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Summary. — In this paper we present, through a familiar example (-
function potential in one dimension), the analytic properties of Jost functions
associated with fourth-order equations. It is shown how to construct the Jost
functions and the two discontinuity matrices associated with the line of
singularities. The latter divide the complex k-plane in eight regions of
analiticity. One of these matrices is related to the asymptotic behaviour of
the scattering state. The other is not. Both are necessary to solve the inverse
problem. Besides the usual poles related to bound states there are also other
poles associated with total reflexion.

PACS. 11.10. — Field theory.

1. - Introduction.

The possibility of using higher-order equations in particle physics theory has
been considered, time and again, but the difficulties found in the process of
interpretation are almost unsurmountable and such equations are, therefore,
discarded in favour of the second-order ones.

(*) On leave from CBPF.
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152 C. G. BOLLINI and J. J. GIAMBIAGI

The reasons are indeed very good. Among them we find that the energy is in
general not positive definite. The usual causality relations are not satisfied. The
«S matrix» lacks unitarity. The Hilbert space of quantum states has indefinite
metric()... .

However, sticking to the second-order wave equations does not solve all
problems. Notably, gravity theory refuses to be consistently quantized.
Furthermore, the consideration of supersymmetry in a space-time with a
number of dimensions greater than four (the «Kaluza-Klein» programme) can
lead to higher-order wave equations (**), so that the dimensionality of space could
be related to the order of the equations of motion.

In our opinion, such a relation and the possibility of reducing the degree of
divergence through the use of higher-order equations justify the efforts
expended in trying to understand and clarify the physical interpretation of the
theory.

In(*) we have stated in a brief form the canonical methods necessary to
construct the field tensors and the Heisenberg quantization of the fields obeying
the higher-order equations. They are equivalent to the results one obtains by
using a «Schwinger action integral» method (°). Nevertheless, nothing is said
there about the equations and their solutions.

In the present paper, we take a fourth-order stationary «Schrodinger
equation» in one dimension and study its solutions, in particular for
discontinuous step potentials, square barrier and «Z-function potential».

The motivation is to examine the difficulties in the simplest cases and to learn
there how to deal with them in more realistic examples. We discuss the
generalized Jost functions(®) related to the problem. We think that these
methods and results, little known among physicists will be better understood
through the discussion of a very simple example where the physical implications
are more clear. For the complete bibliography we refer to (®).

This study shows that the simple structure of the «transition matrix» for the
second-order case is here changed into a set of discontinuity matrices. One of
them is similar to (and has the same origin as) the second-order one but the
others are new elements, not contained in the scattering states, which cannot be
ignored for the physical completeness of the theory.

In other words, the knowledge of the usual scattering matrix is not enough for
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the determination of the potential, i.e. for the solution of the inverse problem. A
fact that is related to the lack of unitarity of the usual naive scattering matrix.
In sect. 2 we introduce the equation and find its solutions for step potential. In
sect. 3 we do the same for a ¢-function potential. In sect. 4 we introduce and
compute the four Jost functions related to the potential of sect. 3. In sect. 5 we
define and calculate the «Jost functions» and the discontinuity matrix for the
fourth-order case. In sect. 6 we evaluate the isolated singularities. In sect. 7 we
discuss the inverse Gelfand-Levitan-Marchenko equations for this problem.

2. — «Schrodinger» equation.
We shall consider the following equation:

4
@.1) %¢+m3(V—E’)¢=O.

We can divide (2.1) by m* and consider only adimensional quantities mx— x,
m™ (V- E)—V —E. In what follows we take then (2.1) with m = 1. We begin
by solving (2.1) for the

case a) V=0, x<0, V=const>0, E>V, 2>0.

An exponential function exp[iKx] is a solution of (2.1) if

2.2) K=F in x<0
and
(2.3) KY=E-V in x>0.

There are then four solutions in each region. Writing exp [iKx] for a particular
solution, say K=+ E' we have the four solutions

A exp[+iKx], Asexpl—iKx],
2.4) K=E" x<(,
Agexpl[+ Kx], A,expl{—-Kx],

and

I Biexp[+iK'x], Bsexp[-iK'z],
(2.5) K =E -V, 2>0.

l Bsexp[+ K'x], B,expl—K'x],
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There are asymptotic and boundary conditions. The latter are dictated by the
differential equation (2.1). As we have a fourth-order equation, we must impose
continuity of the function and its first three derivatives (provided V has no ¢-
function singularity).

