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A variational method for the self-consistent solution of the nuclear many body problem 
with the inclusion of correlations is formulated. The trial function in this multi- 
configuration-Hartree-Fock (MCHF) theory is a linear combination of unrestricted 
Slater determinants. The MCHF equations are given and a simple procedure for 
solving them is outlined. A great advantage of this method is that it also yields the 
excited states. It is shown that the trial function is stable against particle-hole ex- 
citations. Therefore the Slater determinants differ from each other at least by two 
particle -- two hole excitations. This method is applied to the Lipkin model. In the 
MCHF method the difference to the exact solution is reduced by a factor three to 
ten compared with the corresponding value in the HF approach. 

1. Introduction 

With in  the last  few years  i t  became more  and  more  obvious  tha t  
even the doub ly  closed shell nuclei  are  no t  correct ly  descr ibed by  the 
independen t  par t ic le  pic ture  of the  H a r t r e e - F o c k  ( H F )  approach .  This 
was es tabl ished ~ no tab ly  for  4~ by  t ransfer  react ions  like (d ,p) ,  
(aHe, d), (3He, ~), (d, t),  (t, ~). H a r t r e e - F o c k - B o g o l y u b o v  ( H F B )  calcu- 

* Work done under the auspicies of the Consejo Nacional de Investigaciones Cienti- 
ficas y Trcnicas, Argentina, and the Deutsche Bundesministerium for Wissenschaft- 
liche Forschung, Germany. 

** Member of the Scientific Research Career of the Consejo Nacional de Investi- 
gaciones Cienttficas y Trcnicas, Argentina. Present address: Institut fiir Theoretische 
Physik der Universitat Mtinster, Germany. 

1. B~LOT~, T. A., A. SPERDtrrO, and W. W. BUECHN~R: Phys. Rev. 139, B 80 (1965). -- 
DORENBUSCrI, W. E., T. A. BELOTE, and O. HANSEN: Phys. Rev. 146, 734 (1966). -- 
BELOTE, T. A., W.E.  DoR~mvscrI, and I. RA1'APORX: Phys. Rev. 156, 1255 
(1967). -- LYNEN, U., R. BocI,:, S. SANTO, and R. STOCK: Phys. Letters 25B, 9 
(1967). 



Multi-Configuration Hartree-Fock Theory in Nuclei 89 

lations 2 showed that pairing alone can not explain the large correlations 
detected in the ground states of 160 and specially of 4~ Two different 
methods have been tried to find these correlations in the ground state: 

CELENZA, DREIZLER, KLEIN and DREISS 3 performed HF calculations 
in a60 for the ground state, the states with two holes, and the states 
with four holes in the lp-shell. Afterwards, they diagonalized the 
neglected residual interaction H22 in the basis of the HF ground state, 
the lowest 2 p - 2 h  state, and the lowest 4 p - 4 h  state. On the other 
hand AGASSI, GILLET, and LUMBROSO 4 performed an RPA calculation 
on an oscillator basis and calculated the correlated ground state ac- 
cording to SANDERSON 5. 

Neither method is completely self-consistent. The procedure of 
CELENZA et al. 3 finds the single particle states by minimizing the energies 
of the uncorrelated ground state, the 2 p - 2 h  states, and the 4 p - 4 h  
states. A6ASSI et al. 4 do not try at all to be self-consistent. 

In this paper we want to propose a method to find the correlated 
ground state in a self-consistent way and which in addition yields also 
the excited states. We utilize a variational procedure, choosing as the 
trial function a linear combination of unrestricted Slater determinants. 
A similar ansatz but restricted to only two Slater determinants was 
proposed by BREMOND 6. VEILLARD 7 formulated this two-configuration 
Hartree-Fock theory and HINZE and ROOTHAN s generalized it to a 
multi-configuration Hartree-Fock (MCHF) theory for atomic physics. 
But they imposed some limitations on the form of the allowed configura- 
tions (Slater determinants), which result in important mathematical 
simplifications. Here we are extending the MCHF theory to unrestricted 
configurations and adapting i t  to nuclear physics. 

