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Summary. - -  In this paper we present, through a familiar example (~- 
function potential in one dimension), the analytic properties of Jost functions 
associated with fourth-order equations. It is shown how to construct the Jost 
functions and the two discontinuity matrices associated with the line of 
singularities. The latter divide the complex k-plane in eight regions of 
analiticity. One of these matrices is related to the asymptotic behaviour of 
the scattering state. The other is not. Both are necessary to solve the inverse 
problem. Besides the usual poles related to bound states there are also other 
poles associated with total reflexion. 

PACS. 11.10. - Field theory. 

1. - I n t r o d u c t i o n .  

The possibility of using higher-order  equations in particle physics theory  has 
been considered, t ime and again, but  the difficulties found in the process of 
in terpreta t ion are almost unsurmountable and such equations are, therefore ,  
discarded in favour of the second-order ones. 

(*) On leave from CBPF. 
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The reasons are indeed very good. Among them we find that the energy is in 
general not positive definite. The usual causality relations are not satisfied. The 
~S matrix, lacks unitarity. The Hilbert space of quantum states has indefinite 
metric (') . . . .  

However, sticking to the second-order wave equations does not solve all 
problems. Notably, gravity theory refuses to be consistently quantized. 
Furthermore, the consideration of supersymmetry in a space-time with a 
number of dimensions greater than four (the ~,Kaluza-Klein,~ programme) can 
lead to higher-order wave equations (2.3), so that the dimensionality of space could 
be related to the order of the equations of motion. 

In our opinion, such a relation and the possibility of reducing the degree of 
divergence through the use of higher-order equations justify the efforts 
expended in trying to understand and clarify the physical interpretation of the 
theory. 

In(4) we have stated in a brief form the canonical methods necessary to 
construct the field tensors and the Heisenberg quantization of the fields obeying 
the higher-order equations. They are equivalent to the results one obtains by 
using a ,,Schwinger action integral,, method (3). Nevertheless, nothing is said 
there about the equations and their solutions. 

In the present paper, we take a fourth-order stationary ,,Schrodinger 
equation, in one dimension and study its solutions, in particular for 
discontinuous step potentials, square barrier and ,,~-function potential-. 

The motivation is to examine the difficulties in the simplest cases and to learn 
there how to deal with them in more realistic examples. We discuss the 
generalized Jost  functions(a) related to the problem. We think that these 
methods and results, little known among physicists will be better  understood 
through the discussion of a very simple example where the physical implications 
are more clear. For the complete bibliography we refer to (6). 

This study shows that the simple structure of the ,,transition matrix,, for the 
second-order case is here changed into a set of discontinuity matrices. One of 
them is similar to (and has the same origin as) the second-order one but the 
others are new elements, not contained in the scattering states, which cannot be 
ignored for the physical completeness of the theory. 

In other words, the knowledge of the usual scattering matrix is not enough for 
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(') C. G. BOLLINI and J. J. GIAMBIAGI: preprint CBPF-NF-037/86. 
(~) A. O. BARUT and G. H. MULLEN: Ann. Phys. (N. Y.), 20, 203 (1952). 
(~) Scattering. on the line--an overview; R. BEALS, e. DEIFT and C. TOMEI: Atas da VI ~ 
ELAM, IMPA, Rio de Janeiro, 1986. 
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the determination of the potential, i.e. for the solution of the inverse problem. A 
fact that is related to the lack of unitarity of the usual naive scattering matrix. 

In sect. 2 we introduce the equation and find its solutions for step potential. In 
sect. 3 we do the same for a &function potential. In sect. 4 we introduce and 
compute the four Jost  functions related to the potential of sect. 3. In sect. 5 we 
define and calculate the ,,Jost functions,, and the discontinuity matrix for the 
fourth-order case. In sect. 6 we evaluate the isolated singularities. In sect. 7 we 
discuss the inverse Gelfand-Levitan-Marchenko equations for this problem. 

2 . -  ~Schr6dinger,, equation. 

