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Abstract. By appealing to a long list of different nonlinear maps we review the characterization of time
series arising from chaotic maps. The main tool for this characterization is the permutation Bandt-Pompe
probability distribution function. We focus attention on both local and global characteristics of the compo-
nents of this probability distribution function. We show that forbidden ordinal patterns (local quantifiers)
exhibit an exponential growth for pattern-length range 3 ≤ D ≤ 8, in the case of finite time series data.
Indeed, there is a minimum Dmin-value such that forbidden patterns cannot appear for D < Dmin. The
system’s localization in an entropy-complexity plane (global quantifier) displays typical specific features
associated with its dynamics’ nature. We conclude that a more “robust” distinction between deterministic
and stochastic dynamics is achieved via the present time series’ treatment based on the global character-
istics of the permutation Bandt-Pompe probability distribution function.

1 Introduction

The study and characterization of time series S(t) ≡
{xt; t = 1, . . . , N} by recourse to information theory tools
assume that the underlying probability distribution func-
tion (PDF) is a priori given. Per contra, part of the con-
comitant analysis involves extracting the PDF from the
data and there is no univocal procedure with which ev-
eryone agrees. Bandt and Pompe (BP), almost ten years
ago, introduced a successful methodology for the evalu-
ation of the PDF associated to scalar time series data
using a symbolization technique [1]. The reader is referred
to reference [2] for a didactic description of the approach.

The pertinent symbolic data are (i) created by rank-
ing the values of the series and (ii) defined by reordering
the embedded data in ascending order, which is tanta-
mount to a phase space reconstruction with embedding
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dimension (pattern-length) D and time lag τ (see defini-
tions and methodological details in Ref. [2]). In this way
it is possible to quantify the diversity of the ordering sym-
bols (patterns) derived from a scalar time series.

Note that the appropriate symbol-sequence arises nat-
urally from the time series and no model-based assump-
tions are needed. In fact, the necessary “partitions” are
devised by comparing the order of neighboring relative
values rather than by apportioning amplitudes according
to different levels. This technique, as opposed to most of
those in current practice, takes into account the temporal
structure of the time series generated by the physical pro-
cess under study. This feature allows us to uncover impor-
tant details concerning the ordinal structure of the time
series [3–6], and can also yield information about temporal
correlation [7,8].

It is clear that this type of analysis of time se-
ries entails losing some details of the original series’
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amplitude-information. Nevertheless, by just referring to
the series’ intrinsic structure, a meaningful difficulty-
reduction is indeed achieved by Bandt and Pompe with
regards to the description of complex systems. The sym-
bolic representation of time series by recourse to a com-
parison of consecutive (τ = 1) or non-consecutive (τ > 1)
values allows for an accurate empirical reconstruction of
the underlying phase-space, even in the presence of weak
(observational and dynamical) noise [1]. Furthermore, the
ordinal-pattern’s associated PDF is invariant with respect
to nonlinear monotonous transformations. Accordingly,
nonlinear drifts or scalings artificially introduced by a
measurement device will not modify the quantifiers’ es-
timation, a nice property if one deals with experimen-
tal data (see, i.e., [9]). These advantages make the BP
methodology more convenient than conventional methods
based on range partitioning.

Additional advantages of the method reside in
(i) its simplicity (we need few parameters: the pattern-
length/embedding dimension D and the embedding de-
lay τ and (ii) the extremely fast nature of the pertinent
calculation-process [10]. The BP methodology can be ap-
plied not only to time series representative of low dimen-
sional dynamical systems but also to any type of time se-
ries (regular, chaotic, noisy, or reality based). In fact, the
existence of an attractor in the D-dimensional phase space
is not assumed. The only condition for the applicability of
the BP methodology is a very weak stationary assumption
(that is, for k ≤ D, the probability for xt < xt+k should
not depend on t [1]).

The BP-generated probability distribution P is ob-
tained once we choose the embedding dimension D and the
embedding delay τ . The former parameter plays an impor-
tant role in the evaluation of the appropriate probability
distribution, since D determines the number of accessible
states, given by D!. Moreover, it has been established that
the length N of the time series must satisfy the condition
N � D! in order to achieve a reliable statistics and proper
distinction between stochastic and deterministic dynam-
ics [3]. With respect to the selection of the parameters,
Bandt and Pompe suggest in their cornerstone paper [1]
to work with 3 ≤ D ≤ 7 with a time lag τ = 1. Never-
theless, other values of τ might provide additional infor-
mation. Soriano et al. [11,12] and Zunino et al. [13,14],
recently showed that when this parameter is relevant, it
is strongly correlated with the intrinsic time scales of the
system under analysis.

New insight into the characterization of theoretical and
observational time series (TS) has been developed via the
BP approach in a sensible area, namely, the distinction be-
tween chaotic-deterministic and stochastic dynamics. Our
present endeavor revolves around this issue. In such a vein,

– Amigó and coworkers considered the emergence of the
so-called “forbidden patterns” [5,6], which represents
a kind of “particular” feature of some elements of the
BP-PDF associated to the TS under study.

– Bandt and Pompe [1] on the one hand, as well as
Rosso et al. [3] on the other one, proposed to em-
ploy BP-PDFs in order to estimate information theory

quantifiers. Examples are the permutation entropy
(normalized Shannon one), intensive statistical com-
plexity, and the entropy-complexity plane.