In Section 2 the general MCHF equations are derived and it is 
proved that the MCHF-function is stable against one particle-one hole 
excitations, while in Section 3 a simple procedure for solving the MCHF 
equations is outlined. Section 4 deals with the application of the theory 
to a simple model and, finally, conclusions are discussed in Section 5. 
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(MCHF)  method we 

(1) 

. . . . . .  2. Theory 

For the multi-configuration Hartree-Fock 
choose the trial-function 

I ~ ) = F , C ~ I I > .  
I 

The Slater determinants I I )  represent different configurations of self- 
consistent single particle states [i), ]k), 1l), I m), ... 

I / ) =  I-[a~ 10> 
i c I  

with: 
l i)=ai* 10). (2) 

" i c I "  indicates that the product goes over all A states belonging to the 
configuration II) .  If one takes all possible configurations I I )  the 
variation of the Cz alone already leads to the exact solution within this 
space. The number of configurations in a Space with N single particle 

functions and A particles is . Since this is a very large number for a 

reasonable Hilbert space, the sum in Eq. (1) is restricted to the confi, 
gurations, which lie lowest in energy. We vary the single particle states 
l i)  to compensate by part for this restriction. The coefficients Cx and 
the states l i), I k )  ... in the trial function (1) are determined in the  usual 
way by variation of the expectation value of the  total Hamiltonian: 

H=~,hka~ak+(1/4 ) ~, Vik;m.a[a~a,,a,,. . . . . .  : (3) 
ik ikmn 

The expressions hk and Vik; mn represent the  matrix elements of the 
kinetic energy and the antisymmetrized matrix elements of the nucleon- 
nucleon interaction respectively. In Eq. (3) one can subtract the operator 
for the total kinetic energy of the nucleus 

Tcu-  1 ~(ilp2lk)atiak 
2mA ik 

1 (4) 
ai ak an am + ~  ~ (iklp(1)p(2)lmn) t t 

ikmn 

to correct for the centre-of-mass motion. We assume that this correction 
is already included in the one- and two-body matrix elements of the 
Hamiltonian (3). 
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The expectation value of the total Hamiltonian (3) wi th  the trial 
function (1) yields: 

< gt[ H [ k c ) :  Z Cx <i1H [J) Cj = ~ C, {fit; s ~ tii+ 1/2 6f;s 
I, J I, J i c I  

(5) 
�9 ~ ]  B ~; i k + ~ < k;~<s 3 ( i ~ j ) - ( ~ n j ~ ;  r ~ ~ ~ ~z = ~ k ~ =r ~} C s .  
i k ~ I  

The single particle states are assumed to be ordered, so that the notation 
i<k is meaningful. Symbols of the theory of sets are utilized to simplify 
the notation. " i ~ I "  indicates that the sum (or product) runs only over 
singleparticle states which are occupied in the configuration L The 
Kronecker Delta symbol 61=ik is zero if one of the states [i> or [k) is 
not occupied in the configuration [I)  and it has the value 1_ when both 
states are occupied. The symbol 6(1~s)_t~s)i ik,~ has the value i if the 
non-common states of the configurations [I> and l J )  are ]i), ]k), It), 
and [s), being zero otherwise. 

If one restricts the trial function (1) to only one Slater determinant 
(one coefficient CI equals unity and all other zero), expression (5) gives 
the total energy of the Hartree-Fock (HF) approximation. 

In Eq. (5) we have employed a property of the wave function [T J> 
which is well known in the HF case. We justify this procedure by for- 
mulating the following theorem: 

Theorem. The MCHF wave function ]7 j )  is stable against one 
particle-one hole excitations. 

This theorem will be proved by assuming that the trial function 1 7J) 
is a linear combination of configurations which are distinguished from 
each other by at least two particle-two hole excitations. The variation 
of the expectation value (5) is requested to be zero with respect to single 
particle states 1i), [k> . . . . .  We are thus lead to the following equation. 

O= (kgl (2~,qatpaq)t H [ ~g> = 2C , ( I [  2~*qa~ apH 
Pq $ , J  Pq  

(6) 

The configuration I J )  :I: [I)  

-a* * asci[I ) ] J ) -  ,csa, csar=i (7) 

can be written in this way because a two-body operator connects at 
most a 2 p - 2 h  state with its reference state. 