We shall consider the following equation: 

d 4 
(2.1) dx 4 r + m 3 ( V - E ) r  

We can divide (2.1) by m 4 and consider only adimensional quantities mx---)x, 
m -~ ( V -  E)--* V - E .  In what follows we take then (2.1) with m = 1. We begin 
by solving (2.1) for the 

case a) V = 0 ,  x < 0 ,  V = c o n s t > 0 ,  E > V ,  x > 0 .  

An exponential function exp[iKx] is a solution of (2.1) if 

(2.2) K4=E in x < 0  

and 

(2.3) K 4 ' = E - V  in x > 0 .  

There are then four solutions in each region. Writing exp [iKx] for a particular 
solution, say K = + E TM, we have the four solutions 

Alexp[+ iKx], A2exp[-  iKx], 
(2.4) K = E v4, x < 0, 

A3exp[ + Kx], A4exp[-  Kx] , 

and 

(2.5) 

B1 exp [+ iK'x], 

Bzexp [+ K'x], 

B2exp [ -  iK'x], 

K ' = ( E -  V) TM, x > 0 .  

B4 exp [ -  K'x], 
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There are asymptotic and boundary conditions. The lat ter  are dictated by the 
differential equation (2.1). As we have a fourth-order equation, we must  impose 
continuity of the function and its f'n'st three derivatives (provided V has no ~- 
function singularity). 

I f  we want  to describe a situation in which a plane wave is incoming from the 
left with unit amplitude (A~ = 1) and then is reflected and t ransmit ted (at x = 0) 
as bounded waves (A4 = 0, B3 = 0), with no other plane wave incoming from the 
right (B2 = 0), we have the solution 

(2.6) f r = exp [iKx] + A2exp [ -  iKx] + A3exp [Kx] 

r = B~exp [iK'x] + B4 exp [ -  K'x] 

for x<0,  

for x > 0 ,  

with the boundary conditions 

(2.7) 

f l+A2+A3=B1+B4, 
iK , iKA2 + KAa = iK' B~ - K' B4 , 

-K2-ICZA2+K2A3=-K'2:~ +K'2:4, 

- iK 3 + iI~A2 + IiZA3 = - iK 3B1 - K 3B4. 

The solution of system (2.7) is (y = K'/K) 

A2- i(1 - y ) ( 1  - iy) As -  (1 + i)(1 - y) 
(1 + y)(1 + iy)'  (1 + y) ' 

(2.8) _ 2 B4 = - 2 ( 1  - y) 
BI y(1 + y ) '  y(1 + y)(1 + iy)" 

It  is easily checked that  to eq. (2.1) there corresponds the conserved current  
(V - E real) 

(2.9) 
J = - ~ - ~ - ~ +  d-x dx z r  3 dx 2 dx]' 

dj 

Using (2.9) for the solution (2.6), we obtain 

(2.10) 
for x < 0 ,  

for x > 0 .  
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The exponential ly decreasing ,,waves,, with coefficients As and B4 do not 

contr ibute  to the  current .  
Obviously,  we can define a reflexion coefficient 

(2.11) R = IA~I 2 

and a t ransmiss ion coefficient 

(2.12) T = ]BI[ 2 . 

With the values given by (2.8) we have 

(2.13) R - (1 - y)_______~2 T = 4 y  
(1 + y)2, (1 + y)2 

and, of course, R + T = 1. 

Case b) 0 < E < V = const (for x > 0), V = 0 (x < 0). 