The present work links these two items to show, for fi-
nite time series, that even when the presence of forbidden
patterns is a characteristic of chaotic dynamics, a min-
imum pattern-length, Dmin, is necessary in order to de-
tect their presence. This is a fact that has not been pre-
viously pointed out in the literature. Ignoring it could
be the source of erroneous interpretations. We also show
that the number of forbidden patterns, if exist, exhibits,
versus the pattern-length D, an exponential behavior, as
opposed to the super-exponential behavior described by
Amigó and coworkers, valid only for the case D → ∞ [5,6].
Per contra, in the case of quantifiers evaluated making
use of the BP-PDF, a specific behavior emerges in the
case of chaotic dynamics that provides a more “robust”
distinction between deterministic and stochastic dynam-
ics [3,15,16].

The present paper is organized as follows: the method-
ological framework used in this study is delineated in Sec-
tion 2 (forbidden and missing ordinal patterns) and in
Section 3 (entropy, intensive statistical complexity and
entropy-complexity plane). Application to the character-
ization of chaotic maps and discussion of the pertinent
results is the subject of Section 4. Finally, some conclu-
sions are given in Section 5.

2 Forbidden and missing ordinal patterns

As recently shown by Amigó et al. [5,6,17,18], in the case
of deterministic chaotic one-dimensional maps not all the
possible ordinal patterns can be effectively materialized
into orbits, which in a sense makes these patterns “forbid-
den”. In general, one should expect that high-dimensional
chaotic dynamical systems (maps) will exhibit forbidden
patterns. Indeed, the existence of these forbidden ordinal
patterns becomes a persistent fact that can be regarded
as a “new” dynamical property. Thus, for a fixed pattern-
length (embedding dimension D) the number of forbidden
patterns of a TS (unobserved patterns) is independent of
the series’ length N . Remark that this independence is not
shared by other properties of the series, such as proximity
and correlation, which die out with time [5,6].

Stochastic processes could also display forbidden pat-
terns [15]. However, in the case of either uncorrelated
(white noise) or correlated stochastic processes (noise with
power-law spectrum f−k with k > 0, fractional Brownian
motion and fractional Gaussian noise) it can be numeri-
cally ascertained that no forbidden patterns emerge. For
TS generated by unconstrained stochastic processes (un-
correlated processes) every ordinal pattern has the same
probability of appearance [5,6,17,18]. Indeed, if the data
set is long enough, all ordinal patterns will eventually ap-
pear. In this case, as the number of TS-observations in-
creases, the associated PDF becomes uniform, and the
number of observed patterns will depend only on the TS-
length N .
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For correlated stochastic processes the probability of
observing a specific individual pattern depends not only
on the TS’ length N but also on the correlation struc-
ture [19]. The existence of a non-observed ordinal pattern
does not qualify it as “forbidden”, only as “missing”, and
this could be due to the TS-finite length. A similar ob-
servation also holds for the case of real data that always
possess a stochastic component due to the omnipresence
of dynamical noise [20–22]. Thus, the existence of “miss-
ing ordinal patterns” could be either related to stochastic
processes (correlated or uncorrelated) or to determinis-
tic noisy processes (always the case for observational time
series).

3 Some remarks on Shannon entropy,
intensive statistical complexity,
and the entropy-complexity plane

It is widely known that an entropic measure does not
quantify the degree of structure or patterns present in a
process [23]. Moreover, it was recently shown that mea-
sures of statistical or structural complexity are necessary
for a better understanding of chaotic time series because
they are able capture their organizational properties [24].
This specific kind of information is not revealed by ran-
domness’ measures. Perfect order (like that of a periodic
sequence) and maximal randomness (fair coin toss) pos-
sess no complex structure and exhibit zero statistical com-
plexity. For states between these extremes a wide range of
possible degrees of structure exists, that should be quan-
tified by an appropriate statistical complexity measure.

Rosso and coworkers introduced an effective statistical
complexity measure (SCM) that is able to (i) detect essen-
tial details of the dynamics and (ii) differentiate between
chaos and (different degrees of) periodicity [25]. This spe-
cific SCM provides important additional information re-
garding the peculiarities of the underlying PDF, that is
not necessarily detected by the entropy.

The intensive SCM for a given PDF P = {pi ≤ 1, i =
1, . . . , M} (

PM
i=1 pi = 1) is defined, following the intuitive

notion advanced by López-Ruiz et al. [26], via the product

CJS [P ] = QJ [P, Pe]HS [P ] (1)

of (i) the normalized Shannon entropy [27]

HS [P ] = S[P ]/Smax, (2)

with Smax = S[Pe] = ln M , (0 ≤ HS ≤ 1) and Pe =
{1/M, . . . , 1/M} (the uniform distribution) and (ii) the
so-called disequilibrium QJ . This quantifier is defined in
terms of the extensive (in the thermodynamical sense)
Jensen-Shannon divergence J [P, Pe] that links two PDFs.
We have

QJ [P, Pe] = Q0J [P, Pe], (3)

with

J [P, Pe] = S [(P + Pe)/2] − S[P ]/2 − S[Pe]/2. (4)

Q0 is a normalization constant (0 ≤ QJ ≤ 1), equal to the
inverse of the maximum possible value of J [P, Pe]. This
value is obtained when one of the values of P , say pm, is
equal to one and the remaining pi values are equal to zero.