If we want to describe a situation in which a plane wave is incoming from the
left with unit amplitude (A, = 1) and then is reflected and transmitted (at x = 0)
as bounded waves (4, =0, B; = 0), with no other plane wave incoming from the
right (B, =0), we have the solution

¢(x) = exp[iKx] + A, exp [— iKx] + Azexp [Kx] for x<0,
&0 #(x) = Biexp[iK'x] + Byexp[— K'x] for x>0,
with the boundary conditions
(14 A4,+A;=B,+B,,

1K —iKA, + KA;=1K'B,— K' B,

A

2.7
~K2—K?A,+K°A;= - K"”B,+K"B,,

L _iK3+7:K3A2+K3A3=_iK,3Bl_KlsB4.

The solution of system (2.7) is (y = K'/K)

il -y —iy) _(1+d1-y)

2T Q+y)(d+iy)’ T+
©8) _ 2 __ —21-y)

Ty+y) T yA+ A+ iy)”

It is easily checked that to eq. (2.1) there corresponds the conserved current
(V—FE real)

j=_i(d3¢*¢+d¢* d2¢ A*d3¢_d2¢* d',‘,)

A o
2.9) dx? x da? dz® da? dx

dj
Using (2.9) for the solution (2.6), we obtain
J=4K*(1 - A,/ for x<0,

(2.10)
j=4K"|B,? for x>0.
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The exponentially decreasing «waves» with coefficients A; and B, do not
contribute to the current.
Obviously, we can define a reflexion coefficient

2.11) R =|A,f

and a transmission coefficient
(A%}
2.12) T=(KE> IB,J2.

With the values given by (2.8) we have

_A-yF Y

2.13) = W’ = 1 +yP

and, of course, R+ T=1.
Case b) 0<E <V =const (forx>0), V=0 (x<0).
The solution to the left of the origin is again given by (2.6) (x <0). Instead, for

(2.14) >0 we take K'=(V-E)"
and define the four quartic roots of —1 as

2.15) -1+ 144 -1 o —=1—1,

&= ’ &= ’ =", Qq=—"""»
V2 V2 V2 V2

(2.5) is then replaced by

B,' exp [E,’ K’ x]
and the condition of boundedness reduces the solution for x>0 to the form
(2.16) ¢(x) =B, exp [¢; K' x] + Byexp [, K’ 7], x>0,
which describes an exponentially damped wave, so that the transmitted current
is zero.
The coefficients A; and B; can be found as in (2.7), (2.8); but we prefer to

consider here now the special case of an infinite wall (V — ).
In such a limit we easily get

R e )

Bn—2}——% a(ya) Bi=-2+ a(.;s).

A=

2.17
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We see that on the wall, for x— ~ 0,

dy
(2.18) U0, (00,

while the second derivative tends to a finite value (see (2.16), (2.17)).

3. — The é-function potential.

By a similar method we can solve the problem of a rectangular potential
barrier or the square-well potential, but for our purpose in this note it is better
to consider a limiting case, that of the ¢-function potential

d*4
dat

By integration around the origin we deduce the discontinuity of the third
derivative

3.1) +ai(x)¢=E¢.

3
a’¢

dad

3
_ &

o da?

=—az(0),
.

while the function itself and its first and second derivatives must be continuous
at the origin.

If we look for a solution of (3.1), which represents an incident plane wave from
the left, and is bounded everywhere, we are led to

3.2) {¢<x)= exp [iKx] + Aexp [~ iKx] + Bexp [Kz}, ¥ <0,

#x) = Cexp [1Kx] + Dexp [- Kx], x >0.
The equations resulting from the condition at =0 are
1+A+B=C+D,
1—i1A+B=iC-D,

3.3) <
-1-A+B=-C+D,

—i+iA+B=—iC—D+I%¢(0).

The solution of this system is

iA=B.

A=——1 __ p A C=14A, D
AK® —aq +ia’ ¢
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The Pole of A at 4K® = a(1 — 7), which eliminates the first exponential in (3.2),
corresponds to a bound state only if the remaining exponential functions
decrease for x— * . From an analysis of (3.2) we see that this possibility
actually occurs only if a <0, i.e. if the ¢-function potential is attractive:

13 .
K:( l$_) 17'*'_9 for a <0.
2V2 2

4. - Jost functions.