The solution to the left of  the origin is again given by (2.6) (x < 0). Ins tead ,  for  

(2.14) x > 0 we take  K '  = (V - E)  TM 

and define the four quart ic  roots  of - 1  as 

- 1 + i  1 + i  1 - i  - 1 - i .  
(2.15) ~1 - - -  , ~2 = ~ ,  ~3 = , ~4 = ~ ,  

(2.5) is then  replaced by 

Be exp [e, K '  x] 

and the condition of boundedness  reduces  the  solution for  x :> 0 to the  form 

(2.16) r = B1 exp [~1K' x] + B4 exp [~4 K '  x] ,  x > 0,  

which descr ibes  an exponential ly damped  wave,  so tha t  the  t r ansmi t t ed  cur ren t  

is zero. 
The  coefficients A, and Bi can be found as in (2.7), (2.8); but  we pre fe r  to 

consider here  now the special case of an infinite wall (V--) r 
In such a limit we easily ge t  

(2.17) 

1 + i  2 

B1= 2 - ~  -~ i G , B4 = - -~  + • �9 
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We see that on the wall, for x - - ) -  0, 

(2.18) ,~(0)---, O, 

C. G. BOLLINI and J. J. GIAMBIAGI 

de 
(o)- .  o,  

while the second derivative tends to a finite value (see (2.16), (2.17)). 

3. - The ~-function potential .  

By a similar method we can solve the problem of a rectangular potential 
barrier or the square-well potential, but for our purpose in this note it is better  
to consider a limiting case, that of the ~-function potential 

(3.1) d4r + a~'(x) r = Er 
dx 4 

By integration around the origin we deduce the discontinuity of the third 
derivative 

d3r I d~r 
~x3 o- - d x3 o- = - a r  

while the function itself and its first and second derivatives must be continuous 
at the origin. 

If  we look for a solution of (3.1), which represents an incident plane wave from 
the left, and is bounded everywhere, we are led to 

(3.2) 
r = exp [iKx] + A exp [ -  iKx] + B exp [Kx], 

r = C exp [iKx] + D exp [ -  Kx], 

x < 0 ,  

x > 0 .  

The equations resulting from the condition at x = 0 are 

(3.3) 

f I + A + B = C + D ,  
i - i A + B = i C - D ,  

- 1 - A + B = - C + D ,  

- i + i A  + B = - i C  - D + ~a_ r 
K ~ 

The solution of this system is 

ia 
A =  4K3 _ a + ia , B = iA , C = I + A ,  D = iA = B . 
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The 15ole of A at  4K 3 = a(1 - i), which eliminates the first exponential in (3.2), 
corresponds to a bound state only if the remaining exponential functions 
decrease for x-*  _+ ~.  From an analysis of (3.2) we see that  this possibility 
actually occurs only if a < 0, i.e. if the ,)-function potential is attractive: 

,a, 
for a < 0 .  

4.  - J o s t  f u n c t i o n s .  

We are going to define the ,,Jost functions,, of the problem (see ref. (6) and the 
references therein) as four linearly independent solutions of the fourth-order 
equation. These solutions are to be ordered according to the asymptotic 
behaviour as x--* + ~ r 

Outside the region where the potential is felt (asymptotic regions) we can 
write (2.1) or (3.1) simply as 

(4.1) d4 '~ k 4 . 
dx 4- = k 4 r E = 

For  any complex k there are four solutions 

(4.2) exp [ ikx] ,  exp [ - i k x ] ,  exp [kx], exp [ - k x ] .  

The behaviour for large x depends on the real part  of the exponent. 
We take as the first Jost  function fl  that  solution of (3.1) which for x o  - oo 

has the greates t  rate of decrease. The equation fixes the rest  of the solution. The 
second Jost  function f i ( x )  has for x ~ -  ~ the exponential with the second 
greates t  rate  of decrease. As any admixture with f i  satisfies also this 
requirement,  this does not fix the solution. As, in principle, f l  will have the 
greates t  rate  of increase for x ~  + ~r we are free now to impose for f2 the extra  
condition that  this solution shall have the second greates t  rate of increase for 
x--~ + ~ ,  f3 will have the next rate for x ~ _+ ~ and similarly for f4. 

In order to see more clearly how this procedure works in an actual case, we 
are now going to take the usual one-dimensional second-order SchrSdinger 
equation and construct the two Jost  functions, defined according to the 
procedures jus t  explained. 

