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Abstract

We discuss a general formalism based on the mean field plus random phase approximation (RPA) for
the evaluation of entanglement measures in the ground state of spin systems. The method provides
a tractable scheme for determining the entanglement entropy as well as the negativity of finite sub-
systems, which becomes analytic in the case of systems with translational invariance, in one or D
dimensions. The approach improves as the spin increases, and also as the interaction range or connec-
tivity increases. Illustrative results for different types of entanglement entropies (single site, block and
comb) in the ground state of a small spin lattice with ferromagnetic type XY couplings in a transverse
field are shown and compared with the exact numerical result. Effects arising from symmetry breaking
at the mean field level are also discussed.

Keywords: quantum entanglement, random phase approximation, bosonization.

1. Introduction

The entanglement properties of many-body systems are of great interest in quantum information
theory [1] and condensed matter physics [2–4]. On the one hand, they allow one to determine the
potential of a given many-body system for various quantum-information-processing tasks that require
entanglement as an essential resource [1, 5–10]. On the other hand, they provide a deep understanding
of quantum correlations and their relation with criticality [2–4, 11, 12]. Nonetheless, the evaluation of
entanglement in strongly interacting many-body systems remains in general a difficult task. Although
important advances have been made in recent years, with numerical treatments based on the quantum
Monte Carlo method [13], density-matrix renormalization group (DMRG) [14, 15], or matrix products
states (MPS) [16,17] providing accurate results in some systems with short-range couplings, systems with
long-range interactions, high connectivity, or large dimensionality remain in general a challenge.

The aim of this paper is to discuss a general tractable scheme for approximating the ground state
of an interacting spin system based on the mean field plus random phase approximation (RPA) [18, 19].
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Previously we have shown that such an approach was able to describe the main features of the pairwise
entanglement, i.e., that between two spins, in both the ground state and the thermal state of finite spin
systems with XY and XY Z couplings of different ranges in an applied magnetic field [20–22]. The RPA
scheme was, in fact, able to predict correctly nontrivial results such as full-range pairwise entanglement
in the vicinity of the factorizing field [22]. It was also shown that it improves for high connectivity
or increasing coupling range, providing exact results for strong fields. Moreover, the approach can be
rigorously derived from the path-integral representation of the partition function based on the Hubbard–
Stratonovich transform [20–22]. While RPA assumes, in principle, short amplitude static and quantum
fluctuations, the path-integral formalism also allows one to extend easily the approach, so to include
large-amplitude static fluctuations (static path + RPA treatment [23–26]), relevant in critical domains
of finite systems.

In this paper, we discuss the applicability of the RPA scheme to the problem of evaluating global
entanglement measures such as the entanglement entropy [27] in the ground state of finite spin systems [18,
19]. We also show how it can be applied to evaluate approximately, by means of the negativity [28], the
entanglement of arbitrary bipartitions of a subsystem [18]. We show that, in fact, the RPA approach
can provide, through a bosonic treatment, a tractable scheme for evaluating these quantities, which is
able to capture their main basic features and which becomes fully analytic in the case of systems with
translational invariance [18,19].

The main elements of the RPA formalism are discussed in Sec. 2, while Sec. 3 describes the evalu-
ation of the entanglement entropy and negativity by means of the RPA-based bosonic treatment. The
application to translationally invariant systems is considered in Sec. 4, while illustrative results for a
small XY spin lattice are provided in Sec. 5. This section also describes the basic features of the RPA
application to spin systems with XY couplings in an applied transverse field, in both the standard and
spin-parity breaking phases. Comparison between exact and RPA results for the single site, block and
“comb” entanglement entropies is made. Conclusions are finally drawn in Sec. 6.

2. Spin RPA Formalism

We start by considering a finite system of interacting spins si in an external magnetic field described
by a general Hamiltonian of the form

H =
∑

i,μ

Bμ
i siμ − 1

2

∑

i�=j, μ,ν

Jμν
ij siμsjν , (1)

where siμ = Siμ/�, with μ = x, y, z denoting the dimensionless spin at site i. We note that x, y, z may,
in principle, refer to different local intrinsic axes at each site. For D-dimensional arrays, labels i, j stand
for D-dimensional vectors.