We are going to define the «Jost functions» of the problem (see ref. () and the
references therein) as four linearly independent solutions of the fourth-order
equation. These solutions are to be ordered according to the asymptotic
behaviour as x— £ = (9,

Outside the region where the potential is felt (asymptotic regions) we can
write (2.1) or (3.1) simply as

d'y

4.1 =14 =4‘
@.1) =k, E=k

For any complex k there are four solutions
4.2) exp [tkx], exp[—ikx], explkx], exp[—kx].

The behaviour for large x depends on the real part of the exponent.

We take as the first Jost function f; that solution of (3.1) which for x— —
has the greatest rate of decrease. The equation fixes the rest of the solution. The
second Jost function f;(x) has for x— — o the exponential with the second
greatest rate of decrease. As any admixture with f; satisfies also this
requirement, this does not fix the solution. As, in principle, f; will have the
greatest rate of increase for x— + o, we are free now to impose for f, the extra
condition that this solution shall have the second greatest rate of increase for
x— + o, f; will have the next rate for x— % « and similarly for f,.

In order to see more clearly how this procedure works in an actual case, we
are now going to take the usual one-dimensional second-order Schrédinger
equation and construct the two Jost functions, defined according to the
procedures just explained.

The Schrodinger equation reads

4.3) VY | o= By
- (1)@ ac\r)w=Ly.
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Asymptotically
dzy
4.4 ——=k%y.
4.4) i ¢
The two exponential solutions are
4.5) exp [tkx], exp[— ikx].

Let us now construct the two Jost functions. In the upper half-plane of k, we

have
filk, x)=exp [ ikx],
4.6) Aexp [— thx] + Bexp [ikx],
' folk, ) = exp [ikx] + C exp [— ikx],
Dexp [ike],
with
_2k+ai _—ai __a
“.7 A= B % CTmk—a

In the lower half-plane, we have

[ £, (k, )= exp [ika],
A’ exp [ikx] + B’ exp [— tkx],
Sa(k, x) = exp [— tkx] + C’ exp [ikx],

@8\ Drexp [— ikal,

, _2k—1a ,_ o f__ta
A= 2k B—2k’ c 2k —ia’

!

2ik

“%k-a

2k
2k —ia’

x<0,
x>0,
<0,
x>0,

The Jost functions are then well defined in the upper half-plane of k (4.€) anc.
in the lower half-plane (4.8), but all along the real axis of k¥ they have both the
same type of behaviour at @ = + «. In this sense, the real axis appears as ¢
singular axis where we can define two limiting functions according to the way we

take the limit coming from above or from below.

For reasons that will become clear later we divide, (see (%)) the real axis in two

rays, K>0, K<0, K=Re (k).

For R(k) >0 we take f{ or f3 asthe limit from above of (4.6) and f7 or f; as
the limit from below of (4.8). In the ray R(k) <0 we define f{ and f3 as the limit
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from below of (4.8) and f1 f; as the limit from above of (4.6). Note that + or —
do not refer to the sign of f but rather to the sense of rotation in the complex k-
plane. We call + the clockwise rotation and — the anticlockwise rotation.
Explicitly

fi (K, x)=exp [~ iKx], z<0,

4.9) Aexp [—iKx]+ Bexp [iKx], x>0 (K>0),
' f1 (K, x)=exp [iKx], <0,
A’ exp [iKz] + B’ exp {— iKx], x>0 (K<0);

[ f3 (K, x) = exp [iKz] + C exp [— iKz], <0,

4.10) Dexp [iKx], x>0 (K>0),
' f3(K, x) =exp [— iKz) + C’ exp[iKz], <0,

| D’exp [- iKz], x>0 (K<0);

[ /i (K, %) =exp [iKz], z<0,

@1 A'exp [iKx] + B’ exp [— iKx], x>0 (K>0),
' fi (K, @)= exp [~ iKx], x<0,

| Aexp [—iKx]+ Bexp [iKx], x>0 (K<0);

([ f3 (K, x) = exp [— iKz] + C’ exp [iKx], <0,

4.12) D'exp [ iKx], . x>0 (K>0),
[z (K, x) =exp [iKx] + C exp[— iKx], r<0,

Dexp [iKx], x>0 (K<0).