The Schr0dinger equation reads 

[1~ 2 d2r 
(4.3) ~--[ ] --~---~ + a~] x ) .~ = E.$ . 
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Asymptotically 

(4.4) d2 '~ 
dx 2 

- - _ _  = k 2 ~ .  

The two exponential solutions are 

(4.5) exp [ i kx] ,  exp [ - i k x ] .  

Let us now construct the two Jost functions. In the upper haft-plane of k, we 
have 

(4.6) 

f l  (k,  x) = exp [ -  i k x ] ,  

A exp [ -  i kx]  + B exp [ i kx] ,  

f2 (k, x) = exp [ikx] + C exp [ -  i k x ] ,  

Dexp [ i kx] ,  

x < 0 ,  

x > 0 ,  

X < 0 ,  

x > 0 ,  

with 

(4.7) A - 2 k  + a i  B - - a i  C - a D - 2i_._~k 
2k  ' 2k  ' 2 i k  - a ' 2 i k  - a " 

In the lower haft-plane, we have 

(4.8) 

"f l  (k,  x)  = exp [ikx] , 

A' exp [ikx] + B '  exp [ -  i k x ] ,  

f2 (k, x) = exp [ -  i kx]  + C '  exp [ i kx ] ,  

D' exp [ -  i k x ] ,  

A '  - 2k  - ia  B '  = ia  C'  = ia  
2k ' 2k '  2 k - i a '  

D , = ~  
2 k  

2k - / a "  

x <  ), 

x > 0 ,  

x<.O, 

x :~" 0, 

The Jost functions are then well defined in the upper haft-plane of k (4.6) ang~ 
in the lower half-plane (4.8), but all along the real axis of k they have both the 
same type of behaviour at x - - +  ~. In this sense, the real axis appears as 
singular axis where we can define two limiting functions according to the way we 
take the limit coming from above or from below. 

For reasons that will become clear later we divide.(see (8)) the real axis in two 
rays, K > 0, K < 0, K = Re (k). 

For R ( k )  > 0 we take f~ or f~ as the limit from above of (4.6) and f~ (,r f~ ~ 
the limit from below of (4.8). In the ray R ( k )  < 0 we define f~  and f~  as the limit 
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from below of (4.8) and f~  f~  as the limit from above of (4.6). Note that + or - 
do not refer to the sign o f f  but rather to the sense of rotation in the complex k- 
plane. We call + the clockwise rotation and - the anticlockwise rotation. 
Explicitly 

(4.9) [ f~  (K, x) = exp [ -  iKx], 

A exp [ -  iKx] + B exp [iKx], 

f i  ~ (K, x) = exp [iKx], 

A' exp [iKx] + B' exp [ -  iKx], 

x < O ,  

x > 0  (K>O),  

x < O ,  

x > 0  (K<0) ;  

(4.10) [ f~ (K, x) = exp [iKx] + C exp [ -  iKx], 

D exp [iKx], 

f~  (K, x) = exp [ -  iKx] + C' exp [iKx], 

D' exp [ -  iKx], 

x < 0 ,  

x > 0  (K>O),  

x < 0 ,  

x > 0  (K<0) ;  

(4.11) 

t f i  (K, x) = exp [iKx], 
A' exp [iKx] + B' exp [ -  iKx], 

f~  (K, x) = exp [ -  iKx], 

A exp [ -  iKx] + B exp [iKx], 

x < O ,  

x > 0  ( K > 0 ) ,  

x < O ,  

x > O  (K<O); 

(4.12) 

f f~  (K, x) = exp [ -  iKx] + C' exp [iKx], 
D' exp [ -  iKx], 

f~  (K, x) = exp [iKx] + C exp[ -  iKx], 

D exp [iKx], 

x < O ,  

x > 0  ( K > 0 ) ,  

x < O ,  

x > O  (K<O).  

