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We examine a Lipkin based two-level pairing model at 
finite temperature and in the thermodynamic limit. 
Whereas at T =  0 the model exhibits a superconducting 
ground state for sufficiently high values of the coupling 
constant, a partially superconducting phase in which some 
of the particles are paired, is found to survive at high 
temperatures in a special treatment. This phase is a mix- 
ture of  "abnormally-occupied" eigenstates, which lie at 
higher energy, of  the interactionless model Hamiltonian. 

PACS" 74.20.Fg; 74.90 + n 

I. Introduction 

Exactly soluble models such as the renowned Glick-Lip- 
kin-Meshkov (GLM) model [1] have proved to be ex- 
tremely valuable in studies concerning the validity and/  
or usefulness of diverse theoretical approaches developed 
to investigate many aspects of the quantum many-body 
problem for a finite number N of interacting spin- l /2  
fermions. This model is based on the SU(2)  algebra as- 
sociated with the so-called "quasispin" operators, and 
provides readily available exact solutions against which 
can be tested the results of different approximations. 
Quasispin operators were previously employed by An- 
derson [2] to reformulate the BCS theory of supercon- 
ductivity. 

Of the several multiplets associated with the possible 
eigenvalues of the relevant Casimir operator [ 1 ] only the 
one corresponding to the unperturbed ground state (ugs) 
of the system has been extensively dealt with in the lit- 
erature. Cambiaggio and Plastino [3] have shown that 
the study and classification of  higher-energy allows one 
to add a pairing-like interaction to the model without 
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going beyond a S U ( 2 ) •  SU(2)  algebra. In this way, the 
notion of quasispin superfluidity can be incorporated into 
the model and treated exactly. 

The thermodynamic limit (N>> 1) of the G LM  model 
and its extension to accommodate finite temperatures are 
the subject of  an illuminating series of  papers by Gilmore 
and Feng [4], and conveniently summarized in the book 
by Gilmore [4]. The corresponding treatment appropriate 
for dealing with quasispin superfluidity has been given 
by Rossignoli and Plastino [5], including the finite tem- 
perature mean field description. 

In the present work we show that the higher energy 
multiplets referred to above lead to the concept of ab- 
normal occupancy [6] of single particle states, and can be 
easily incorporated within an SU(2)  • SU(2) framework. 
This in turn makes possible the construction of super- 
conducting states which survive at high temperatures even 
for weak coupling. 

1I. The model 

The G L M  model deals with N spin 1/2 particles distrib- 
uted in two 2 f  a-fold degenerate single particle (s. p.) levels 
separated by the s.p. energy e. We designate the 2s~ lower 
(upper) states by IP, P - -  - 1) ( [p ,p  = - 1)), with 
p = 1 .. . . .  292. We introduce the so-called Lipkin quasi- 
spin operators [1], 

L =l Z v c L % ,  
p,  ,u 

:+=2 c7+ =:: ,  
p 

and the quasispin pairing operators [3] 

(1) 

0o =l  Z c; + % =�89 5 -a, 
P , P  

O+=Z c;§ cT =o+_ , 
p 

(2) 
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where ~ stands for the number operator and the C's are 
ordinary fermion creation and destruction operators. 
Each set of operators (J and Q) separately obey angular- 
momentum-like commutation rules implying the group 
SU(2). Moreover, every Q-operator commutes with each 
J-operator, implying a group structure SU(2)•  SU(2). 
Obviously, 0+  creates, and 0 -  destroys, two particles 
coupled to J~ = 0. Thus, it becomes natural to introduce 
a quasispin "pairing" Hamiltonian 