In the RPA approach [18], the system is essentially mapped to a bosonic system. The spin RPA
formalism can be summarized in the following steps: First, the mean-field ground state |0〉 = ⊗n

i=1|0i〉,
which is the separable state with the lowest energy 〈H〉0 = 〈0|H|0〉, is determined. This state can be
obtained self-consistently as the lowest eigenstate of the noninteracting mean field Hamiltonian

h =
∑

i,μ

λμ
i siμ, λμ

i = Bμ
i −

∑

j,ν

Jμν
ij 〈sjν〉0, (2)

where 〈sjν〉0 = −sjλ
ν
j /λj with λj = |�λj |.
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Choosing now the local z axis in the direction of the local mean field �λi, such that 〈sjν〉0 = −sjδνz

and λμ
i = δμzλz

i , with λz
i = Bz

i +
∑

j Jzz
ij sj > 0, the next step is the approximate bosonization:

si+ → √
2sib

†
i , si− → √

2sibi, siz → b†ibi − si, (3)

where si± = six ± isiy and bi and b†i are boson operators ([bi, b
†
j ] = δij , [bi, bj ] = 0). This bosonization

coincides with the lowest order of the Holstein–Primakoff bosonization [29–32] and is in agreement with
that implied by the path-integral formalism [22] in the T → 0 limit. Neglecting cubic and quartic terms,
replacement of Eq. (3) in (1) leads to the quadratic boson Hamiltonian,

Hb = 〈H〉0 +
∑

i,j

[
(λiδij − Δ+

ij)b
†
ibj − 1

2(Δ−
ijb

†
ib

†
j + h.c.)

]
, (4)

or
Hb = 〈H〉0 +

∑

α

[
ωαb′†αb′α + 1

2(ωα − λα)
]
, (5)

where Δ±
ij = 1

2

√
sisj [Jxx

ij ± Jyy
ij − i(Jyx

ij ∓ Jxy
ij )] and the absence of linear terms in bi, b†i in Eq. (4) is

ensured by the mean-field choice of the local z axis. The diagonal form (5) is always feasible provided
Hb corresponds to a stable boson system, i.e., provided |0〉 is a stable mean-field minimum, in which case
the ωα are all real and positive. They are the positive symplectic eigenvalues of the 2n × 2n matrix Hb

representing the bilinear form Hb [18], with b′α and b′†α collective normal boson operators related to the
original ones through a Bogoliubov transform [29],

(
b

b†

)
= W

(
b′

b′†

)
, W =

(
U V

V̄ Ū

)
, (6)

where UU † − V V † = I and UV t + V U t = 0.
The bosonic RPA ground state is the vacuum |0′〉 of the operators b′α, and is given explicitly by [29]

|0′b〉 = Cb exp

⎡

⎣1
2

∑

i,j

Zijb
†
ib

†
j

⎤

⎦ |0b〉, Z = V Ū−1, (7)

where Cb = Det[Ū ]−1/2. We can define the corresponding RPA spin state |0RPA〉 in a similar way,
replacing |0b〉 in (7) by the mean-field state |0〉, and b†i by si+/

√
2si (with Cb → Cs). In contrast to the

original mean-field state |0〉, the RPA ground state is obviously entangled. We will see that it can, in
fact, capture the essential aspects of the ground-state entanglement in such systems, at least when there
is a well-defined mean-field minimum.

3. Bosonic Evaluation of Entanglement Measures

In the bosonic vacuum (7), the entanglement properties of the ground state can be easily evaluated
through the general Gaussian-state formalism [33–38], which we here recast in terms of the nonnegative
contraction matrix [18,29],

D =

〈(
b

b†

)(
b† b

)〉

0′
−M =

(
F+ F−

F̄− I + F̄+

)
, (8)

F+
ij = 〈b†jbi〉0′ , F−

ij = 〈bjbi〉0′ = 〈b†ib†j〉∗0′ , (9)
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where M = (1 0
0 −1). Since in the vacuum |0′〉, 〈b′†αb′α′〉0′ = 〈b′αb′α′〉0′ = 0, Eq. (6) leads to

F+
ij = (V V †)ij , F−

ij = (V U t)ij . (10)

The elements of the Hermitian matrix (8) determine, through application of Wick’s theorem [29], the
average of any many-body operator. In particular, the reduced state ρA = TrĀ|0′〉〈0′| of a subsystem A
of nA modes (Ā denoting the complementary subsystem and TrĀ the partial trace) is fully determined
by the corresponding submatrix DA [Eqs. (8)–(9) with i, j ∈ A]. It is a thermal-like state of suitable nA
independent boson modes [18]. The entanglement entropy of the (A, Ā) partition,

