23). Analogously,

248 ECHEBEST ET AL.

replacing the expression of λk in kxk+1 − x∗k2
G = kxk − x∗k2

G − 2λk(dk)T G(x∗ − xk) +
λ2

kkdkk2
G, the difference

kxk+1 − x∗k2
G − kx̃ k+1 − x∗k2

G coincides with
£−2λk(dk)T G(x∗ − xk) + λ2

kkdkk2
G

¤ − £−2λ̃k(d̃k)T G(x∗ − xk) + λ̃2
kkd̃kk2

G

¤
.

Reordering as in Lemma 6 we observe that the involved expressions are similar to those
appearing there, except by their numerators λk and λ̃k , but they have no influence on the
comparison we are interested in. Hence, repeating the steps of Lemma 6 we prove (i).

In order to get (ii) we consider as in (i)
kxk+1−x∗k2

G = kxk−x∗k2
G−2λk(dk)T G(x∗−xk)+λ2

kkdkk2
G, replacing the expres-

sion corresponding to λk . Also kxk+1 − x∗k2
G = kxk − x∗k2

G − 2λk(dk)T

G(x∗ − xk) + kdkk2
G, and taking into account that the value of λk is the one given

in (4). It is easy to see the difference kxk+1 − x∗k2
G − kxk+1 − x∗k2

G, is equal to
[2(λk − λk)(dk)T G(x∗ − xk)] − [(λ2

k − λ2
k)kdkk2

G]. Therefore, using (dk)T G(x∗ − xk) ≥
λkkdkk2

G, λk − λk > 0, (ii) follows. �

Lemma 13. If d̃k is defined as in the ACIOP algorithm, xk+1 = xk + wk λ̃k d̃k, with λ̃k

given in (23), η ≤ wk ≤ 2 − η then the generated sequence {xk} satisfies

kxk+1 − x∗k2
G ≤ kxk − x∗k2

G − α̃k, (25)

where

α̃k = wk(2 − wk)

Ã
qX

i=1

wk
i

¡kdk
i k2

G + γi
¢
!2,¡

4kd̃kk2
G

¢
(26)

where dk
i and γi are those from ACIOP.

Proof. The result follows from the definition of xk+1, d̃k and that of λ̃k given in (23)
is the solution of (24). �

1.2.1. Convergence
The convergence of the sequence generated by the ACIOP algorithm is a consequence
of the comparisons made in Lemma 12 with the IPA algorithm, together with Theorem
1 in Garcı́a-Palomares and González-Castaño (1998) and Lemma 13.

2. Numerical experiences

The first purpose of the numerical experiences is to illustrate the behaviour of the accel-
eration of ACEOP (Algorithm 2), using exact oblique projections onto the violated con-
straints, in comparison to the EPA method in Garcı́a-Palomares and González-Castaño

ACCELERATED ITERATIVE METHOD WITH DIAGONALLY SCALED OBLIQUE PROJECTIONS 249

(1998). For that purpose a version of the EPA method was implemented, called EOPA,
using card(J k

i) = 1, wk
i = 1/qk if the number of violated inequalities in xk, whose

indexes are stored in J k = { j : aT
j xk − b j > 0}, is qk . We briefly describe this version

as follows:

EOPA: Given xk, J k, qk = card(J k) (as in ACEOP).
Define dk = Pqk

i=1 wk
i (PG

Ci
(xk) − xk) where wk

i = 1
qk

.

The new iterate is xk+1 = xk + λkdk, with λk as in (12).

The second purpose is to compare the results of ACIOP (Algorithm 3), that uses in-
complete projections onto blocks of violated inequalities, with those obtained with a
version of the IPA algorithm in Garcı́a-Palomares and González-Castaño (1998) called
IOPA. In both algorithms the computation of the approximate projections yk

i is similarly
done by means of the procedure of ACEOP, accepting an approximation if the condi-
tion described below is satisfied. Hence, in this version of IPA the convex combination
dk = Pq

i=1 wi
kdi

k where di
k = yk

i − xk for i = 1, 2, . . . , q, is similar to the one used
in ACIOP.
Now, we will describe briefly the algorithms being compared, using an experimental
code.