The Jensen-Shannon divergence, that quantifies the
difference between two (or more) probability distributions,
is especially useful to compare the symbol-composition of
different sequences [28]. The SCM constructed in this way
has the intensive property found in many thermodynamic
quantities [25]. We stress the fact that the statistical com-
plexity defined above is the product of two normalized
entropies (the Shannon entropy and Jensen-Shannon di-
vergence), but it is a nontrivial function of the entropy
because it depends on two different probabilities distri-
butions, i.e., the one corresponding to the state of the
system, P , and the uniform distribution, Pe, taken as ref-
erence state.

In statistical mechanics one is often interested in iso-
lated systems characterized by an initial, arbitrary, and
discrete probability distribution. Evolution towards equi-
librium is to be described, as the overriding goal. At equi-
librium, we can think, without loss of generality, that this
state is given by the uniform distribution Pe. The tempo-
ral evolution of the intensive SCM can be analyzed using
a diagram of CJS versus time t. However, it is well known
that the second law of thermodynamics states that for
isolated systems entropy grows monotonically with time
(dHS/dt ≥ 0) [29]. This implies that HS can be regarded
as an arrow of time, so that an equivalent way to study
the temporal evolution of the intensive SCM is through
the analysis of CJS versus HS . In this way, the normalized
entropy-axis substitutes for the time-axis. Furthermore, it
has been shown that for a given value of HS , the range
of possible statistical complexity values varies between a
minimum Cmin and a maximum Cmax [30], restricting the
possible values of the intensive SCM in this plane. There-
fore, the evaluation of the complexity provides additional
insight into the details of the system’s probability distribu-
tion, which is not discriminated by randomness measures
like the entropy [3,24]. Complexity can also help to un-
cover information related to the correlational structures
related to the components of the physical process under
study [7,8]. The entropy-complexity diagram (or plane),
HS × CJS , has been used to study changes in the dynam-
ics of a system originated by modifications of some char-
acteristic parameters (see, for instance, Refs. [30–34] and
references therein).

4 Characterization of chaotic maps

In the present work, we consider 27 chaotic maps described
by Sprott in the appendix of his book [35]. These chaotic
maps are grouped as:
a) noninvertible maps: (1) logistic map [36]; (2) sine

map [37]; (3) tent map [38]; (4) linear congruential
generator [39]; (5) cubic map [40]; (6) Ricker’s popula-
tion model [41]; (7) Gauss map [42]; (8) Cusp map [43];
(9) Pinchers map [44]; (10) Spence map [45]; (11) sine-
circle map [46].
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b) dissipative maps: (12) Hénon map [47]; (13) Lozi
map [48]; (14) delayed logistic map [49]; (15)
Tinkerbell map [50]; (16) Burgers’ map [51]; (17)
Holmes cubic map [52]; (18) dissipative standard
map [53]; (19) Ikeda map [54]; (20) Sinai map [55];
(21) discrete predator-prey map [56].

c) conservative maps: (22) Chirikov standard map [57];
(23) Hénon area-preserving quadratic map [58]; (24)
Arnold’s cat map [59]; (25) Gingerbreadman map [60];
(26) chaotic web map [61]; (27) Lorenz three-
dimensional chaotic map [62].

Even when the present list of chaotic maps is not exhaus-
tive, it could be taken as representative of common chaotic
systems [35].

For all these chaotic maps we take the same initial con-
ditions and the parameter-values detailed by Sprott. The
corresponding initial values are given in the basin of at-
traction or near the attractor for the dissipative systems,
or in the chaotic sea for the conservative systems [35]. For
each map’s TS-generation we discarded the first 105 iter-
ations and, after that, N iterations-data were generated.
The BP-PDF was evaluated for each time series of N data
with pattern-lengths 3 ≤ D ≤ 8 with ΔD = 1 and time
lag τ = 1.

For multi-dimensional maps each of the pertinent coor-
dinates is not independent by itself and the associated TS
(one-dimensional TS) carries information about the com-
plete dynamical system. In fact, one can use any of these
associated TS for evaluating the dynamical system’s in-
variants (like correlation dimension, Lyapunov exponents,
etc.), by appealing to a time lag reconstruction [35]. In
the present work, we analyze TS generated by each one
of chaotic map coordinates, when the corresponding map
is bi- or multi-dimensional. Due to the fact that the BP-
PDF is not a dynamical invariant (neither are other quan-
tifiers derived by information theory) some variation could
be expected in the quantifiers’ values computed with this
PDF, whenever one or other of the TS generated by these
multidimensional coordinate systems.

Chaotic TS display forbidden ordinal patterns as men-
tioned earlier [5]. However, failing to observe a given spe-
cific ordinal pattern in a TS does not necessarily imply
that this pattern is forbidden. Its absence qualifies the
pattern just as a missing one. This could happen because
the pertinent TS is not long enough. In practice, we can
say that the observation or not of an ordinal pattern will
depend strongly on the TS-length N . Thus, if the number
of non-observed ordinal patterns is constant for increasing
values of the time series N , one can speak of “true” for-
bidden ordinal patterns. In the following, for our analysis
of forbidden ordinal patterns, we will consider a TS length
of N = 10n data, with 3 ≤ n ≤ 7 and Δn = 1.

We study the forbidden/missing ordinal patterns, in
the 27 chaotic TS under analysis, as a function of (i) the
TS-length N and (ii) the embedding dimension (pattern-
length) D. A rather interesting result ensues: depending
on the chaotic map analyzed, a minimum pattern-length
(denoted by Dmin) is found for which the existence of for-
bidden ordinal patterns will indeed be detected.