EAĀ = S(ρA) = S(ρĀ), (11)

is then the bosonic entropy determined by the positive symplectic eigenvalues fA
α of DA, i.e., the standard

eigenvalues of the matrix DAMA associated to eigenvectors with positive norm in the symplectic metric
MA (the eigenvalues of DAMA come in pairs fA

α and −1 − fA
α ), which represent local boson average

occupation numbers. Equation (11) is then given by

S(ρA) = −Tr ρA log ρA = −
nA∑

α=1

[fA
α log fA

α − (1 + fA
α ) log(1 + fA

α )]. (12)

On the other hand, the entanglement between any two subsystems A and B (where the complement
ĀB plays the role of an environment) can no longer be measured through the entropy of the reduced state
ρA or ρB, as ρAB will be, in general, a mixed state. This entanglement can instead be approximately
measured through the corresponding negativity [28], an entanglement monotone for mixed states, which
is minus the sum of the negative eigenvalues of the partial transpose ρtB

AB of the reduced state ρAB.
Partial transposition implies corresponding replacements (i.e., F+

ij ↔ F−
ij for i ∈ A, j ∈ B, etc.) in the

contraction matrix for AB, leading to a matrix D̃AB with symplectic eigenvalues f̃AB
α and −1 − f̃AB

α ,
where f̃AB

α can now be negative (but above −1/2 [18]). The final result for the negativity can be expressed
in terms of these negative symplectic eigenvalues f̃α

AB of D̃AB as follows [18]:

NAB =
1
2
(Tr |ρtB

AB| − 1), Tr |ρtB
AB| =

∏

f̃AB
α <0

1
1 + 2f̃AB

α

. (13)

It should be remarked, however, that in the case of a degenerate symmetry-breaking mean field,
symmetry restoration should be implemented on the RPA-spin state for a proper description of the
entanglement entropy and negativity in the ground state, which will have a definite symmetry if nonde-
generate. Nevertheless, in the case of a discrete broken symmetry and when the reduced states associated
with different mean fields can be regarded as approximately orthogonal, the corrections derived from sym-
metry restoration can be easily evaluated [18]. They lead, for instance, just to an additive term in the
entanglement entropy (12), accounting for the different mean fields (see Sec. 5).

4. Translationally Invariant Systems

These systems are characterized by a uniform magnetic field Bμ
i = Bμ and separation-dependent

couplings Jμν
ij = Jμν(i − j), with Jμν(−l) = Jμν(n − l) for a finite array. Through a discrete Fourier

325



Journal of Russian Laser Research Volume 32, Number 4, July, 2011

transform, the RPA treatment becomes then fully analytic in any dimension D, providing close expressions
for elements (10) of the covariance matrix [18]. The ensuing RPA frequencies become [18]

ωk =
√

(λ − Δ+
k )2 − |Δ−

k |2 , (14)

where Δ±
k =

∑n−1
l=0 ei2πkl/nΔ±(l) are the discrete Fourier transforms of the original couplings Δ±

ij =
Δ±(i − j), and we have assumed, for simplicity, Δ±(l) = Δ±(−l) [19]. The elements of the covariance
matrix can then be obtained as

F±
ij =

1
n

∑

k

e−i2πk(i−j)/nf±
k , (15)

f+
k = 〈b†kbk〉0′ =

λ − Δ+
k

2ωk
− 1

2
, f−

k = 〈bkb−k〉0′ =
Δ−

k

2ωk
, (16)

where bk = 1√
n

∑
j ei2πkj/nbj are the discrete Fourier transforms of the local bosons.

For instance, the single-site entropy, determining the entanglement of a single site i with the rest of
the chain, is just

S(ρi) = −f log f + (1 + f) log(1 + f), (17)

f =
√

(1
2 + F+

00)2 − |F−
00|2 − 1

2 , (18)

where F±
00 = 1

n

∑
k f±

k [Eq. (15)]. The local boson-occupation number f is the positive symplectic
eigenvalue of the single site 2×2 covariance matrix, and represents, of course, the deviation from minimum
uncertainty of the local mode: (1

2 +F+
00)

2−|F−
00|2 = 〈q2

i 〉0′〈p2
i 〉0′−〈qipi+piqi〉20′/4, where qi = (bi + b†i )/

√
2

and pi = (bi − b†i )/
√

2i are the coordinate and momentum associated with the local boson operators bi

and b†i , respectively.