IOPA (Incomplete Oblique Projections Algorithm): Given an iterate xk, J k, and Sk
i , yk

i ,

for i = 1, 2, . . . , q.
Define dk = Pq

i=1 wi
kdi

k, where dk
i = yk

i − xk, for i = 1, 2, . . . , q.
xk+1 = xk + λkdk, where λk is adapted from the original in [8], as given in (4).

ACIOP (Accelerated Incomplete Projections Algorithm): Given an iterate xk, d̃k−1, QG
k ,

J k, Sk
i , yk

i , i = 1, 2, . . . , q, we define the direction dk as in IOPA.
Define d̃k = QG

k (dk) if (dk)T Gd̃k−1 < 0, otherwise d̃k = dk.
Define xk+1 = xk + λ̃k d̃k, where λ̃k is the one defined in (23).

In the implementations of ACIOP and IOPA we consider:

(i) A constraint is violated at xk if aT
j xk − b j ≥ −(5 ∗ 10−5). The set J k of violated

constraints is in principle splitted into q = 4 blocks of equal cardinality, adding if
necessary the remaining inequalities to the fourth block.

(ii) Incomplete projection onto each block. We compute it by means of the ACEOP
algorithm:
Given xk ∈ <n, and a block Sk

i , from z0 = xk we compute z1, . . . , zl until one of
the following conditions is satisfied:

(1) r (zl) < 10−2 ∗ r (z0), where r (zl) = max j∈Sk
i
(0, aT

j (zl) − b j), or

(2) kzl − zl−1kG < 10−4kz1 − z0kG, or

(3) the maximum number of allowed iterations (15) has been reached.

250 ECHEBEST ET AL.

Also we make the comparison with BICAV (Block Iterative CAV) as described in
Censor et al. (2001b). Such algorithm splits A into blocks, denoting each block At , for
t = 1, . . . , q, and It the set of original indices in A. For each block At , they con-
sider st

j the number of non-zero elements in column j, defining for each block a matrix
Gt = diag(g j), where g j = 1/s j

t , if st
j > 0, otherwise g j = 0. The BICAV algorithm

is sequentially iterative by blocks. Let t(k) be a control sequence at the k- iteration which
indicates the block considered in the k-th iteration, for all k ≥ 0.

BICAV (Block iterative CAV Algorithm): Given xk, J k
t = {i : i ∈ It(k), ai xk − bi > 0}

the set of indices of inequalities of t(k)-block which are violated by xk.
Define xk+1 = xk + λk

P
{i∈J k

t } µ
t(k)
i r k

i ai , being µ
t(k)
i = 1Pn

j=1 st(k)
j (ai j)2

, and λk is a

relaxation parameter.

In particular, if q = 1, it coincides with the fully simultaneous version CAV,
and the matrix Gt is the same than the one considered in the algorithms ACEOP and
ACIOP. In our experiences we have used q = 1 (BICAV(1)) and q = 4 (BICAV(4))
for comparing with ACEOP and ACIOP respectively. We have also tested different
values of the parameter λk (0.9, 1.0, 1.9) within the classic range (0, 2). In the follow-
ing tables we report the best obtained values of BICAV with the different values of
λk .

Test problems

We have run different problems of the type Ax ≤ b, where the matrix A ∈ <m×n has
been chosen to reflect a variety of condition numbers and/or sparsity patterns. For that
purpose we used the Zlatev routine from SPARSKIT2/Library (Saad, l990).

Another set of problems has been obtained by generating randomly different spar-
sity patterns according to predefined densities. More precisely, the indices of nonnull
entries were generated randomly, as well as the corresponding matrix values. Approx-
imately densi ty ∗ m ∗ n entries of the matrix will be nonnull. After generating the
matrix, the code computes the independent term b in such a way that Ax ≤ b is
compatible. The initial approximation used was a vector x0 whose components were
zero.

Numerical results

The problems were run on a PC Pentium III, 800 MHz, with 256 Mb Ram and 128 Mb
Swap using FORTRAN 90.
The stopping criteria were:

If Rmk ≤ 10−6∗max{1, Rm0}, where Rmk = maxi=1,2,...,m(0, aT
i xk −bi), or if the

number of iterations reaches the maximum allowed I T M AX, with I T M AX = 5000.