After introducing quasi-particles with l I )  as the vacuum, the appli- 
cation of Wick's theorem and the independent variation of the coeffi- 
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cients (pq results in the equation: 

* t , , pqZ +2 Vpk.,k 2 )a,.. 2 2 
I ~ q  k I ~ q k  u>v I a r s  

r ( < s )  J = u v  

�9 ( ~ p c l : i C i C j ( ~ ( t u j ) _ ( i n , l ) ; r s u v ) = O .  
(8) 

The single particle states are assumed to be ordered so that the notation 
u>v is meaningful. This restriction prevents double counting of a 
configuration. 

Eq. (8) says that the wave function 17/) is stable against a particle- 
hole excitation (from q to p in the diagonal part and from s to p in the 
off-diagonal part). 

Thus one can assume that the sum in the trial function (1) runs over 
configurations which are distinguished among themselves by a least a 
2 p - 2 h  excitation. The variation 

(6~[ H[~> - Z  ~kl (6i [ k> - E  2 6 C, C i=0 
f k  I 

(9) 

leads to two sets of equations: 

One for the determination of the coefficient CI 

with: 

2 (I[ H [J> Cs = EC, (10) 
d 

(IlHld)=a,;a{2 fi,+l/2 2 V~k;'k}+V~<k;~<* 
i = l  i k = I  

�9 (~(IwJ)-( I tnJ);  i k r s  6 I = i k  OJmrs  

and a second for the determination of the single particle states [i). 
We expand the states [ i)  

li)=2Aaila) 
a 

l a )  = 2  A*, [i) (11) 
i 

into a complete basis system l a>, ]b), I c), [d) . . . .  to formulate the second 
set of equations. 

2t .  bX(i) Abi+ ~ V~;bdX(ik)AbiA*kAdt 
b b c d ; k  

+ 2 S(ik; fs) V.~; bd X(ik;  rs)Ab,A*kAd,--s 
b c d  k 

02) 
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The configuration density matrices X (ik; rs) are defined by the following 
expressions: 

J = i k ;  I ~ r s  

X(/k; ik)-X(ik)= Z c, (13) 
I = i k  

X(i) = X(i i)= }-' Cf. 
I ~ i  

In the symbol 

S(i k; r s)=~i< k fir<s+ r ~r>s 

the bars in the Eq. (12) indicate a summation over the underlined single 
particle states. The Kronecker Delta 6i<k is unity for i<k  and zero 
otherwise. This avoids double counting of configurations in the off- 
diagonal term of Eq. (5). ek~ are the Lagrange multipliers for the ortho- 
gonality of the single particle states. 

(ilk)=6~; k. (14) 

In the HF-approximation eki can be diagonalized, since a Slater deter- 
minant is invariant under a unitary transformation between the occupied 
states. The MCHF wave function is a linear combination of different 
Slater determinants, so that a diagonalisation of the eki is impossible. 
The physical interpretation of this result is obvious: Since 1~) contains 
correlations between the particles, the concept of single particle energies 
elk =6i; k ~i is lost. 

The MCHF problem is now given by the coupled system of Eqs. (10), 
(12), and (14). A possible procedure for the solution of this problem will 
be suggested in the following section. 

3. Solution of the Multi-Configuration-Hartree-Fock-Equations 

In order to solve the multi-configuration Hartree-Fock equations 
(MCHF) (10), (12), and (14) we shall follow closely a quadratically 
convergent method proposed by HINZE and ROOTHAN 8. The procedure 
can be summerized in the following steps. 

~) A Hartree-Fock (HF) calculation allows one to find a zero order 
set for the coefficients A-= A, ~ defined in Eq. (11). 

fl) The single particle states 

] i )=~A~i la )  
a 
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defined by the A v corresponding t o t h e v  th iteration are utilized to build 
the configurations I I )  and to calculate the elements (II HI J )  of Eq. (10). 
A diagonalisation of this matrix (10) yields the coefficients C] '" ( a = l  
for the ground state �9 and a >  i for excited states). 

?) The orthogonality relation of the A~i allows one to eliminate e~,i 
out of Eq. (12) as a function of the AV's and the Coefficients C{' 1 

8) One corrects now the coefficients A ~ by introducing into Eq. (12) 
and into the e~i the expression A ~+ t =A~+ 6A. Linearizing the resulting 
expression a linear inhomogeneous equation for the 6A obtained; 

e) The improved coefficients A ~+ 1 are orthogonalized by the Schmidt- 
method. The steps fl to e are repeated until convergence is attained 
(6 A-~0). 