(3) 

with I GI a coupling parameter. It is possible to form a 
complete orthogonal basis set characterized by the eigen- 
values J ( J + l ) ,  Q ( Q + I ) ,  J~, Qo of the operators 
]2, ~ 2, ~ ,  Qo, say I J, Q, J~, Qo). There exists yet a fur- 
ther symmetry to be accounted for, as every J or Q op- 
erator commutes with any of the 2f2! operators that ex- 
change the given p-spins [7]. This additional symmetry 
gives rise to a multiplicity Y(J,  Q) for a given state 
I J, Q, J~, Q0), essential to evaluate the entropy, specified 
[5] by 

(2s +2)t (2o)t (2J+ 1) (2Q+ 1) 
YCJ, Q ) =  (4) 

(s + J +  Q+2) !  (s + J -  Q +  1)! ' 
( s  Q +  1)! ( s  

where the possible values of J and Q are constrained by 
the inequalities (for N =  even) 

0 ~ J ~ < ~ - I Q o l ,  

[Qol =< Q=<s (5) 

IQ01 <J+Q<s 

In studying ground states, only the J +  Q=s "band" 
needs to be considered. However, for nonzero tempera- 
ture, a host of states belonging to other "bands" may 
become accessible to the relevant statistical ensemble [5]. 

A very useful concept is that of the quasispin seniority 
defined [3] as 

v = 2 (f2 - Q), (6) 

which specifies the maximum possible number of "un- 
paired" particles compatible with a given value of Q. 
Following common usage, in this paper we set N =  2D, 
which from (2) implies Qo = 0, i.e., we will not consider 
states with Qo :~ 0. 

IIL Zero temperature results 

In order to meaningfully discuss the concept of abnormal 
occupancy, we shall digress from our central theme by 
briefly referring to the so-called monopole interaction [ 1 ] 

P= �89 x (Y~ + J~-), (7) 

with X a coupling constant. The interaction (7) exhibits 
properties resembling those of the multipole-multipole 

(long-ranged) type often found in some microscopic nu- 
clear models [8]. Adding this term to the hamiltonian (3) 
permits detailed studies [2] of the competition between 
short-ranged (pairing) and long-ranged interactions 
characteristic of many nuclear models at zero [3] or 
at finite [5] temperatures. It turns out that for 
[zl < = e / ( N - 1 ) ~ Z c  the ugs coincides [1,9] with the 
Hartree-Fock (HF) solution of 

~= -eJ~+�89 (J~ +Y~). (8) 

For [)C] > )G the ugs becomes unstable against 2 par- 
ticle-2 hole excitations and the HF solution becomes a 
linear combination of states with J = N / 2  and J~= 
- N / 2 , . . . ,  + N /2 ,  with coefficients specified [ 1, 9] by the 

N 
binomial distribution ( j z  + �89 N ) �9 

Actually, the intensive HF  energy becomes independ- 
ent of N as a function o f z '  =;g ( N -  1), so that the pre- 
vious picture holds also in the thermodynamic limit 
(N>> 1). Thus, the fact that the ugs coincides with the HF 
solution for a finite range of coupling values is also true 
in this case, where it is known [4-5] that HF yields exact 
intensive mean values (but not fluctuations [10]) in this 
type of model. 

Similarly, a Fermi sphere of plane waves (PW) with 
k values filled up to the Fermi momentum k F constitutes 
the lowest energy PWHF solution for a variety of two 
body interactions [6] modeling numerous neutral quan- 
tum fluids. Such a state has been called [6] the normal 
occupancy state. We here extend that designation to 
the ugs (Fig. 1, upper panel) denoted by I J = N/2 ,  Jz =- 
- N /2 ,  Q = Q0 = 0),  which as we have seen, provides the 
lowest HF energy also for a finite range of coupling val- 
ues. Thus, normal occupancy is associated within the 
GLM model with a complete absence of pairs of fermions 
coupled to J z = 0  (Q=0) .  At this point, having estab- 
lished this concept, we leave the subject of the monopole 
interaction [7]. 