ACCELERATED ITERATIVE METHOD WITH DIAGONALLY SCALED OBLIQUE PROJECTIONS 251

Table 1
Zlatev’s matrices, m = 12000, n = 10000.

index = 20 G Meth Iter Rms CPU

Zla(22) In ACEOP 163 8.9d-7 2.7
EOPA 858 9.2d-7 19.2

diag(1/s j) ACEOP 122 8.8d-7 2.1
EOPA 1186 9.8d-7 23.2
BICAV(1) 5000 6.0d-6 127.2

Zla(24) In ACEOP 231 9.9d-7 3.5
EOPA 888 9.7d-7 19.9

diag(1/s j) ACEOP 181 8.3d-7 3.1
EOPA 1196 9.9d-7 26.5
BICAV(1) 5000 8.9d-6 127.3

Zla(28) In ACEOP 182 7.3d-7 2.9
EOPA 882 9.6d-7 19.8

diag(1/s j) ACEOP 235 9.3d-7 3.8
EOPA 1153 9.9d-7 26.1
BICAV(1) 5000 1.2d-5 127.5

Zla(212) In ACEOP 344 8.5d-7 5.1
EOPA 896 9.7d-7 20.0

diag(1/s j) ACEOP 308 8.0d-7 4.8
EOPA 1146 9.3d-7 25.6
BICAV(1) 5000 1.2d-5 127.3

The obtained results are presented in the following Tables using the notation:

• Iter: Number of performed iterations.

• Rms: maxi=1,2,...,m(0, aT
i xs − bi), xs being the iterate satisfying the stopping criteria.

• CPU: time measured in seconds.

The starting point was x0 = 0.
In Tables 1 and 2 we present the results obtained with the algorithms ACEOP, EOPA
and BICAV(1) for the problems of SPARSKIT2 Library derived from Zlatev’s matrices.
These matrices have been generated with different condition depend on the parameter α.
The dimensions were m = 12000, n = 10000, and the problems were run with α = 2i ,

i = 2, 4, 8, 12, denoting each problem by Zla(α) according to the sort of conditioning
with which the matrix was generated. In Table 1 results obtained using index = 20,

a parameter that indicates the average number of non-zero elements per row are given,
while in Table 2 the values correspond to index = 100.
These results show the effect of the acceleration scheme of the algorithm ACEOP in
regard to the algorithm EOPA, because the number of required iterations and the CPU
time are drastically reduced in all problems.
Table 3 shows a comparison of the ACEOP algorithm with the EOPA version of EPA
and BICAV(1) using a set of dense randomly generated problems. Results are given

252 ECHEBEST ET AL.

Table 2
Zlatev’s matrices, m = 12000, n = 10000.

index = 100 G Meth Iter Rms CPU

Zla(22) In ACEOP 1064 9.9d-7 75.4
EOPA 5000 1.3d-2 493.9

diag(1/s j) ACEOP 912 9.6d-7 68.5
EOPA 5000 2.4d-2 492.8
BICAV(1) 5000 5.9d-2 554.2

Zla(24) In ACEOP 1130 7.8d-7 71.8
EOPA 5000 9.4d-3 496.8

diag(1/s j) ACEOP 1204 9.7d-7 90.2
EOPA 5000 1.2d-2 491.9
BICAV(1) 5000 6.0d-2 553.9

Zla(28) In ACEOP 2070 9.9d-7 121.4
EOPA 5000 1.1d-2 493.5

diag(1/s j) ACEOP 1118 3.2d-7 80.6
EOPA 5000 8.1d-3 490.4
BICAV(1) 5000 6.2d-2 559.6

Zla(212) In ACEOP 1094 7.8d-7 67.4
EOPA 5000 6.6d-3 500.8

diag(1/s j) ACEOP 1571 8.4d-7 103.9
EOPA 5000 7.4d-3 491.5
BICAV(1) 5000 6.4d-2 554.4

Table 3
Random matrices, density = 1. Average timing (seconds).

m = 800 m = 400 m = 200 m = 100
G Meth n = 200 n = 100 n = 50 n = 25

In ACEOP 0.39 (37) 0.11 (36) 0.01 (42) 0 (46)
EOPA 0.77 (73) 0.27 (71) 0.05 (95) 0.01 (127)

diag(1/s j) ACEOP 0.38 (37) 0.05 (35) 0.01 (44) 0 (48)
EOPA 0.71 (73) 0.17 (74) 0.03 (103) 0.02 (135)