The Hartree-Fock method (HF), which is utilized to find the zero 
order approximation for the coefficients A, is well described in the 
literature (see for example the Ref. 9-11). The selection of the different 
Slater determinants l l> is a straightforward procedure. In s t ep?  one 
has to take into account, that the matrix eJk is hermitian. If the hermitian 
conjugate of the equation 

6 <~1HI~> =Z ~,~ 6 <k] i>+E Y~ 6 C, c, (15) 
i k  I 

is subtracted from Eq. (15) one finds the equations: 

�9 ~ 2 (e ik -=a* , )  6 (k l  i> = 0 ,  a , k = e ~ i  . (16) 
i k  

It is well known, that the phases of the basis states a>, [b> . . . .  can be 
chosen in such a way that the elements t~ and V,b; ~d are real. But it is 
not generally true that real coefficients A, ~ will yield the deepest energy 
minimum of: 

<7~1HIT~>. : �9 (17) 

But from now on we shall assume as usual that all the matrix elements 
and all coefficients A,~ are real. Eq. (16)now requires that the matrix 
for the Lagrange multipliers e~k be symmetric. We guarantee this by 
eliminating e~k from the Eq. (12) with the help of the orthogonality 
relation 

E A,  t A ,  k =6k;t (18) 

9, RIPKA, C.: 7fbr Hartree-Foek theory und nuclear deformations. Lectures in 
theoretical physics 1965, vol. VIII C. University of Colorado Press. 

10. DAVIES, K. T.R., S.J. KFamER, and M. BARANeER: Nuclear Phys. S 4, 545 
(1966). . . . .  

11. FAESSLER, A.: Hartree-Fock-Bogolyubov calculations in light nuclei. T--0 and 
T= 1 proton-neutron correlations. Lectures on nuclear many body problems, 
Herceg Novi 1967. 
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in the following way: 

e~ i = 1/2 (~k, + el k) 

= 1/2 ~ (A.k ~, e,i A.,+Aa, ~ elk A.1) 
a l 

= l/2 Ak,[Z tab Aak Ab, X(i) 
ab 

+ ~ Vac;bdAakAbr 
. a b c d ; l  

+ ~ S(i!;rs) Vac:bdAakAbrA, tAa, X(il;rs) (19) 
a b e d  

+ ~ tobAo~Abk • 
ab 

" ~ -F ~.Vae;bdAaiAbkA~iAdtX(kl) 
: a b e d ;  1 

+ ~ S(k/;rs)  Va~; bdAaiAbrAcl Ads X(kl; rs)] 
a b e d  

with: 
A~k=~t;k for i, k c a l l I  (20) 

] 1 for i, k r  

Introducing the symbol A ~k we want to take advantage of the following 
degree of freedom: A determinant is unchanged by a orthonormal trans- 
formation among a part or all of the occupied states. If an inert core of 
states [ml),  Im2), ... ]me) is occupied in all the configurations l I ) ,  
one can utilize the free orthonormal transformations among the Ira1) �9 
[me) to diagonalize %t for (, k<mc. 

i n  step 6 we introduce the symmetrized ek, of Eq. (19) into Eq.(!  2) 
and replace A~i by A~ + x =A~i+aAa ~. The linearisation of the resulting 
expression yields: 

Y (20 Mal; bk t~Abk = DVai. 
b,k 

The superscript v indicates that the matrices M and D are constructed 
using the coefficients A of the v th iteration. 

The Schmidt orthogonalisation required in step e is also a well known 
method: 

i - 1  

- . " : -  - �9 ' - ' 4 a i = A a l  . -  2 N Aak ~, A~k Ab4. (22) 
k = l  b 

�9 Aai =Aa i(~ A2~) -1!2" (23) 
b 
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For this procedure it is of advantage to order the states ] i)  so, that in 
the overlap matrix 

oi k = ~ Aa * Aa k (24) 
a 

the smallest off diagonal elements lie in the upper left corner and the 
largest in the lower right one. In this way one gets the least possible 
rearrangement of the single particle states. The main difficulty of the 
whole procedure is the size of the matrix M~ i; bk. Without making use 
of symmetries it exceeds already for 160 (with a basis including all 
states up to the 2 s - 1  d shell) the numerical possibilities of standard 
calculating facilities. Time reversal and isospin invariances suffice to 
reduce already the problem to managable dimensions. The size of the 
matrix M can be furthermore reduced, if one requests for additional 
symmetries: 