The corresponding chaotic maps and the associated
values of Dmin, for the maximum TS length N = 107

data, are:

– Dmin = 3: logistic map; sine map; tent map; Ricker’s
population map; Cusp map; Pinchers map; Spence
map; Hénon map; Lozi map.

– Dmin = 4: sine-circle map; delay logistic map;
Tinkerbell map; Burgers’ map; discrete predator-prey
map; Chirikov standard map; Hénon area-preserving
quadratic map; Gingerbreadman map; chaotic web
map.

– Dmin = 5: cubic map; Holmes cubic map; Ikeda map;
Lorenz three-dimensional chaotic map.

– Dmin = 6: Sinai map; Arnold’s map.
– Dmin = 7: linear congruential generator.
– Dmin = 8: Gauss map; dissipative standard map (X).

For dissipative standard maps (Y), no forbidden/missing
patterns are observed for all (i) TS lengths considered
(n ≤ 7) and (ii) embedding dimensions D, so that we
can assume that Dmin > 8.

Amigó and coworkers remark that “true forbidden pat-
terns in deterministic sequences (time series) have two ba-
sic properties: (i) robustness against observational noise
and (ii) super-exponential growth with the length” [18].
The last property is proved by the authors (i) in the case
D → ∞ and (ii) also assuming enough TS data, N → ∞.
We have analyzed the behavior of the estimated number
of forbidden patterns (denoted by N∗) as a function of
the patterns-length D in order to establish which is the
related behavior in a more practical context (TS with fi-
nite number N of data and pattern-length D not higher
than 8).

We propose to fit ln N∗ by a linear (exponential
growth) or by a nonlinear dependence (super exponen-
tial growth) with D [63]. For the corresponding analysis
we consider Dmin ≤ D ≤ 8, ΔD = 1, N = 107 data (ini-
tial conditions given by Sprott [35]). We have excluded
from this analysis those chaotic maps for which Dmin ≥ 8
in order to have at least two points in the fit range. More
precisely, the Gauss and the dissipative standard maps are
not considered.

In Figure 1, the values corresponding to lnN∗ vs. D
are displayed for the three kinds of maps mentioned above:
noninvertible, dissipative and conservative. A linear fit
ln N∗ = α0 + α1D is proposed. From the results obtained
for each one of these 25 maps: parameter values α0,1 (plus
associated standard errors), fit value R and, usual analy-
sis of residual, no structural details are revealed; leading
one to conclude that the proposed linear approach pro-
vides a very good description. Summarizing over these
chaotic maps, for the parameter α1 we obtain (average
values and standard deviation) hα1i = 2.31±0.53 and the
goodness coefficient is hRi = 0.99496 ± 0.01082. Conse-
quently, we gather that in a practical context (N finite
and D ≤ 8) the behavior of the observed number of for-
bidden/missing patterns N∗ grows exponentially with the
pattern-length D.

Figure 2 displays, for all the 27 chaotic maps here con-
sidered, the entropy-complexity plane HS × CJS location.
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Fig. 1. Dependence of the number of forbidden patterns ln N∗ as a function of the pattern-length D for the three kinds of maps:
(a) noninvertible, (b) dissipative and, (c) conservative. Time series with N = 107 data (initial conditions given by Sprott [35])
were considered. The pattern-lengths considered were Dmin ≤ D ≤ 8 and only chaotic maps with Dmin ≤ 7 in order to have
at least two points in the fit range. The numbers between parentheses represent the corresponding chaotic map enumerated at
the beginning of Section 4. The letters “X” and “Y” represent the TS coordinates maps for which their ln N∗-values are clearly
distinguishable.

The BP-PDF is evaluated for D = 6, τ = 1, and a
TS-length N = 107 data (for initial conditions given by
Sprott [35]). In this graph, the given numbers represent
the chaotic maps enumerated at the beginning of this
section. The letters “X” and “Y” represent the TS co-
ordinates maps, for which their planar representations are
displayed. We also present in this plot the planar local-
ization for a stochastic process: noises with f−k power
spectrum [64] (0 ≤ k ≤ 3.5, with Δk = 0.25). The cor-
responding values for these noises represent the average
value for ten realizations (N = 106 data), generated with
different seeds.

As a general behavior, all points corresponding to the
27 chaotic maps are found in close vicinity to the max-
imum complexity curve Cmax. In particular, for the case
of chaotic maps with 3 ≤ Dmin ≤ 5, they are localized
at a region of intermediate normalized Shannon entropy
HS and high intensive statistical complexity CJS (close
to the curve of maximum complexity), in agreement with
previously published results (see Fig. 1 in Ref. [3]). In-
terestingly enough, localization in the entropy-complexity
plane for chaotic maps with Dmin ≥ 6 tends to follow a
similar behavior, that is, high values of complexity but
now with HS ≥ 0.9.
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Fig. 2. Localization in the entropy-complexity plane of the
27 chaotic maps considered in the present work. The Bandt-
Pompe PDF was evaluated considering D = 6 (pattern-
length), τ = 1 (time lag) and time series length N = 107

data (initial conditions given by Sprott [35]). The inside num-
bers represent the corresponding chaotic map enumerated at
the beginning of Section 4. The letters “X” and “Y” repre-
sent the TS coordinates maps for which their planar repre-
sentation is clearly distinguishable. The open circle-dash line
represents the planar localization (average values over ten real-
izations with different seeds) for the stochastic process: noises
with f−k power spectrum. The continuous lines represent the
curves of maximum and minimum statistical complexity, Cmax

and Cmin, respectively, as functions of the normalized Shannon
entropy [30].