In the same vein, a state with Q g: 0 and J~ = - v / 2  
is the lowest-lying state of the multiplet I J ( N / 2 ,  
Q, J~, Q0 = 0)  for an interactionless GLM system, but this 
state lies at an energy higher than that corresponding to 
the ugs. These states correspond to abnormal occupancy, 
in keeping with the terminology of [6], and which are 
typified by lower energy N-particle HF  determinants pos- 
sessing unoccupied s.p. states below the highest occupied 
s.p. state. Abnormal occupancy is thus characterized 
within the GLM model by the existence of some pairs of 
fermions coupled to Jz = 0, namely, by a seniority v smaller 
than Vma x-= N, see Fig. 1, lowest panel. Abnormal occu- 
pancy becomes an important concept if, for some inter- 
acting many-body system, the concomitant "abnormal" 
states are energetically favored by the two body inter- 
action [6]. This in fact is the situation here with the ham- 
iltonian (3) as we shall see. 

Indeed, one easily finds (the subscript zero indicates 
zero temperature) [3] that, for weak enough coupling, 
[see below, (13)], 

E o (ugs) = E o (normal) = - 1 e N  (9) 
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Fig. 1. Illustration of the GLM two-level model with 2g2 different 
states (labeled by p) occupied by N(=2g?) particles, all in the 
lowest level (top panel); half in the lower and half in the upper 
level, and all paired (middle panel); and a mixed situation in which 
a certain fraction 0 < v < 1, defined in (6) and (14) of the particles 
are unpaired (lowest panel) 
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r=-J/N,  q=-Q/N,  v = v / N ,  (14a) 

g-=NIG I , (14b) 

and, if present, Z '  =X ( N -  1), with e remaining unscaled. 
The quantities (14a) can be regarded as continuous var- 
iables in this limit. Thus, v is the maximum fractional 
number of particles which are unpaired. The coupling 
constant scalings are required in order to obtain finite 
intensive energies in the thermodynamic limit [4, 5]. With 
these scalings, the same qualitative conclusions as above 
hold in this limit, and equation (11) becomes g >  4e /  
(1 --v)--g~,. 

In case the monopole interaction (7) is present, the 
value of G~ is higher (see [3] for more details). In the 
thermodynamic limit, where the intensive HF energy is 
exact, we have g~z" = 4 [Z' (v/2) 2 § e 2/4Z'] /(1 -- V)2. 

It is important to stress that our abnormal states ar 
partially superconducting (PSC) states (see Fig. 1, lowest 
panel) with particles unpaired, but still characterized by 
the existence of pairs of fermions coupled to J~ = 0, which 
can be scattered by the ~+ ()_ interaction term in (3) 
into doubly unoccupied states (p +, p - )  (hole pairs). A 
flow (or "hopping") of pairs thus becomes possible in 
these PSC states, hampered only by the presence of the 
unpaired particles. We shall then find that, in addition 
to the ordinary v = 0  superconductivity, the extended 
(pairing) GLM model exhibits other types of supercon- 
ductivity, for all values of the coupling parameter. 

represents the ground-state energy. On the other hand, 

E0 (abnormal, v < N ) =  - �89  eN+�89 e (N--v)  

-�89 IGI [ � 89  11, (lO) 

so that 

E 0 (abnormal) < E o (ugs) 

2E 
for [G I > =-G~ (11) 

v 
s 1 - -  

2 

Analogously, the ordinary superconducting state (SC) 
(see Fig. 1, middle panel) is that associated with v = 0 [8]. 
Thus [3] 

E~~189 l a l e ( n +  1) (12) 

so that s176 lies lower than E o (ugs) whenever 

Re 
IGI > G o -  (13) 

v 
~ 2 + 1 - -  

2 

and where we note that G~ > G ~ for v > 0. 
Let us consider now the thermodynamic limit. Ap- 

propriate scaling suggests introducing the following "in- 
tensive" quantities [4, 5] 

IV. Finite temperature results 

We now proceed to switch on the temperature. Two qual- 
itatively different situations ensue: the finite N case and 
the thermodynamic limit. Without embarking into any 
explicit calculation, by recourse to the crossover theorem 
[4] for the present model, we can state that if our system 
undergoes a ground state ( T =  0) phase transition (from 
normal to ordinary superconducting) as we increase the 
coupling constant [ G], then the system will undergo the 
reverse thermodynamic phase transition at fixed G when 
T is increased. 