Rotational invariance around the intrinsic z-axis and parity invariance 
restrict the summation in Eq. (11) to states of the same angular momen- 
tum projection K and parity n: 

�9 aiCn I t ; K n ) = ~  ai la;Kn).  (25) 
a 

These symmetry requirements also allow for reduction of the remaining 
matrix Ma ,r,,,,; bkr~,~ into smaller unconnected matrices: 

�9 . r ,  ~, (26) m a  i Kin~; b k Kk *tk'~'(~Ki; Kk (~*ti; 7t k IVlai;  bk" 

This entails that we neglect in each cycle of the iteration the effect on 
the matrices M ~' r caused by the changes in the coefficients A~i r which 
belong to different symmetries. Although this slows down the conver- 
gence of the iteration, it reduces drastically the size of the irreducible 
matrices. 

4. Applications to a Simple Model  

The above developed multi-configuration Hartree-Fock (MCHF) 
theory will now be applied to the LIPKIN 12 model. This simple model is 
suggested by LIPKIN and coworkers 12' 13 for testing new approaches to 
the solution of the many body problem. The Hamiltonian is of such a 
form that it allows for such an exact group theoretical solution. 

The model consists of two N-fold degenerate single particle levels 
([pa);  a = + _ l ,  p = l  . . . .  N). They are separated by an energy gap e. 
The number of nucleons is N. The interaction is a monopole force 

12. LIPKIN, H. J., N. MESKOV, and A. J. GLICK: Nuclear Phys. 62, 188 (1965). 
13. AGASSI, D., H. J. LIPKIN, and N. MESHKOV: Nuclear Phys. 86, 321 (1966). 
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scattering two particles from one level into the other. 

/~=(112) 8 Z ~rc~c,~+l/2V~c~ctq~c~_~c,_~. (27) 
or= + 1 ,  p = l ,  . . . g  pq~r 

With the help of the quasi-spin operators 

Jz(C)= 1/2 Z 4 c, 
p, r  

J+ (c) = J+ (c) = Z c; + e,- ,  (28) 
P 

which fulfill the angular momentum commutation rules, one writes the 
Hamiltonian into the form a2: 

H = Jz(c) + 1/2 v [j+z (c) + j_a (c)]. (29) 

The energy is now given in units of the single particle energy e (v = v/g). 
The unperturbed ground state [n=0, e) (an n=0  particle-n=0 hole 
state in the basis or "c" representation) is the member with the lowest 
quasi-spin projection in the following representation: 

IJ=(1/2) N; J z=n-J ;  c ) -[n;  c). (30) 

Since the Hamiltonian (29) is not changing the total quasi-spin the 
finding of the exact solution implies that one has to diagonalize a 
2J+  1 = N +  1 matrix. These solutions have been tabulated by LIPKIN 
et al. 12. 

The HF approach looks for the Op-Oh wave function In=0, a) in 
the self-consistent or "a" representation. The basis and the single particle 
states are connected by the unitary transformation: 

Q a ~ - ~ = (  cos 2fi--- - i s i n ~  (cpt- / 

@./ ~_/sin2fl__ c~ fl ) \ c t . / .  (3l, 
In quasi-spin space this corresponds to:a: 

Jx(c) = 1/2 [J+ (c)+J_ (c)] =Jx(a) 

Jy(c)=i/2[-J+(c)+J_(c)]=cosflJy(a)-sinflJ~(a) (32) 

J~ (c) = cos fl J~ (a) + sin fl Jz (a) 
o r :  

Ic)=R(- f l ) la)  

l a) =R(fl) I c). 

fl is the second Euler angle representing a rotation around the x-axis. 
7 Z. Physik, Bd. 220 
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The HF-solution 

can easily be found13: 

For: 1 > v ( 2 J -  1) 

For: 1 < v ( 2 J - 1 )  

A. FAESSLER and A. PLASTINO: 

6 (0, a I H(a) 10, a) =0 (33) 

/~=0 

Er i  F = - - J - - -  -(1/2) N. 