The functions f} and f; are solutions of the differential equation (4.3), but,
as this is a second-order equation, there must exist a linear relation between the
two solutions «+» and the two «—». They are related by a «transition matrix» A:

4.13) fr=Af"

From (4.9) to (4.12) we can get the matrix A which has the form

(1 . 0 1\_+(0 1
4.14) A—(_a* l_aa*>(1 0)—A(1 0)

11 - Il Nuovo Cimento A.
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with

4.15 =,—a—— for any K.
“.15) *T2K[+a v

The matrix A (or A) has only one independent element. To see how this element
can be physically measured, we note that (4.13) and (4.14) give

(4.16) fr=fi+afs.

fi represents a plane wave incoming from the left and two plane waves
incoming and outgoing from the right. Equation (4.16) tells us that such a
situation can be achieved by carefully superimposing f; which is an experiment
of reflexion and transmission of a wave incoming from the left and f7 which is a
similar experiment with a wave incoming from the right.

It is then easy to see from (4.16), (4.9), (4.11), (4.12) that « is minus the
reflected amplitude

4.17 a=—-C"
and, of course, the reflexion coefficient is
R =|af?.

The matrix A can be experimentally determined by measuring amplitude and
phase of the reflected wave.

5. - Jost functions for the fourth-order equation.

We construct the Jost functions according to the rules given in sect. 4. For
each value of E we have four roots of the equation E = k*, namely «;k, where a;,
i=1, 2, 8, 4, are the four quartic roots of unity

(5.1) (+k, -k, ik, —ik).

If we order the exponentials of (4.2) according to the behaviour for large x,
there are obvious ambiguities when the real parts of two of them are equal, and
this happens when the roots are on four lines given by the real and imaginary
axis, and the lines are at 45° degrees with them. This divides the complex &-plane
in eight «octants» where the order of the functions is well defined according to
the given rules.

When & (complex) is in a given octant, we define a; such that

(56.2) Re(a; k) > Re(a; k)>Relas k) > Re(ay k).
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We note also that, in general,
5.3) az3=—ay and ag=—a.

The Jost functions for any octant are then

[ fi(k, ©) = expla, ka], x<0,
expla; kx) — 4%3.

+ [ (exp [y kx] — exp [~ a; kx]) + ap (exp [az kx] — exp [z kx])], £>0;

aa; exp [a; kx)

Ja(k, x) = explazkx] + W —ax

explazkx] — w—f—g [a2 (explagkx] — exp[— azkx]) — o exp[— o kx],
!

r>0;
(5.4)
a(a; exp [e, k] + ap explap kx])
= - , r<0,
falk, ) = expl— ay k] + pTE—
exp [ opka] + ala; exp [— a, kx] + agexp [— ap kx])’ 20

4k3 — a(dl + az)

a
falk, ) = exp[— a; kx} + 4_16370!1.

[, expla; kx] + as (explag kx] — exp[~ agkx])], <0,

4k3
—_— - x>0.
| 1% —om, exp[—a kx],

It is easy to see that
(5.5) oy =(— )",

where n = 0 for the first and eight octants, n = 1 for the second and third octants,
n =2 for the fourth and fifth octants and finally » = 3 for the sixth and seventh
octants;

5.6) ag = (= 1)"ia,,

where m =0 for even octants (second, fourth, etc.) and m =1 for odd octants.
As in the second-order case, we can define the «+» and «—» Jost functions on
the rays dividing two consecutive octants.
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The «plus» functions are those obtained as the limit of (5.4) taken in a
clockwise sense to the above-mentioned rays. The «minus~» functions are those
obtained in the anticlockwise limit.

The values of «; being those corresponding to the octant from which the
respective limit is taken.

Of course, the four plus functions and the four minus functions are solutions of
the same fourth-order linear differential equation, so they must be linearly
related:

.7) fr=Af".

Due to the properties of the solutions for values of k that differ by a factor of ¢,
the matrix A has the same value for rays of the same parity. Of course, this can
be explicitly verified.

Thus we need only to consider the ray number one for which k is real and
positive (k =K) and the ray number two for which k& = ((1 +1%)/ \/5..) K (K=real
and positive).

For the first ray the matrix A takes the form

1 0 0 0
0 1 a 0
5.8 = .
©-8) 4 0 —a* 1—aa* 0]’
0 0 0 1
where
5.9 I
6.9 T UK a1 + 1)

((5.8) and (5.9) are valid for any odd-number ray). For the second ray we have
(k=K((1+D/V2)

(5.10) A=Y

0 0 1PB* 1+ 4ys*
—ia

iﬂ:”:m —1+i\_,
Ve

(the equality y = i3 only occurs for special cases) and the values (5.10), (5.11) are
valid for any even-number ray.