5. Applications

As an illustration, we consider a ferromagnetic-type XY -spin s array in a uniform transverse field B,
such that

H = B
∑

i

siz − 1
2s

∑

i�=j,μ=x,y

Jμ(i − j)siμsjμ, (19)

with |Jy(l)| ≤ Jx(l) and Jμ(−l) = Jμ(n − l). The s−1 scaling chosen here ensures a spin-independent
mean field and RPA Hamiltonian, leading to a finite limit for high spin. This Hamiltonian commutes
with the spin parity Pz = eiπ

∑
j(sjz+s), a symmetry which will be broken at the mean-field level for low

fields |B| < Bc. Accordingly, two RPA phases arise, namely, normal RPA and parity-breaking RPA.

5.1. Normal RPA

For sufficiently strong fields B, the lowest mean-field state will be the aligned state |0〉 = |01 . . . 0n〉,
where |0i〉 denotes the local state with maximum spin along the −z axis (siz|0i〉 = −s|0i〉). It is easy to
show that, in the present situation, such a state will be the lowest separable state for

|B| > Bc = Jx
0 =

∑

l

Jx(l) . (20)
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At this phase, the RPA frequencies become

ωk =
√

(λ − Jx
k )(λ − Jy

k ), (21)

where λ = B and Jμ
k =

∑
l e

i2πlk/nJμ(l), with Eq. (20) ensuring ωk real ∀ k. It can be shown [18] that,
at this phase, the RPA is exact for strong fields |B| � Bc, with the RPA-spin state coinciding with the
exact first-order perturbative expansion of the ground state.

5.2. Parity Breaking RPA

For |B| < Bc, the normal state becomes unstable, and the lowest mean field corresponds to a parity
breaking state |Θ〉 = |θ1 . . . θn〉, with |θi〉 = exp[−iθsiy]|0i〉 and

cos θ = |B|/Bc, (22)

where all spins are aligned along the axis forming an angle θ with the z axis in the xz plane. Such
mean-field state is obviously degenerate, as |−Θ〉 = Pz|Θ〉 is also a separable state with the same energy.

At this phase, we may, in principle, apply the same previous expressions with the substitutions
λ → Jx

0 and Jx
k → Jx

k cos2 θ [18]. Nonetheless, important corrections due to parity breaking do arise in
finite systems, which are to be taken into account for reproducing the entanglement properties of the
exact definite-parity ground states. Notice that, at this phase, the ground state of a finite chain becomes
almost degenerate but not exactly degenerate, preserving a definite parity Pz. It actually develops parity
transitions [21], the last one at the factorizing field Bs = Jx

0
√

χ [39,40] when there is a common anisotropy
χ = Jy(l)/Jx(l) ∀ l. Let us mention that at this field, the system exhibits a degenerate separable ground
state, which is a combination of entangled definite parity states [39]. The latter provide the actual side
limits at Bs and imply, therefore, nonzero-side limits of the entanglement entropy at Bs [39, 41].

The definite-parity spin-RPA states (|0RPA(θ)〉 ± |0RPA(−θ)〉)/√2 lead essentially to reduced states
ρA ≈ 1

2(ρA(θ) + ρA(−θ)), if the complementary overlap can be neglected. If the overlap between ρA(θ)
and ρA(−θ) is also negligible (which is valid for a not too small subsystem [18]), the final effect in the
entanglement entropy is just a constant shift:

S(ρA) ≈ S(ρA(θ)) + δ, (23)

where S(ρA(θ)) denotes the bosonic RPA entropy (12) for the parity-breaking RPA state and δ = log 2.
The negativity changes as well to NAB ≈ 2NAB(θ) + 1/2. If the overlap cannot be neglected, the final
effect is essentially a lower and θ-dependent value of the shift δ. Let us also note that, in the immediate
vicinity of the factorizing field Bs, S(ρA(θ)) vanishes, and just the shift δ remains [18].

The RPA predictions for the entanglement measures become accurate in the high-spin limit as well
as for systems with long-range interactions, such as a fully connected array [18]. Nonetheless, even in
the opposite case of low spin and short range couplings, it provides a reasonable basic estimation of the
main entanglement properties [19]. As illustration, we show in Figs. 1 and 2 results for the first neighbor
XY couplings in small two-dimensional arrays, where the exact entanglement entropies were computed
through full diagonalization. Notice that for D-dimensional arrays all previous expressions remain valid
replacing i, k, n with vectors i = (i1, . . . , iD) and k and n, with ei2πkl/n → ei2π