The functions f i  ~ and f7  are solutions of the differential equation (4.3), but, 
as this is a second-order equation, there must exist a linear relation between the 
two solutions ,, +,~ and the two ~-,,. They are related by a ,,transition matrix,, A: 

(4.13) f+ = A f -  

From (4.9) to (4.12) we can get the matrix A which has the form 

a 1 - 0 

11 - l l  Nuovo Cimento A. 
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with 
a 

(4.15) ~ = 2i[KI + a for any K. 

The matrix A (or A) has only one independent element. To see how this element 
can be physically measured, we note that (4.13) and (4.14) give 

(4.16) f ~  = f ~  + a f t .  

f~  represents a plane wave incoming from the left and two plane waves 
incoming and outgoing from the right. Equation (4.16) tells us that such a 
situation can be achieved by carefully superimposing f~  which is an experiment 
of re flexion and transmission of a wave incoming from the left and f~  which is a 
similar experiment with a wave incoming from the right. 

It is then easy to see from (4.16), (4.9), (4.11), (4.12) that a is minus the 
reflected amplitude 

(4.17) a = - C' 

and, of course, the reflexion coefficient is 

R = 2.  

The matrix A can be experimentally determined by measuring amplitude and 
phase of the reflected wave. 

5. - Jos t  f u n c t i o n s  for  the  four th-order  e q u a t i o n .  

We construct the Jost  functions according to the rules given in sect. 4. For 
each value of E we have four roots of the equation E = k 4, namely aik, where ai, 
i = 1, 2, 3, 4, are the four quartic roots of unity 

(5.1) (+ k, - k, ik ,  - i k ) .  

If we order the exponentials of (4.2) according to the behaviour for large x, 
there are obvious ambiguities when the real parts of two of them are equal, and 
this happens when the roots are on four lines given by the real and imaginary 
axis, and the lines are at 45 ~ degrees with them. This divides the complex k-plane 
in eight ,,octants,, where the order of the functions is well defined according to 
the given rules. 

When k (complex) is in a given octant, we define a, such that 

(5.2) Re (al k) > Re (~2 k) > Re (a3 k) > Re (a4 k). 
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We note also that ,  in general ,  

(5.3) a3 = -  as and a4 = - a l .  

The Jos t  functions for any octant  are  then 

(5.4) 

f l  (k, x) = exp[al  k x ] ,  x < 0 ,  

exp[a j  kx] - a 
4k 3 

�9 [ a l ( e x p [ a l k x ] - e x p [ - a l k x ] ) + a 2 ( e x p [ a 2 k x ] - e x p [ a e k x ] ) ] ,  x > 0 ;  

f 2 ( k ,  x)  = e x p [ a 2 k x ]  -~ 

a 
exp [~2kx] 4k 3 - aal 

aal  exp [al kx]  

4k  3 - aal ' 
x < O ,  

[a2 (exp [a2 kx]  - exp [ -  a2 kx])  - ~1 exp [ -  al kx]] ,  

x > 0 ;  

f 3 ( k ,  x)  = e x p [ -  a2kx]  -+ 
a(al exp [al kx]  + ~2 exp [~2 kx])  

4 k  3 - a(al + a2) 
, x < : 0 ,  

exp [ -  a2 kx]  + 
a ( a l  exp [ -  at kx]  + ~2 exp [ -  a2 kx])  

4k 3 - a(al + 6C2) 
, x > 0 ;  

f4 (k, x) = exp [ -  al kx]  -~ a 
4k  ~ - aal 

�9 [ a l e x p [ a l k x ] + a 2 ( e x p [ a 2 k x ] - e x p [ - a 2 k x ] ) ] ,  x < 0 ,  

4 k  3 

4 k 3 - a a l  
exp [ -  al kx]  , x > O . 