(6.11)
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6. — Isolated singularities.

The lines dividing the different octants in which the Jost functions are well
defined are not the only singularities. Definition (5.4) shows that the points
where

6.1) 4k* = aa,
and those for which
(6.2) 4k® = ala; + a2)

require special attention.

Let us first take (6.1). For each value of «, there are three values of k for
which (6.1) is satisfied. The root that falls in an octant for which a, has the chosen
value is a singularity of the corresponding Jost function.

We define

o N

The octant corresponding to the three roots of (6.1) is then determined by the
three values

(6.4) e= %/sga-az1 ,

i.e.
(6~5) £=3a1, i.fa>0,
(6.6) e=3a4. if a<0.

The interesting roots are

( V—=(l, exp [i%z], exp[— i%x]),
i/—_1=(— 1, exp[i%‘], exp[—i%]),
%= (— 7, exp[i %], exp [i%n]),

V—i=[i, exp|—iZ}|, ex -—ié*
= s p 6 . p 6/. .

6.7) y
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One then can see that when a < 0 there are no roots for k that correspond to the
given value of «,, while if @ >0, one has the following roots:

(6.8) k= Ka}

with K given by (6.3)

_ (laly=
k=+()"

With (6.1) and (6.8) the Jost functions given by (5.4) have the form (near the
pole)

[ /1= explKz], £<0,
exp[— Kx] + 2sin Kz, z>0;
O

ﬁ_4k3—mlﬁ'

6.9) ﬁ

?—Zf3=—exp[+Kx]+ZsinKx, <0,
23]

—exp[-Kz], r>0;
_ — Qay _ - Qo 2

Lf"_4k3—aa1f3 & —aay 2

The first Jost function in (6.9) corresponds to a case of total reflexion from the
right. Note that, for the value (6.3), the reflected amplitude determined by (5.9)
gives a = 1. f3, on the other hand, represents a case of total reflexion from the
left. In both cases there are evanescent tales at both sides of the origin.

We then see that, up to &k — Kaf), the Jost functions are not linearly
independent. We have the relation

I
(6.10) = i

where I';, the matrix of residues at the pole, can be computed from (6.9) (only I';,
and I'y; are different from zero).
Let us now consider (6.2):

ay + ay

=K?® sga,

T2V VE B

a xta

(6.11) k?
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where now

113
6.12) K=+ ﬂ .
21/2
The three roots 3V (x) + a2)/§72 are

6.13) )

|
-
ot | s
o
A
| I
o
P
2]
! |
-,
—
m|°‘
a
N —

When a > 0 there are no roots for k that correspond to the given value of a; + as,
while if ¢ <30 one has

a¥ + af
VE ’

6.14) k=K

with K given by (6.12).
The Jost functions are then given by

[ fi= expla ka], r<0,
23] X _ _
pr exp e kx] + o exp[— a kx]
- (explazkx] — exp[— axkx]), z>0;
a + ap
fo=2L explo kx] + explagkz], 2 <0,
(6.15) %2
exp[—mzlcoc]+ﬂ expl— o, kx], x>0,
5]
= % .
Js 4k — aa; + ag)fz’
f;=ﬂ expla, kxl+ exp(—a kx]+ explazkx] — exp[—azkx], <0,
a2
| expl—a kz]+ 2 expl—a, kxl, r>0.
Xz
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The second Jost funetion in (6.15) represents a bound state as the exponential
functions, due to (6.14), are decreasing towards both sides of the origin.
Again we can write
r;

(6.16 PP A—
) f k_Kai"+a§"f]

V2

where now only I'j, is different from zero and its value can be computed from
(6.15).

7. — The inverse problem.

In sect. 5 we have defined (following ref. (¥)) and classified the four Jost
functions according to the asymptotic behaviour for x— * o of linearly
independent solutions of the wave equation. Those functions are analytic
functions of £ except for singular lines and points. These properties are general
and independent of the potential in (2.1). This is true in particular for the division
of the complex k-plane in octants within which the Jost functions are analytic.
Different potentials lead to different transition matrices on the singular lines and
also to different isolated singularities. We have computed these matrices for the
simple case of the é-function potential in sect. 5 and sect. 6.

The structure of the wave equation determines the general analytic
properties of the Jost functions. The potentials determine the singularities of
those functions. The residues are proportional to the coupling constant. See (6.9)
and (6.15) to verify how the problem of going from the «measured singularities»
to the potential, the inverse problem, is more involved than in the 2nd-order
case. See ().