∑D
j=1 kj lj/nj . In Figs. 1 and

2, we have employed spatially isotropic first neighbor cyclic couplings, such that Jμ(l) = Jμδ|l|,1.
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Fig. 1. Entanglement entropies of different partitions
in a 4×4 spin-1/2 lattice as a function of the trans-
verse applied field, for first neighbor XY couplings with
anisotropy Jy/Jx = 1/4. The solid lines correspond
to the exact results, whereas the dotted lines, to the
RPA estimation. The black line denotes the entangle-
ment of a single site with the rest of the chain, the dark
gray line the entanglement of a 2×2 block with the rest,
and light gray line shows the entanglement between all
even sites ((−1)ix+iy = +1) with all remaining odd sites
((−1)ix+iy = −1), which is the maximum entangled bi-
partition. The RPA results become exact for strong fields
|B| � Bc, as well as in the vicinity of the factorizing field
Bs = Bc/2 (see text).

Fig. 2. Exact entanglement entropy for a block of 2×2
spins in a 4×2 lattice of spin s = 1/2, 1, 3/2 and 2 (shown
by figures near the curves) as a function of the trans-
verse applied field, together with the RPA result (shown
by dotted line), for the same anisotropy Jy/Jx = 1/4.
The exact entropies approach the RPA result as the spin
increases.

As seen in Fig. 1, the RPA predictions for a small spin-1/2 lattice turn out to be quite satisfactory,
except for the vicinity of the critical region, where the bosonic RPA results diverge while the exact results
for the finite lattice remain obviously finite. The RPA results for a small system in a critical region can
actually be much improved, if the RPA-spin state (rather than the bosonic treatment) is directly employed
for evaluating the entanglement entropy [18]. We show in Fig. 1 three distinct types of entanglement
entropies: (i) that of a single site (measuring the entanglement between the site and the rest of the chain);
(ii) that of a 2×2 contiguous block; (iii) that of the noncontiguous even half (“comb” entropy [19, 42]),
where the even subsystem is here defined by (−1)ix+iy = +1, labeling the sites as (ix, iy) [19]. This is the
maximum-entangled bipartition for the present first neighbor coupling, since it will break all coupling
links. The RPA results for these three entropies are seen to be quite in agreement with the exact results,
away from the critical domain. The bosonic RPA scheme becomes exact for strong fields |B| � Bc for all
these entropies, for any size n, spin s, geometry, or interaction range. Moreover, the RPA results improve
as the spin s increases, as shown in Fig. 2 for the entropy of a 2×2 block, representing the high-spin limit.

We have used in Figs. 1 and 2 base 2 logarithm, such that the additive correction δ, Eq. (23), arising
from parity restoration for |B| < Bc is essentially +1 for the block and comb entropies. As seen in Figs. 1
and 2, such shift is in full agreement with the corresponding exact results for the definite-parity ground
state, obtained from direct diagonalization. For the single-site entropy, the overlap between ρi(θ) and
ρi(−θ) can no longer be neglected, which leads essentially to a lower θ-dependent value of δ as stated
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above. The ensuing RPA results remain again quite accurate below the critical domain. It should also
be remarked that the RPA leads to the correct size dependence of the block and comb entropies, leading
to correct area laws [4] for these quantities in the strong-field limit (see [19] for more details). It leads as
well to correct results for the negativity of arbitrary subsystems [18].

Let us finally mention that, in the case of fully and uniformly connected XY Z spin arrays of arbitrary
size and spin in a transverse field, the present bosonic RPA formalism is able to provide analytic final
expressions for the entanglement entropy, as well as for the negativity of any partition of any subsys-
tem [18], which becomes exact in the large spin limit at fixed size and also in the large size limit at fixed
spin.

6. Conclusions

We have discussed a general mean field plus RPA formalism for approximating the ground state of
many-body systems. We have shown that by means of an approximate bosonization, a straightforward
estimation of the entanglement measures like the entanglement entropy and the negativity in the ground
state of finite-spin systems is allowed. Moreover, the approach becomes fully analytic in systems with
translational invariance. The formalism is able to capture the main features of these quantities in the
exact ground state of finite ferromagnetic-type XY -spin arrays away from the critical domain, if basic
symmetry-restoration effects, required for |B| < Bc, are taken into account. In small-finite systems, the
predictions in the critical domain can, in fact, be also improved within the RPA scheme by extract-
ing quantities directly from the RPA-spin state. When the system exhibits a well-defined minimum at
the mean-field level, the approach improves for high spin, large connectivity, or long-range interactions,
making it a useful technique that can complement other numerical methods aimed at short-range cou-
plings or more specific problems. Several applications of this method, as well as its extension to finite
temperatures, are currently under investigation.
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