I t  is easy  to see tha t  

(5.5) al = ( -  i)n, 

where  n = 0 for the first  and eight  octants ,  n = 1 for the second and third octants,  
n = 2 for the  fourth and fifth octants  and finally n = 3 for the  sixth and seven th  
octants;  

(5.6) a 2 = ( - 1 ) ~ i a l ,  

where  m = 0 for even octants  (second, fourth,  etc.) and m -- 1 for odd octants.  
As in the  second-order  case, we can define the  ,, + ~, and . . . . .  Jos t  functions on 

the rays  dividing two consecutive octants.  
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The ,,plus,, functions are those obtained as the limit of (5.4) taken in a 
clockwise sense to the above-mentioned rays. The ,,minus,, functions are those 
obtained in the anticlockwise limit. 

The values of a~ being those corresponding to the octant from which the 
respective limit is taken. 

Of course, the four plus functions and the four minus functions are solutions of 
the same fourth-order linear differential equation, so they must be linearly 
related: 

(5.7) f+=Af - .  

Due to the properties of the solutions for values of k that differ by a factor of i, 
the matrix A has the same value for rays of the same parity. Of course, this can 
be explicitly verified. 

Thus we need only to consider the ray number one for which k is real and 
positive (k =K) and the ray number two for which k = ((1 + i)/V~) K (K = real 
and positive). 

For the first ray the matrix A takes the form 

(5.8) A= 

where 

1oo ] 
0 1 a 

0 - a *  1 - a a *  ' 
0 0 0 

(5.9) a -  - i a  

4K 3-  a(1 + i) 

((5.8) and (5.9) are valid for any odd-number ray). For the second ray we have 
(k = K((1 + i)lV2)) 

(5.10) A = 

1 
iy* 1 +/fir* 0 

0 0 1 

0 0 /fi* 1 + i~,~* 

(5.11) /fi = ~, = 
- i a  

4K3(- l + i ~ _ a  

(the equality ), =//3 only occurs for special cases) and the values (5.10), (5.11) are 
valid for any even-number ray. 
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6. - I s o l a t e d  s i n g u l a r i t i e s .  

The lines dividing the different octants in which the Jost  functions are well 
defined are not the only singularities. Definition (5.4) shows that  the points 
where 

(6.1) 4k s =a~ l  

and those for which 

(6.2) 4k a = a(a ,  + :~2) 

require special attention. 
Let  us first take (6.1). For  each value of a~ there are three values of k for 

which (6.1) is satisfied. The root that  falls in an octant for which al has the chosen 
value is a singularity of the corresponding Jos t  function. 

We define 

(6.3) K =  + - -  . 

The octant corresponding to the three roots of (6.1) is then determined by the 
three values 

(6.4) ~ =  ~ - g a -  ~1 , 

i . e .  

3 
(6.5) ~ = ~/~-~1, if a > 0 ,  

(6.6) ~=~/~a4. f f a < 0 .  

The interest ing roots are 

(6.7) 

.2 ~(1 expI~. 1 expl ~]) 
= - 1 ,  exp z , e x p  - z  , 

~ ( i  exp[~l exp[+]) 
~ t i  oxp[ i~] expl +]) 
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One then can see that  when a < 0 there are no roots for k that  correspond to the 
given value of a4, while if a > 0, one has the following roots: 

k = Ka* (6.8) 

with K given by (6.3) 

With (6.1) and (6.8) the Jost  functions given by (5.4) have the form (near the 
pole) 

f i  = exp [Kx], x < 0,  

exp [ -  Kx] + 2 sin K x ,  x > 0; 

a ~ l  " f l ,  
f'z = 4k 3 _ aal 

(6.9) ~ f a  = - exp[+  Kx] + 2 s inKx ,  x < 0 ,  

- e x p [ -  Kx] ,  x > 0 ;  

- -  a a 2  - -  aal a2 f3. 
]'4 - 4 ~  -- ~Lal f3 = 4 ~  ------- ~ ,  a," 

The first Jos t  function in (6.9) corresponds to a case of total reflexion from the 
right. Note that,  for the value (6.3), the reflected amplitude determined by (5.9) 
gives a = 1. f3, on the other hand, represents  a case of total reflexion from the 
left. In both cases there are evanescent tales at both sides of the origin. 