Hence, noting that according to (11) and (13), 
G~ > G ~ which implies for the reverse thermal transition 
T~Y > T ~  we reach the conclusion that the PSC phase 
survives at higher temperatures than the ordinary SC 
state. We next proceed to a detailed study in the ther- 
modynamic limit, where we shall show that the PSC phase 
may survive at arbitrarily high temperature. This limit 
has been extensively studied in [4] and [5], and we employ 
throughout the notation of the latter reference. Earlier 
fundamental work, but related to the BCS model, can be 
found in [ 11 ]. 

We shall work in the present work within the "ground 
state band" [3] 

r+q=�89 (15) 

so that 

m l  r - ~  v,  q = l ( 1 - v ) .  (16) 
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The entropy per particle [5] is 

lira In [ Y(J, Q)] 
2a-~  2f2 - s ( r ' q ) = - s ( v )  (17) 

which after employing Stirling's formula reads 

s ( v ) =  - k [ ( 1 - v ) l n ( 1 - v ) + v l n v ] .  (18) 

This vanishes for v = 0 and v = 1, and is a maximum with 
value k In 2 for v = 1/2. The free energy per particle can 
be expressed solely in terms of  the intensive seniority v 
a s  

f =  lira ( ~ ) / 2 s  Ts(v)  (19a) 
2 s  ~ oo 

= - � 8 9  vy 

+ kT[(1  - v) In (1 - v) + v In v] ,  (19b) 

For  fixed coupling g and fixed temperature T, f (v) will 
possess an extremum if f '  ( v ) =  0, i.e., when 

v = { 1  + e x p [ � 8 9  1 

= { 1 + exp [ (dE(v) /dv) /kT]}  - 1, (20) 

where E ( v ) = - � 8 9  2 is the intensive mean 
energy. Clearly, we get a Fermi distribution with zero 
chemical potential, where d E ( v ) / d v  is the energy re- 
quired to change the seniority from v to v + d r .  The form 
(20) is expected since we are dealing throughout with the 
grand canonical formalism. This (exact) variational pro- 
cedure can be shown to be equivalent to a (constrained) 
finite temperature BCS treatment [5, 12], with the acces- 
sible states restricted to the ground state band. Our ex- 
t remum is also a minimum if f "  (v) > 0, or when 

[v (1 - v ) ] - I  > g/(4 T).  (21) 

Whereas for T = 0  (21) admits only v = 0  or v =  1, for 
T >  0, 0 < v < 1. Thus, three different situations or 
phases occur according to the value of v, namely, 

a) v = 0, ordinary superconducting (SC) phase, with 

f (0) = - g/8 (22) 

b) v = 1, normal (NOR)  phase, with 

f ( 1 ) =  - e / 2  (23) 

and 

c) 0 < v < 1, partially superconducting (PSC) phase. 

The latter includes the maximum entropy state, charac- 
_ _  1 Therefore, f rom (19), this is the value terized by v -  3. 

which minimizes f ( v )  at infinite temperature, demon- 
strating thus that the PSC phase survives at arbitrarily 
high temperatures. For  T = 0 ,  (22) and (23) give 
f ( 0 )  > f ( 1 )  for g > 4e, implying that the SC phase is 
more stable in this region. Figure 2 summarizes the three 
phases in the g -- k T plane. 