BICAV (1) 53.2 (5000) 11.1 (5000) 0.94 (5000) 0.27 (5000)

indicating the row and column dimensions m, n of the randomly generated problems
with density 1. The reported CPU time is the average of solving each problem five times.
Between parenthesis the required number of iterations for satisfying the stopping criteria
as in Tables 1–2 are given. These results also show the effectiveness of ACEOP

In Tables 4–8 we report the results obtained with the ACIOP algorithm, using
incomplete projections onto the violated constraints blocks, IOPA (the implemented
version of IPA) and BICAV(4) as described at the beginning of this section. The key
difference between them is the definition of xk+1. Moreover, while in BICAV(4) a matrix
Gt is used for each block in such a way of reflecting the sparsity pattern, in other
algorithms the matrix G corresponds to the sparsity of A.

ACCELERATED ITERATIVE METHOD WITH DIAGONALLY SCALED OBLIQUE PROJECTIONS 253

Table 4
Zlatev’s matrices, m = 12000, n = 10000.

index = 20 G Meth Iter Rms CPU

Zla(22) In ACIOP 54 9.4d-7 8.2
IOPA 115 9.3d-7 21.3

diag(1/s j) ACIOP 54 1.6d-7 8.4
IOPA 115 9.0d-7 24.3

Gt BICAV(4) 3190 9.9d-7 78.8
Zla(24) In ACIOP 77 8.0d-7 9.1

IOPA 71 4.3d-7 17.6
diag(1/s j) ACIOP 81 5.4d-7 10.3

IOPA 96 8.4d-7 22.7
Gt BICAV(4) 3192 9.9d-7 78.9

Zla(28) In ACIOP 55 6.3d-7 7.8
IOPA 898 9.9d-7 126.6

diag(1/s j) ACIOP 72 4.5d-7 10.0
IOPA 197 7.6d-7 29.8

Gt BICAV(4) 3187 9.9d-7 78.8
Zla(212) In ACIOP 67 5.1d-7 9.0

IOPA 92 8.9d-7 19.7
diag(1/s j) ACIOP 65 8.0d-7 9.8

IOPA 94 6.5d-7 23.0
Gt BICAV(4) 3187 9.9d-7 78.7

Table 5
Zlatev’s matrices, m = 12000, n = 10000.

index = 60 G Meth Iter Rms CPU

Zla(22) In ACIOP 82 7.5d-7 22.0
IOPA 239 8.7d-7 149.6

diag(1/s j) ACIOP 59 2.5d-7 22.3
IOPA 234 8.4d-7 169.5

Gt BICAV(4) 5000 1.8d-2 333.9
Zla(24) In ACIOP 109 8.4d-7 25.3

IOPA 263 8.5d-7 151.1
diag(1/s j) ACIOP 97 9.7d-7 26.5

IOPA 291 7.1d-7 182.5
Gt BICAV(4) 5000 1.8d-2 320.7

Zla(28) In ACIOP 147 2.6d-7 28.2
IOPA 241 9.1d-7 144.8

diag(1/s j) ACIOP 108 2.6d-7 27.0
IOPA 204 9.5d-7 152.8

Gt BICAV(4) 5000 1.6d-2 322.1
Zla(212) In ACIOP 71 5.8d-7 21.6

IOPA 247 8.2d-7 145.8
diag(1/s j) ACIOP 87 6.9d-7 25.8

IOPA 202 7.7d-7 143.4
Gt BICAV(4) 5000 1.5d-2 320.4

254 ECHEBEST ET AL.

Table 6
Zlatev’s matrices, m = 12000, n = 10000.

index = 100 G Meth Iter Rms CPU

Zla(22) In ACIOP 85 6.0d-7 41.6
IOPA 537 7.2d-7 565.8

diag(1/s j) ACIOP 109 9.6d-7 51.2
IOPA 508 7.1d-7 510.4

Gt BICAV(4) 5000 5.4d-2 514.2
Zla(24) In ACIOP 149 5.0d-7 50.5

IOPA 637 8.4d-7 630.7
diag(1/s j) ACIOP 121 9.9d-7 52.6

IOPA 574 9.4d-7 551.7
Gt BICAV(4) 5000 5.5d-2 515.0

Zla(28) In ACIOP 165 7.4d-7 52.6
IOPA 568 5.5d-7 516.7

diag(1/s j) ACIOP 256 7.4d-7 71.0
IOPA 616 9.5d-7 583.1

Gt BICAV(4) 5000 5.5d-2 515.1
Zla(212) In ACIOP 124 7.8d-7 47.1

IOPA 551 9.6d-7 545.8
diag(1/s j) ACIOP 199 4.0d-7 65.7

IOPA 514 3.6d-7 535.3
Gt BICAV(4) 5000 5.7d-2 514.5

Table 7
Random matrix, density = 1.