For stochastic process noises with f−k power spec-
trum, the localization in the plane HS × CJS exhibits a
decreasing entropic behavior ranging from HS ∼ 1 for
k = 0 to HS ∼ 0.15 for k = 3.5 (see Fig. 2). Note
that, for the case of k = 0, uncorrelated non-Gaussian
noise, it location closely approaches the extreme value
(HS , CJS) = (1, 0). For k > 0, correlated non-Gaussian
noises (colored noises) display lower entropic values. The
associated statistical complexity values, that belong to the
interval 0 ≤ CJS ≤ 0.35, range in-between the extreme
complexity values Cmin and Cmax (see Fig. 2). Similar pla-
nar behavior is observed for fractional Brownian motion
(fBm) and fractional Gaussian noise (fGn) stochastic pro-
cesses (see Fig. 1 in Ref. [3]).

Summing up, Figure 2 illustrates the clear difference
in planar location between a chaotic maps (deterministic
dynamics) and stochastic processes. Moreover, a similar
behavior is obtained when the analysis is performed for
other D-values.

In the following, and without loss of generality, we
give a more detailed results-discussion for the following
six chaotic maps.

1. Logistic map [36]:

Xn+1 = A Xn(1 − Xn) (5)

Parameter value: A = 4; initial condition: X0 = 0.1;
Lyapunov exponent: λ = ln 2 = 0.693147181 . . .

2. Linear congruential generator [39]:

Xn+1 = A Xn + B (Mod C) (6)

Parameter values: A = 7141, B = 54773, C = 259200;
initial condition: X0 = 0; Lyapunov exponent:
λ = ln |A| = 8.873608101 . . .

3. Gauss map [42]:

Xn+1 = 1/Xn (Mod 1) (7)

Initial condition: X0 = 0.1; Lyapunov exponent:
λ ' 2.373445.

4. Dissipative standard map [53]:
�

Xn+1 = Xn + Yn+1 (Mod 2π)
Yn+1 = b Yn + k sin(Xn) (Mod 2π) (8)

Parameter values: b = 0.1, k = 8.8; initial condi-
tions: X0 = 0.1, Y0 = 0.1; Lyapunov exponents:
λ1 ' 1.46995, λ2 ' −3.77254.

5. Sinai map [55]:
�

Xn+1 = Xn + Yn + δ cos(2πYn) (Mod 1)
Yn+1 = Xn + 2 Yn (Mod 1) (9)

Parameter value: δ = 0.1; initial conditions: X0 = 0.5,
Y0 = 0.5; Lyapunov exponents: λ1 ' 0.95946,
λ2 ' −1.07714.

6. Arnold’s cat map [59]:
�

Xn+1 = Xn + Yn (Mod 1)
Yn+1 = Xn + k Yn (Mod 1) (10)

Parameter value: k = 2; initial conditions: X0 = 0,
Y0 = 1/

√
2; Lyapunov exponents: λ1,2 = ± ln[12 (3 +√

5)] = ±0.96242365 . . .

The first one is representative of maps with low Dmin while
for the remaining maps, a high Dmin-value is required.
Note also that the first three are one-dimensional maps
while the next three maps are bi-dimensional ones. Fig-
ure 3 displays Xn+1 versus Xn for the one-dimensional
maps and Yn versus Xn for the bi-dimensional ones. Note
that a clearly outlined structure is observed for the case of
the logistic, Gauss, and Dissipative standard maps. From
these graphs (Fig. 3), one can observe also that the lin-
ear congruential generator, the Arnold’s cat map, and the
Sinai map, cover the bi-dimensional space in an almost ho-
mogeneous way in the case of the first two maps, and with
some degree of structure insinuating itself in the last one.

The average number (standard deviation) of observed
forbidden/missing ordinal patterns as a function of (i)
the time series length N = 10n data (3 ≤ n ≤ 7,
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Fig. 3. Graphical representation for the 6 chaotic maps (initial conditions given by Sprott [35]) analyzed with more detail in
the text. The graphs display Xn+1 versus Xn for the one-dimensional maps: logistic, linear congruential generator, and Gauss,
on the one hand, and Yn versus Xn for the bi-dimensional maps: dissipative standard, Sinai, and Arnold’s cat, on the other
hand.

Δn = 1); (ii) the pattern-length (embedding dimension)
D (3 ≤ D ≤ 8, ΔD = 1), time lag τ = 1; (for ten differ-
ent initial conditions) are listed in Table 1 for the above
six chaotic maps. In the case of bi-dimensional chaotic
maps, the values for each one of the map’s coordinates
are detailed.

As expected, the results displayed in Table 1 do not de-
pend (zero standard deviation) on the chaotic map’s initial
conditions, if the true number of forbidden patterns can
be detected for the time series’ length considered. If such
conditions are not fulfilled for the maximum TS-lengths
considered, we also notice in Table 1 an overestimation of
the number of forbidden ordinal patterns (some of them
are missing patterns). However, the corresponding stan-
dard error is quite low compared with the mean value,
allowing us to take the numerical mean value hN∗i as rep-
resentative of the number of forbidden ordinal patterns
characterizing the chaotic map.