We then see that ,  up to ~)(k-  Ka*), the Jost  functions are not linearly 
independent.  We have the relation 

( 6 . 1 0 )  - k 

where 1"~, the matrix of residues at  the pole, can be computed from (6.9) (only Fzl 
and F43 are different from zero). 

Le t  us now consider (6.2): 

(6.11) k a _ a ~, -I- a2 _ K 3 a l  -t- a2 s g a ,  
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where now 

(6.12) K =  + ( la[ ~v~. 

The three roots ~/(al + a~)/V~ are 

(6.13) 

= ~ ] - - ~  ~/~ , e x p  i~-~ , e x p  = , 

~ / - - ~  ~ / ~ ,  exp "= , e x p  i~2= , 

l + i = ( l + i  l~-~= exp 
V ~  - ~ ,  exp , 

3i i111 i 1) l + i = 1 -  i - ~--~ ~ exp i-i~ 2 - ~  , exp , ~ . 

When a > 0 there are no roots for k that  correspond to the given value of a~ + a2, 
while if a < 30 one has 

(6.14) k = K - -  

with K given by (6.12). 
The Jost  functions are then given by 

(6.15) 

fi = exp [a] k x ] ,  x < 0, 

~2 

~I -}- G~2 Gel "~- a2 

a2 x ~ 0 ;  

f2 = ~ exp [al kx] + exp [a2 k x ] ,  x < 0, 
~2 

exp [ -  ~2 k x  ] + a~ exp [ -  al k x  ] , x > 0 ; 
dC 2 

a~2 ~2) -f~ ; f 3 -  4k 3 _ a(~l + 

f4 = ~  exp[~lkx]+ exp [ - a lkX]+  exp[a2kx]-  exp[-~2kx] ,  x<O,  
O:2 

exp [ -  ~] kx] + ~ exp [ -  ~l kx], x > O. 
~2 

exp[alkX]+ al e x p [ - a ] k x ] -  

- -  (exp [a2 kx] - exp [ -  a2 kx]), 
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The second Jost  function in (6.15) represents a bound state as the exponential 
functions, due to (6.14), are decreasing towards both sides of the origin. 

Again we can write 

r,j 
(6.16) ]} = a* + a* f i '  

k - K ~  

where now only/'32 is different from zero and its value can be computed from 
(6.15). 

7. - T h e  i n v e r s e  p r o b l e m .  

In sect. 5 we have defined (following ref. (6)) and classified the four Jost  
functions according to the asymptotic behaviour for x--* + oo of linearly 
independent solutions of the wave equation. Those functions are analytic 
functions of k except for singular lines and points. These properties are general 
and independent of the potential in (2.1). This is true in particular for the division 
of the complex k-plane in octants within which the Jost  functions are analytic. 
Different potentials lead to different transition matrices on the singular lines and 
also to different isolated singularities. We have computed these matrices for the 
simple case of the ~-function potential in sect. 5 and sect. 6. 

The structure of the wave equation determines the general analytic 
properties of the Jost  functions. The potentials determine the singularities of 
those functions. The residues are proportional to the coupling constant. See (6.9) 
and (6.15) to verify how the problem of going from the ,,measured singularities,, 
to the potential, the inverse problem, is more involved than in the 2nd-order 
case. See (7). 

We refer to the literature for this problem (~), which we do not intend to 
discuss here, only to point out an essential difference. In order to solve the 
problem, it is necessary to know not only the transition matrix whose elements 
depend only on the coefficients of the scattering states, but also the transition 
matrix involving the coefficients of real exponentials. This means that in this 
case it is not true that all the physics is contained in the scattering states. 

8.  - D i s c u s s i o n .  