m/n G Meth Iter Rms CPU

4000/2000 In ACIOP 243 1.8d-6 258.1
IOPA 5000 3.0d-4 7180.5

diag(1/s j) ACIOP 246 1.8d-6 261.0
IOPA 5000 5.0d-4 7758.6

Gt BICAV(4) 5000 9.9d-2 2960.5

We present in Tables 4–6 the results corresponding to the Zlatev matrices consid-
ering different sparsity patterns defined by index in each case.

The results of Tables 4–6 show the efectiveness of the direction d̃k and the parameter
λ̃k used in the ACIOP algorithm. In particular, such a performance is more evident in
Table 6, corresponding to more dense problems. The results corresponding to ACIOP do
not differ much if oblique or orthogonal projections are used.

It is also worthwhile to point out that Table 4 shows that the number of iterations
can be similar in ACIOP and IOPA, while the CPU time is not. This means that the
cardinality of the blocks corresponding to the violated constraints in IOPA is greater
than those in ACIOP. In other words, ACIOP generates better iterates as predicted by

ACCELERATED ITERATIVE METHOD WITH DIAGONALLY SCALED OBLIQUE PROJECTIONS 255

Table 8
Random matrices, density = 0.1.

m/n G Meth Iter Rms CPU

7500/2500 In ACIOP 118 2.1d-6 75.3
IOPA 198 2.1 d-6 121.0

diag(1/s j) ACIOP 118 2.3d-6 76.7
IOPA 191 2.2 d-6 111.6

Gt BICAV(4) 5000 3.3d-3 627.7
9500/2000 In ACIOP 35 1.6d-6 26.3

IOPA 53 1.9d-6 40.3
diag(1/s j) ACIOP 35 1.7d-6 25.2

IOPA 49 1.7d-6 40.0
Gt BICAV(4) 4406 1.9d-6 596.5

10000/1900 In ACIOP 28 1.4d-6 22.3
IOPA 41 1.7 d-6 34.3

diag(1/s j) ACIOP 28 1.6d-6 21.6
IOPA 41 1.4 d-6 35.7

Gt BICAV(4) 3634 1.9d-6 496.8

the theoretical results. Moreover, the version of IPA that we called IOPA uses the same
procedure ACEOP as in ACIOP for finding the approximations yk

i to the blocks. Thus, the
observed differences in the numerical results clearly arise from the different definitions
of xk . It is worthwhile to point out that for those problems both algorithms are more
efficient than BICAV(4). We believe that this is a consequence of the definition of xk+1,

which in ACIOP and IOPA is the projection of xk onto a separating hyperplane.
We include in the next Table 7 the results obtained with ACIOP, IOPA and BICAV(4)

for the randomly generated problems with dimension m = 4000, n = 2000, and density
1. The reported CPU time corresponds to the average of five runs of each problem. Those
results exhibit the same tendency observed in the other problems.

Finally, we run the same problems of Table 7 using a density of 0.1 and different
dimensions as shown in Table 8 using the ACIOP, IOPA and BICAV(4) algorithms.

In all Tables we observe the efficiency of the new algorithms that include the
projection onto the half-space defined by the separating hyperplane (22), and forcing the
new iterate to lie on the convex region defined by it.

3. Conclusions

In algorithm ACEOP we introduced the basic idea of forcing a new iterate to belong to
the convex region defined by the computed separating hyperplane. Both, the theoretical
results and the numerical experiences, showed the advantages of this approach.