In the case of the logistic map, inspection of Table 1
makes it clear that forbidden ordinal patterns are observed

for all the pattern-lengths here considered. Thus, for this
map one has Dmin = 3. Note also that values of forbidden
ordinal patterns N∗ are stable (constant, with zero stan-
dard deviation) for most of the different time series lengths
considered by us. For the conjunction X0 = 0.1, D = 7 and
N = 103, we detect N∗ = 4866 forbidden/missing pat-
terns (some of these do not appear due to the short length
of the pertinent time series), which reduces to N∗ = 4862
forbidden patterns with zero standard deviation for TS-
lengths with N = 104 up to 107 data. In this last case,
such is the number of real forbidden patterns. Note also
the exponential growth of forbidden ordinal patterns for
increasing values of the pattern-length D (see Fig. 1a).
A similar situation is also observed for the rest of our
chaotic maps.

Table 1 allows one to conclude that the number of
missing ordinal patterns tends to vanish as the time se-
ries’ length grows, if the pattern-length considered is
D < Dmin. We only start to find a non-zero number
of forbidden/missing ordinal patterns when considering
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Table 1. Mean value of number of forbidden/missing ordinal patterns (standard deviation) for 10 different initial conditions, as
a function of the chaotic time series length N for pattern-length D corresponding to the six chaotic maps analyzed with more
detail in the text.

Map Forbidden/missing patterns

(mean value and standard deviation)

Lyapunov 10n data D = 3 D = 4 D = 5 D = 6 D = 7 D = 8

Logistic map λ = ln 2 3 1 12 89 645.10 4869.90 39981.80

= 0.693147 . . . (0) (0) (0) (0.32) (2.42) (8.48)

4 1 12 89 645 4862 39906.80

(0) (0) (0) (0) (0) (0.92)

5 1 12 89 645 4862 39906

(0) (0) (0) (0) (0) (0)

6 1 12 89 645 4862 39906

(0) (0) (0) (0) (0) (0)

7 1 12 89 645 4862 39906

(0) (0) (0) (0) (0) (0)

Lineal congruential λ = ln |A| 3 0 0 0 167.10 4144.30 39344.20

generator = 8.873608 . . . (0) (0) (0) (9.46) (11.07) (3.68)

4 0 0 0 0 1182 32518.20

(0) (0) (0) (0) (13.71) (44.39)

5 0 0 0 0 341.80 23448.40

(0) (0) (0) (0) (3.12) (38.91)

6 0 0 0 0 279 21895

(0) (0) (0) (0) (0) (0)

7 0 0 0 0 279 21895

(0) (0) (0) (0) (0) (0)

Gauss map λ ' 2.373445 3 0 0 4.80 330 4323.10 39420

(0) (0) (1.69) (19.75) (26.30) (16.63)

4 0 0 0 31.50 2305.60 34421.60

(0) (0) (0) (6.65) (41.01) (85.32)

5 0 0 0 0 340.70 20292

(0) (0) (0) (0) (20.59) (98.31)

6 0 0 0 0 1 4779.70

(0) (0) (0) (0) (0.82) (41.51)

7 0 0 0 0 0 121

(0) (0) (0) (0) (0) (7.51)

Dissipative standard λ1 ' 1.46995 3 0 0 0.80 257.80 4252.80 39398.90

map (X) λ2 ' −3.77254 (0) (0) (0.92) (16.40) (23.05) (16.07)

4 0 0 0 4.60 1578.20 33464.20

(0) (0) (0) (2.80) (36.66) (83.29)

5 0 0 0 0 35.50 13336.50

(0) (0) (0) (0) (5.60) (166.79)

6 0 0 0 0 0 871.50

(0) (0) (0) (0) (0) (27.73)

7 0 0 0 0 0 28.90

(0) (0) (0) (0) (0) (4.07)

Dissipative standard λ1 ' 1.46995 3 0 0 0.10 223.90 4201.40 39364.80

map (Y) λ2 ' −3.77254 (0) (0) (0.32) (12.81) (10.20) (8.10)

4 0 0 0 0 1130.90 32550.70

(0) (0) (0) (0) (52.30) (108.68)

5 0 0 0 0 1.20 7837.20

(0) (0) (0) (0) (1.23) (86.93)

6 0 0 0 0 0 3

(0) (0) (0) (0) (0) (1.56)

7 0 0 0 0 0 0

(0) (0) (0) (0) (0) (0)
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Table 1. continued.

Map Forbidden/missing patterns

(mean value and standard deviation)

Lyapunov 10n data D = 3 D = 4 D = 5 D = 6 D = 7 D = 8

Sinai map (X) λ1 ' 0.95946 3 0 0 6 316.60 4284.90 39399.50

λ2 ' −1.07714 (0) (0) (1.63) (13.76) (22.54) (15.51)

4 0 0 1.10 92 2483.30 34336.30

(0) (0) (0.32) (5.03) (29.86) (66.21)

5 0 0 0.70 48.10 1499.10 25928.70

(0) (0) (0.48) (2.42) (12.51) (34.28)

6 0 0 0 37.30 1228.20 21739.80

(0) (0) (0) (1.06) (6.84) (18.95)

7 0 0 0 34 1149.80 20360.40

(0) (0) (0) (0) (4.44) (9.02)