For  finite N, the straightforward procedure is to eval- 
uate the partition function [5] using the multiplicity fac- 

I ////// 

(,~=0) ~', Majority (v ~)/////// 

,,,,-,D I l l . . ~ / . . (  / / 1 / / / / / / / . .  ',"'"r', ~1/Minority ( v > ~ ) ' / / / / / /  
l / / / / / / /  / / / / / / /  

0 kT 
Fig. 2. Pairing GLM model N-body system phase diagram indi- 
cating regions where each of the three 'phases' described in Fig. 1 
is most stable, as a function of the coupling g and temperature k T 
(both in units of e, Fig. 1). The partially-superconducting (PSC) 
region is divided into three subregions where a majority, a minority 
or equal numbers of the N particles are unpaired in the lowest free- 
energy state as given by (19) minimized with respect to v 

Table 1. Values of v which minimize the free-energy-per-particle 
(19) for typical values ofg and kT (both in units of e) 

g\kT 0.0 0.2 0.4 1.0 3.0 6.0 9.0 

1 1 0.917 0 .749  0 .599  0 .532  0.516 0.510 
12 0 6• 10 -5 0.002 0 .100  0.391 0.453 0.470 

Table 2. Values of -min  f (v) for typical values of g and k T (both 
v 

in units of e), where f (v )  is the free-energy-per-particle (19) 

g\kT 0.0 0.2 0.4 1.0 3.0 6.0 9.0 

0 0.5 0 . 5 1 6  0 .601 0.975 2.34 4.41 6.49 
1 0.5 0 . 5 1 7  0 .608  0.994 2.37 4.44 6.52 
4 0.5 0 .521  0.652 1.07 2.45 4.53 6.61 

10 1.25 1.25 1.25 1.40 2.67 4.73 6.81 

tor (4). In the same way as before, for finite N the mul- 
tiplicity is maximum for v = N/2 within the ground state 
band. Hence, a PSC state will become the most probable 
state as T increases for any N =  2g?. 

In this paper  we are especially interested in situation 
(c). Note  that both the N O R  and SC phases are highly 
ordered phases not ordinarily expected to survive high 
temperatures. We have calculated the minimum value of 
(19) for many pairs of  values (g /e , kT /e ) ,  for each of  
which the transcendental (20) was solved and the con- 
dition (21) verified as a check. Table 1 lists some typical 
v values minimizing f for g/e = 1 and 12. It  clearly il- 
lustrates how for low temperatures and fixed g/e < 4, a 
minority (v < �89 of  the particles are paired, whereas for 
g/e > 4 a majority of particles are paired. For  T ~  oo, we 
have an equal number of  paired and unpaired particles 
( v = l ) .  Table 2 gives some typical absolute values 
of  the minimum free energy for several pairs of  values 
(g/e,kr/~). 

V. Conclusions 

Many quantitative and qualitative aspects of  supercon- 
ductivity are mimicked by a suitably extended version of 
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the two-level GLM model, which has the advantage of 
being exactly soluble, so that no approximations are 
needed to deal with the facets of the superconducting 
problem of interest. Here we were looking for nonordi- 
nary superconducting phases, and it has been shown that 
the model indeed exhibits them. Furthermore, these par- 
tially superconducting phases survive at arbitrarily high 
temperatures in ground-state band calculations. 

Our partially superconducting phase is a mixture of 
states with just some of the particles paired which, in the 
absence of interactions, are higher in energy compared 
with the normal state in which no particles are paired. 
The concomitant states can be regarded as abnormally 
occupied in the spirit of  [6]. For  weak coupling ,this phase 
consists of states where a minority of  the particles are 
paired, whereas for coupling greater than a certain critical 
value it consists of states with a majority of the particles 
paired. 

In both cases, as the temperature rises, this phase ap- 
proaches a mixture of equal numbers of  paired and un- 
paired fermions. The inherent mechanism responsible for 
the survival of this non-ordinary superconducting phase 
is the fact that in the ground state band the number of 
accessible states reaches a maximum for v = �89 We con- 

clude that abnormal occupancy and constrained statistics 
may be intimately connected with high-~, superconduc- 
tivity phenomena. 
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