The acceleration scheme applied in the ACEOP algorithm is the basis for extending
its applicability to other class of algorithms suitable for parallel processing. Among them

256 ECHEBEST ET AL.

is the IPA algorithm (Garcı́a-Palomares and González-Castaño, 1998). In particular, we
used the same approach in the more general ACIOP algorithm based on the original
IPA, both for computing incomplete projections onto each block, as well as for obtaining
the new iterate xk+1. As a consequence of the procedure to find the incomplete oblique
projection yk

i onto each block using ACEOP, a hyperplane H̃ k
i is obtained, deeper than the

one given in Garcı́a-Palomares and González-Castaño (1998). Therefore, the new iterate
xk+1 is the projection of xk onto a deeper separating hyperplane (22). The direction d̃k

defined by this algorithm preserves the fact that the new iterate does not fall outside
of the region defined by the last separating hyperplane. The numerical results show
a very competitive behaviour when dealing with blocks of inequalities by means of
approximate oblique projections such as in the ACIOP algorithm, as predicted by the
theory. In a forthcoming paper we will present a generalization of these results consisting
in minimizing a proximity function for problems which can be inconsistent.

Acknowledgment

Work supported by the universities of Buenos Aires and La Plata (Project 11/X346),
Argentina.

References

Bauschke, H.H. and J.M. Borwein. (1996). “On Projection Algorithms for Solving Convex Feasibility
Problems.” SIAM Rev. 38, 367–426.

Censor, Y. (1988). “Parallel Application of Block-Iterative Methods in Medical Imaging and Radiation
Therapy.” Math. Programming 42, 307–325.

Censor, Y., D. Gordon, and R. Gordon. (2001a). “Component Averaging: An Efficient Iterative Parallel
Algorithm for Large and Sparse Unstructured Problems.” Parallel Computing 27, 777–808.

Censor, Y., D. Gordon, and R. Gordon. (2001b). “BICAV: An Inherently Parallel Algorithm for Sparse
Systems with Pixel-Dependent Weighting.” IEEE Trans. on Medical Imaging 20, 1050–1060.

Censor, Y. and T. Elfving. (2002). “Block-Iterative Algorithms with Diagonally Scaled Oblique Projec-
tions for the Linear Feasibility Problem.” SIAM Journal on Matrix Analysis and Applications 24, 40–
58.

Echebest, N., M.T. Guardarucci, H.D. Scolnik, and M.C. Vacchino. (2004). “An Acceleration Scheme for
Solving Convex Feasibility Problems Using Incomplete Projection Algorithms.” Numerical Algorithms
35, 335–350.

Garcı́a-Palomares, U.M. (1993). “Parallel Projected Aggregation Methods for Solving the Convex Feasibility
Problem.” SIAM J. Optim. 3, 882–900.

Garcı́a-Palomares, U.M. and F.J. González-Castaño. (1998). “Incomplete Projection Algorithms for Solving
the Convex Feasibility Problem.” Numerical Algorithms 18, 177–193.

Gubin, L.G., B.T. Polyak, and E.V. Raik. (1967). “The Method of Projections for Finding the Common Point
of Convex Sets.” USSR Comput. Math. and Math.Phys. 7, 1–24.

Iusem, A.N. and A. De Pierro. (1986). “Convergence Results for an Accelerated Nonlinear Cimmino Algo-
rithm.” Numer. Math. 49, 367–378.

Herman, G.T. and L.B. Meyer. (1993). “Algebraic Reconstruction Techniques can be Made Computationally
Efficient.” IEEE Trans. Medical Imaging 12, 600–609.

ACCELERATED ITERATIVE METHOD WITH DIAGONALLY SCALED OBLIQUE PROJECTIONS 257

Saad, Y. (l990). “SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations.” Technical Report 90-20,
Research Institute for Avanced Computer Science. NASA Ames Research Center, Moffet Field, CA.

Scolnik, H., N. Echebest, M.T. Guardarucci, and M.C. Vacchino. (2001). “New Optimized and Accelerated
PAM Methods for Solving Large Non-symmetric Linear Systems: Theory and Practice.” In D. Butnariu,
Y. Censor, and S. Reich (eds.), Inherently Parallel Algorithms in Feasibility and Optimization and their
Applications, Studies in Computational Mathematics. Amsterdam: Elsevier Science, Volume 8, pp. 457–
470.

Scolnik, H., N. Echebest, M.T. Guardarucci, and M.C. Vacchino. (2002a). “A Class of Optimized Row
Projection Methods for Solving Large Non-Symmetric Linear Systems.” Applied Numerical Mathematics
41, 499–513.

Scolnik, H., N. Echebest, M.T. Guardarucci, and M.C. Vacchino. (2002b). “Acceleration Scheme for Parallel
Projected Aggregation Methods for Solving Large Linear Systems.” Annals of Operations Research 117,
95–115.