Sinai map (Y) λ1 ' 0.95946 3 0 0 0.30 246.80 4223.50 39377.30

λ2 ' −1.07714 (0) (0) (0.48) (11.59) (16.83) (11.20)

4 0 0 0 22.60 2031 33856.60

(0) (0) (0) (3.86) (36.11) (59.31)

5 0 0 0 4.30 894.90 23529.50

(0) (0) (0) (1.25) (10.46) (42.49)

6 0 0 0 1.10 653.70 18621

(0) (0) (0) (0.32) (3.89) (17.51)

7 0 0 0 1 585.10 17107.80

(0) (0) (0) (0) (2.58) (22.71)

Arnold’s map (X) λ1 = 0.962423 . . . 3 0 0 1.80 276.90 4254.50 39384

λ2 = −0.962423 . . . (0) (0) (1.78) (8.16) (12.53) (9.19)

4 0 0 0 57.20 2330.30 34149.70

(0) (0) (0) (2.66) (25.50) (42.62)

5 0 0 0 32.10 1434.80 25726.50

(0) (0) (0) (0.32) (9.87) (41.79)

6 0 0 0 32 1287.60 22713.80

(0) (0) (0) (0) (0.97) (16.57)

7 0 0 0 32 1284 22149.90

(0) (0) (0) (0) (0) (3.54)

Arnold’s map (Y) λ1 = 0.962423 . . . 3 0 0 1.80 280.90 4256.30 39389.60

λ2 = −0.962423 . . . (0) (0) (1.14) (10.27) (18.40) (14.47)

4 0 0 0 57.20 2329.40 34153

(0) (0) (0) (4.42) (18.07) (49.42)

5 0 0 0 32.20 1430.20 25684

(0) (0) (0) (0.42) (7.89) (33.20)

6 0 0 0 32 1287.30 22711

(0) (0) (0) (0) (1.89) (12.50)

7 0 0 0 32 1284 22152

(0) (0) (0) (0) (0) (3.86)

pattern-lengths D ≥ Dmin. We also observe (see Tab. 1)
that the total number of forbidden/missing patterns tends
to stabilize itself as the length of the series increases, sug-
gesting that this number is indeed the genuine, actual one.
In the case of the dissipative standard map (Y), zero miss-
ing patterns are observed for pattern-length D = 8 to-
gether with N = 107 data, indicating that for this chaotic
map the minimum pattern-length Dmin > 8.

Continuing with the six chaotic maps’ TS with N =
107 data mentioned above, Figure 4 displays the results for
BP-PDFs corresponding to D = 6 and τ = 1. The number

of observed forbidden patterns is also given (initial condi-
tions given by Sprott [35]) inside each figure. The BP-PDF
for the logistic map and the one corresponding to the lin-
ear congruential generator, represent the extreme cases of
PDFs far away from and close to, respectively, the uniform
one. These BP-PDFs constitute invariant PDFs for the
corresponding maps. Pay attention now to the sample x
of N observations. By the law of large numbers, the sam-
ple quantity Ψ(x) converges in probability to its distri-
butional counterpart as the sample size N increases (see,
for instance, Refs. [65,66]). Accordingly, quantifiers like
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Fig. 4. The Bandt-Pompe PDF for the chaotic maps considered in detail the present work, for the case D = 6 (pattern length)
and τ = 1 (time lag) with a time series containing N = 107 data. The number of forbidden/missing patterns (FP) is also
reported inside each figure. The letters “X” and “Y” represent the TS coordinates maps.

entropies and complexities (divergences) will be as accu-
rate indicators as one wishes, whenever an adequate sam-
ple’s size is provided. Thus, we are able to (i) use our
BP-PDF for evaluating specific information theory based
quantifiers (like a normalized Shannon entropy and an in-
tensive statistical complexity) and (ii) regard these tools
as global quantifiers of the chaotic dynamics under study.

See in Figure 5, for the six chaotic maps mentioned
above (initial conditions given by Sprott [35]), the esti-
mated values for the normalized Shannon entropy HS and
intensive statistical complexity CJS , as functions of the
TS-length n (N = 10n, 3 ≤ n ≤ 8, Δn = 1). The corre-
sponding map quantifiers are evaluated via the BP-PDF,
with D = 6 and τ = 1. Note how the pertinent values tend
to stabilize themselves as the TS-length increases, reach-
ing in all the cases, in a rather fast fashion, a plateau. The
invariant expected behavior of these BP-PDFs is clearly
observed in this graph.

The location in the entropy-complexity plane of
chaotic maps with Dmin ≥ 6 tends to follow a behav-
ior similar to the ones discussed earlier (maps with 3 ≤
Dmin ≤ 5), that is, high values of complexity close to the
curve of maximum complexity but now with HS ≥ 0.9, as
can be appreciated in Figure 6. Planar locations for noises
with f−k power spectrum are also displayed. One can see
that the chaotic maps exhibit planar localization that lie
on top of those belonging to stochastic processes, except
for the dissipative standard map, which lies a little below.
The location in the entropy-complexity plane of the linear
congruential generator constitutes the extreme case (see
Fig. 6). The planar position of this chaotic map, when
the triplet D = 6, τ = 1, N = 107 data is used, is the
point (0.997871, 0.005101), very close to the curve Cmax

in HS × CJS . For comparison’s sake we indicate the pla-
nar position attained by both (i) pure non-Gaussian and
(ii) Gaussian white noises. These locations are given by
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Fig. 5. Variation of the information theory quantifiers, normalized Shannon entropy (H) and intensive statistical complexity (C)
as a function of the time series length N = 10n (3 ≤ n ≤ 7), evaluated with PDF-Bandt and Pompe, with D = 6 and τ = 1, for
the six chaotic maps analyzed with more detail in the text. The letters “X” and “Y” represent the TS coordinates maps.

the points (0.999943, 0.000134) and (0.999945, 0.000130),
respectively. We note a clear difference between the pla-
nar localization of either a chaotic map or a stochastic
process.