We defined the Jost  functions associated with the fourth-order wave equation 
with a ~-function potential, according to the asymptotic behaviour of the 

(7) p. DEIFT, C. TOMEI and E. TRUBOWICZ: Commun. Pure Appl. Math., 35, 567 (1982). 
(s) [. M. GEL'FAND and B. M. LEVITAN: Am. Math. Soc., Transl., 6, 253 (1955). 
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corresponding solutions. They are analytic functions in the complex k-plane with 
rays of discontinuity that divide the complex plane in octants. To each of the rays 
there corresponds a discontinuity matrix relating the set of Jost  functions on 
both sides. Essentially there are only two such matrices, one for each two 
consecutive rays. The rest repeats these two by the symmetry properties. The 
discontinuity matrix on the real positive k-axis (5.8), (5.9) is similar to the usual 
S-matrix and can be measured asymptotically with the plane-wave state 
(scattering state). This fact is not true for the other discontinuity matrix, which 
is related to waves with real exponent amplitudes and is not determined by the 
scattering plane-wave states. We see that the physical observation of the 
scattering states, plus the knowledge of the bound states with its residues and 
the total reflexion state, is not equivalent to the knowledge of the potential. 

There are also isolated singularities (poles) of the Jost  functions. As in the 
second-order equations, there are poles associated with bound states (cf. (6.14), 
(6.15)) but there are also poles associated with total reflexion by the potential 
(cf. (6.8), (6.9)), a fact which does not appear in the second-order equations. 

The authors are indebted to Mr. N. F. Swaiter for calling their attention to 
Tomei's work. They are indebted to Prof. C. Tomei for several interesting 
discussions on the subject when most of the mathematical methods of the paper 
were learnt by the authors. 

O RIASSUNTO (*) 

In questo articolo si presentano le proprietfi analitiche delle funzioni di Jost associate ad 
equazioni di quarto ordine mediante un esempio familiare (potenziale della funzione t in 
una dimensione). Si mostra come costruire le funzioni di Jost e le due matrici di 
discontinuit~ associate alia linea di singolarita. Queste ultime dividono il piano k 
complesso in otto regioni di analiticith. Una di queste matrici ~ in relazione con il 
comportamento asintotico dello stato di scattering. Non lo ~ |'altra. Entrambe sono 
necessarie per risolvere il problema inverso. Oltre ai poli consueti collegati agli stati legati 
ce ne sono altri associati alla riflessione totale. 

(*) Traduzione  a cura della Redazione.  
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Aea~arnqffOCT5 n e o a u o m  yplmHen~L~X qvrsel l troro nollJt/iga. 

PesmMe(* ) .  - -  B ~TO~ pa6oTe,  . c n o a b 3 y a  O6blqabt~ npHMep (~-(])yltKl~OHaJlbHbl~! 
noTea tmaa  B OJIHOM aaMepeami) ,  Mbl HccaeJlyeM asa~aTn~ecrd ie  CBOfiCTea dpynKtm~ 
l~Ioc-ra, CBa3aHHbLX C y p a a s e a v a v m  qeTsepToro  nopstaKa. Koacrpynp3rmrca  qbynrmm 
I~Ioc'ra ~i ItBe pa3pbIaHbte MaTpatu,~, caa3amtbte  c a a n n e ~  c a a r y a a p a o c r e A .  KOMILIIeKCHR,q 
k-IIJIOTHOCTb JleaHTCa Ha BOCeMb o6aacTe~ ana .qr r rnqaocrn .  O/IHa Ha aTnX MaTprIR CBfl3aHa c 
aCHMIITOTHqeclOiM noeeJaeaneM COCTOSmrta pacceasrm.  Jlpyra-q He caa3ana.  O6e  Mal"pHUbl 
Heo6xOJ1HMbl JUI~I petueH~q O6paTHOfi llpo~JleMhl, I-IoMIiMO O6blqHblX noa tocoa ,  
COOTBeTCTBy~OLtI~X CB~t3aHHblM COCTO~IHHJIM, HMe~OTCn TaK~e a p y r a e  n o a a x a ,  CBflaaHHbIe C 
IIOJIHblM oTpax~ermeM. 

(*) Hepesec)euo pei)aKs4ue~. 