cos fl = [v(2J-  1)]- 1 _ b- 1 

EHF = --J/b-- 1 /2Jb(1-  b-a). 
(34) 

Although it is not explicitly stated in Ref. la one can easily show that 
the HF ground state has the form: 

10, a ) - l J ,  - J , a )  

=~ln, ,  c) (n, cl R(-]?)10, a) (35) 

N 

= ~ d~s;._s(-/~) In, c). 
n=0 

The function d~,,~(/~) is defined by EDMONDS 14 in Eq. (4.1.15). But 

our phase convention (31)requires the replacement of sin 2P--- by isin 2P---. 
The expressions needed in Eq. (35) are: 

dl/ZN ,_1,2N(~)=(_), ( N, ~ 1/a (cos ~ )N-"  (i sin ~_)"" (36) -112N; n l ( N - n ) ! !  

The absolut squares of these amplitudes represent a binomial distribu- 
tion as found by AGASSI et al. ~z. 

The MCHF approach takes 

l~)  = E b n n, a) 
n=0, 2 . . .n  (max) 

as the trial wave function. We restrict ourselves to the two configurations 
10, a) and [ 2, a). 

IT) =cos ~b 10, a ) +  sin q512, a) 

(T  I HI T) = cos z r (0, a [ HI 0, a) (37) 

+2cos r sine (2, al HI0, a ) +  sin2 ~b (2, alHI2, a). 

14. EDMONDS, A.R.: Angular momentum in quantum mechanics. Princeton: Uni- 
versity Press 1960. 
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Table. Total binding energies of the exact, the I-IF, and the MCHF solution in the 
Lipkin 12 model 

The first column gives the number of nucleons, the second the coupling constant 
v in energy units of e. The next column lists the exact total binding energy. The two 
last columns represent the difference between the HF and the exact energy and be- 
tween the HF and the exact energy and between the MCHF and the exact energy, 
respectively. All the energies are in units of the level splitting e. 

N N• v E (exact) AE (HF) AE (MCHF) 

14 0.4 -- 7.038 0.038 0.002 
0.6 -- 7.088 0.088 0.007 
0.8 -- 7.163 0.163 0.024 
1.0 -- 7.270 0.270 0.060 
2.0 -- 8.636 0.251 0.087 
5.0 -- 17.268 0.264 0.017 

30 0.4 -- 15.040 0.040 0.002 
0.6 -- 15.094 0.094 0.008 
0.8 -- 15.179 0.179 0.035 
1.0 -- 15.314 0.314 0.096 
2.0 -- 18.547 0.168 0.019 
5.0 -- 38.049 0.247 0.013 

50 0.4 -- 25.041 0.041 0.003 
0.6 -- 25.096 0.096 0.011 
0.8 --25.186 0.186 0.040 
1.0 --25.340 0.340 0.119 
2.0 -- 31.039 0.161 0.017 
5.0 -- 64.043 0.242 0.012 

The matrix elements are easily calculated with the help of angular  
m o m e n t u m  algebra. The total  energy is minimized as a funct ion of the 
two angles ~ and  ~b. 

The table shows the exact total  b ind ing  energy of the modelnuc leus  12. 
Fur the rmore  the difference between the H F  and  the exact b ind ing  
energy and  the difference between the M C H F  and  the exact b ind ing  
energy are listed. The last numbers  are by a factor three to ten smaller 
than  those corresponding to the H F  case. 

5. Conclusion 

A linear combina t ion  of Slater determinants  has been used as a trial 
funct ion  in  the nuclear  m a n y  body problem. Both the single particle 
states and  the coefficients of the different configurat ions are varied at 
the same time. One thus obtains the energy m i n i m u m  of the expectation 
value of the total  Hamil tonian .  This mul t i -conf igurat ion Har t ree-Fock 

7* 
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(MCHF)  approach yields a relatively simple system of equations for 
the determination of the coefficients and single particle states. The 
method not only gives self-consistently the ground state with the in- 
clusion of correlations of any type but  also the excited states. Due to 
the inclusion of correlations it is impossible to speak in this approach 
of single particle energies: The matrix of the Lagrange multipliers for  
the orthogonality of the single particle states yield the single particle 
energies as eigenvalues in the HF-approach.  In the MCHF-approach  
such a diagonalisation is impossible. This is the price one has to pay to 
include correlations. 
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