We refer to the literature for this problem (¥), which we do not intend to
discuss here, only to point out an essential difference. In order to solve the
problem, it is necessary to know not only the transition matrix whose elements
depend only on the coefficients of the scattering states, but also the transition
matrix involving the coefficients of real exponentials. This means that in this
case it is not true that all the physics is contained in the scattering states.

8. — Discussion.

We defined the Jost functions associated with the fourth-order wave equation
with a J-function potential, according to the asymptotic behaviour of the

() P. DEIPT, C. TOME! and E. TRUBOWICZ: Commun. Pure Appl. Math., 35, 567 (1982).
(® 1. M. GEL’FAND and B. M. LEVITAN: Am. Math. Soc., Transl., 6, 253 (1955).
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corresponding solutions. They are analytic functions in the complex k-plane with
rays of discontinuity that divide the complex plane in octants. To each of the rays
there corresponds a discontinuity matrix relating the set of Jost functions on
both sides. Essentially there are only two such matrices, one for each two
consecutive rays. The rest repeats these two by the symmetry properties. The
discontinuity matrix on the real positive k-axis (5.8), (5.9) is similar to the usual
S-matrix and can be measured asymptotically with the plane-wave state
(scattering state). This fact is not true for the other discontinuity matrix, which
is related to waves with real exponent amplitudes and is not determined by the
scattering plane-wave states. We see that the physical observation of the
scattering states, plus the knowledge of the bound states with its residues and
the total reflexion state, is not equivalent to the knowledge of the potential.

There are also isolated singularities (poles) of the Jost functions. As in the
second-order equations, there are poles associated with bound states (cf. (6.14),
(6.15)) but there are also poles associated with total reflexion by the potential
(cf. (6.8), (6.9)), a fact which does not appear in the second-order equations.

* k *

The authors are indebted to Mr. N. F. Swaiter for calling their attention to
Tomei’s work. They are indebted to Prof. C. Tomei for several interesting
discussions on the subject when most of the mathematical methods of the paper
were learnt by the authors.

® RIASSUNTO (%)

In questo articolo si presentano le proprieta analitiche delle funzioni di Jost associate ad
equazioni di quarto ordine mediante un esempio familiare (potenziale della funzione 4 in
una dimensione). Si mostra come costruire le funzioni di Jost e le due matrici di
discontinuita associate alla linea di singolaritd. Queste ultime dividono il piano k
complesso in otto regioni di analiticitd. Una di queste matrici & in relazione con il
comportamento asintotico dello stato di scattering. Non lo & laltra. Entrambe sonc
necessarie per risolvere il problema inverso. Oltre ai poli consueti collegati agli stati legati
ce ne sono altri associati alla riflessione totale.

*) Traduzione a cura della Redazione.
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ABOTETHYHOCTL B BOJHOBIX YPABHEHHAX 4ETBEPTOro MOPATKA.

Pestome (*). — B 3Toit paGore, ucnonb3ys OGbIMHLUI npumep (S-yHKIMOHATBHBINA
NOTEHIMAJ B ONHOM H3MEPEHHM), Mbl HMCCIENyeM aHAJIMTHYECKHE CBOWCTBA (pyHKUMi
Hocra, cBsizaHHbIX ¢ ypaBHEeHWsMH 4eTBepTOro nopsgka. KOHCTPYMPYXTCS hyHKIMH
Wocra u nise pa3spbiBHbLIE MaTPHilbi, CBS3aHHbIC C JHHUEH cuHryasipHoctel. KoMiutekchas
k-n10THOCTL NENMTCS Ha BOCeMb O6N1acTel aHAMMTHYHOCTH. OHA M3 ITHX MaTPHL| CBA3aHA C
aCHMITTOTHYECKHM MOBEACHHEM COCTOSTHMS paccesiHusi. [ipyras He cBsizana. O6e MaTpHibI
HEOOXONMMBL U1 peiteHuss o6paTHOM npoGnembl. ITOMMMO OGBLIYHBIX NOJNIOCOB,
COOTBETCTBYIOLIMX CBH3aHHBIM COCTOSIHMAM, HMEIOTCS TaKkXKe APYTHE MOMI0Ca, CBA3aHHBIE C
MOJHBIM OTpaXkKCHUEM.

(*) IHepesedeno pedaxuueii.