5 Conclusions

We reviewed in the present work the characterization of
some chaotic maps’ TS from the viewpoint of the permu-
tation Bandt-Pompe PDFs. We considered “local” char-
acteristics of the components of this PDF, the so-called
forbidden/missing ordinal patterns, as well as quantifiers
derived from information theory (normalized Shannon en-
tropy, intensive statistical complexity, entropy-complexity
plane) that make use of all the components of the PDF,
and are accordingly called “global”.

If forbidden ordinal patterns are observed in a finite
data time series, they exhibit an exponential growth for
finite pattern-lengths (embedding dimension) D. This be-
havior could be regarded as the hallmark of determinism

in a time series. We have shown that even when the pres-
ence of forbidden patterns can be associated to a chaotic
dynamics, a minimum pattern-length, Dmin must be con-
sidered in order to observe this phenomenon. This is a fact
that has not been pointed out before. In fact, we could
not find any reference to Dmin in the published literature.
Moreover, we infer from it that, using the Band-Pompe
methodology, the existence of this quantity was not con-
sidered in classifying time series as either deterministic or
stochastic. Note that ignoring the existence (discovered
by us here) of this minimal pattern-length could lead to
wrong interpretations.

Per contra, in the case of quantifiers evaluated making
use of the whole BP-PDF, for fixed values of the pattern-
length (embedding dimension) D and time lag τ , a specific
behavior is observed for the case of chaotic dynamics. Lo-
calization in the entropy-complexity plane HS × CJS , for
the case of chaotic maps, closely approaches the limiting
curve of maximum statistical complexity Cmax. Note that
a similar behavior is still observed when chaotic maps’
TS are contaminated with small or moderate amount of
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Fig. 6. Localization in the entropy-complexity plane of the
6 chaotic maps (initial conditions given by Sprott [35]) ana-
lyzed with more detail in the text. The Bandt-Pompe PDF was
evaluated considering D = 6 (pattern-length), τ = 1 (time lag)
and TS-length N = 107 data. The inside numbers represent
the corresponding chaotic map enumerated at the beginning
of Section 4. The letters “X” and “Y” represent the TS co-
ordinates maps for which their planar representation is clearly
distinguishable. The open circle-dash line represents the planar
localization (average values over ten realizations with different
seeds) for the stochastic process: noises with f−k power spec-
trum. The continuous lines represent the curves of maximum
and minimum statistical complexity, Cmax and Cmin, respec-
tively, as functions of the normalized Shannon entropy [30].

additive uncorrelated or correlated noise [15,16]. Based
on such behavior, we conclude that a more “robust” dis-
tinction between deterministic and stochastic dynamics is
given via the present TS-treatment, that takes into ac-
count the whole of the permutation Bandt-Pompe PDF
(global quantifier), and not just part of it.

O.A. Rosso gratefully acknowledges support from CNPq, Fel-
lowship, Brazil. F. Olivares is supported by a Fellowship of the
Chilean Government, CONICYT. This work was partially sup-
ported by the projects PIP1177 and PIP112-200801-01420 of
CONICET (Argentina), and the projects FIS2008-00781/FIS
(MICINN)-FEDER (EU) (Spain, EU).

References

1. C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)
2. M. Zanin, L. Zunino, O.A. Rosso, D. Papo, Entropy 14,

1553 (2012)
3. O.A. Rosso, H.A. Larrondo, M.T. Mart́ın, A. Plastino,

M.A. Fuentes, Phys. Rev. Lett. 99, 154102 (2007)
4. M. Zanin, Chaos 18, 013119 (2008)
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O.A. Rosso, Physica A 390, 876 (2011)
34. L. Zunino, A. Fernández Bariviera, M.B. Guercio, L.B.

Martinez, O.A. Rosso, Physica A 391, 4342 (2012)
35. J.C. Sprott, Chaos and time series analysis (Oxford

University Press, New York, 2003)
36. R. May, Nature 261, 45 (1976)
37. S.H. Strogatz, Nonlinear dymanics and chaos with appli-

cations to physics, biology, chemistry, and engineering
(Addison-Wesley-Longman, Reading, 1994)

38. R.L. Devaney, An introduction to chaotic dynamical sys-
tems, 2nd edn. (Addison-Wesley, Redwood City, 1989)

39. D.E. Knuth, Sorting and searching, Vol. 3 of The art
of computer programming, 3rd edn. (Addison-Wesley-
Longman, Reading, 1997)

http://www.epj.org


Eur. Phys. J. B (2013) 86: 116 Page 13 of 13

40. W. Zeng, M. Ding, J. Li, Chinese Phys. Lett. 2, 293
(1985)

41. W. Ricker, J. Fish. Res. Board Canada 11, 559 (1954)
42. M.A. van Wyk, W. Steeb, Chaos in electronics (Kluwer,

Dordrecht, 1997)
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