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Summary. - -  The use of Feynman causal function in the perturbative treatment of 
the S-matrix made the computation of convolutions an easy and well-known 
procedure for free-particle propagators. But the convolution of its components, like 
the ~ and principal values among themselves, is very rarely looked upon. In field 
theories with higher-order equations of motion some of these convolutions appear as 
the fundamental ingredients. A discussion of these convolutions is explicitly done in 
the simplest examples. 

PACS 12.90 - Miscellaneous theoretical ideas and models. 
PACS 14.80 - Other and hypothetical particles. 
PACS 14.80.Pb - Other (including tachyons). 

1.  - I n t r o d u c t i o n .  

The universal use of the Feynman causal function in the perturbat ive 
development of the S-matrix made the computation of convolution of propagators  a 
standard procedure. But if we remember  the relation 

(1) 
p2 + m 2 _ io 

- F = P + ir2(p 2 + m 2) 

(where P means principal value of (p2 + m2)-1 ), we see that  the convolution F * F  of 
two causal propagators  could also be done through the previous determination of P *  P, 



1082 c . G .  BOLLINI  and J.  J .  GIAMBIAGI 

P . 8  and 8.~'. Of course, this latter procedure is not necessary for ordinary 
computations, nevertheless it seems interesting to have its results and to the best of 
our knowledge they have not appeared in the literature, at least explicitly and with 
generality. Also, it was shown elsewhere[i] that the propagator for the tachyon 
should be P (not F). Further, if we study a fourth-order equation [2] with the 
propagator 

(p4 _ m 4 ) - 1  _ 1 (p2 _ m 2 ) - 1  _ _ _  

2m 2 
1 (p2 + m2)-1 

2m 2 

then with the adoption of the Feynman propagator for the bradyon and Cauchy's 
principal value P for the tachyon, unitarity is preserved in the lowest perturbative 
approximation (at least) (see ref. [2, 3]). In this case we are naturally led to compute 
F*P and P*P. 

The situation just  pointed out could be general for higher-order differential 
equations of motion and this is the motivation of the present work. 

We shall divide the exposition of computations in two parts. In the first one we 
shall only discuss ordinary particles (bradyons). In the second part we study the 
modifications to be introduced in the convolutions when one or both involved 
particles have complex masses. 

2. - Convo lut ion  o f  bradyon Green's funct ion.  

2"1. 8*8. - This convolution can be computed in an easier way in the system in 
which p 2 = _ po 2 if p 2 < 0, or in the system p 2 = p~ if p2 > 0. In the first case 

(2) 8(p 2 + m~)*8(p 2 + m~) =- 81 *8 2 ~ -  

f = d~qS(q 2 + m ~ ) 8 ( ( p - q ) 2 + m  2)= d~qS(qe+m2)8(_p~+2poqo+m~_m~)= 

f v--1 d q~,. 2 p ~ + m ~ - m ~  
= 2j_~]_o~t q + ml 2 _  q2), with q0 = 

2po 

From now on, when we integrate over the angles in an Euclidean v-dimensional 
space, we use the formula 

ov 
(3) f d v- lqf(q2)_ ~(v_-1)/___22 f dq 2 q2(~-3)/2f(q2). 
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F r o m  (2) and  (3) we  ge t  

(4) 8~ * 82 - 

oc 

~(v 1)/2 f dq 2 qZ(,-3)/28(q2 + m~ - q~) = 

7r(~- 1)/2 
[(p3 + m ~  - m~)2  _ m e  ](~-~)/2, 

w h e r e  we  can pu t  p~ = - p 2 ( > 0) and  [Z]5 = Z ~ w h e n  Z > 0 an d  ze ro  o therwise .  W h e n  
p2 is spacel ike  ( p 2 >  0) we  h a v e  

(5) 81*82= Id~qS(q2 +m21)e(p~-2plq~ + m ~ - m ~ ) =  

_ 1 f d q o ( d  ~ - z q S ( - q ~  + q~ + qt 2 + m~), 
21pl I 3 3 

w h e r e  qt m e a n s  t he  c o m p o n e n t  o f  q t r a n s v e r s a l  to qt and  ql = 
F r o m  (5) 2pa 

(6) 

1 ~  ~ 

1 ~(,~ 2)/2 f,-1,~ [ ,4~2~2(v-4)/2~/__~2 mlZ), ,~o j , , ~  ~ ,~, ,~o + q? + q~ + 
o 

cc 

7r(v - 2)/2 I dqo (qo z - q~ - m l  z )(~ - a)/2 = 

c~ 

= rr(v 2)/2 2 dq___&. 2 ql e _ 
2qo 

2 [ p l  ' q?+ 

m~)(~  4)/2 = 

~(,~ _ 2)/2 ; d x  x (v - 4)/2 

W e  now use  ref.  [3], p. 285: 

(7) I dx  x )" 1 (x + A)  :~ = A ~ - '~ 

0 

r ( ~  - z )  F ( ~ )  

r(~) 
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and (6) gives 

(8) 8, * 82 = 
7~(v - 2)/2 + m} - m[)2 + 

4p~ ] 
- 3)/2 

(p2 > 0). 

Note that, for v = odd I> 3, (8) is divergent. 
In order to compare with (4) we use 

(9) F (z )F (1  - z) = 
sin ~ " 

When v is even (8) and (9) give 

81 * ~  

7t.(,-- 1)/2 ( _ _  1)(__~, 2)/2 + m~ - m~)2 + m~](~ 
4p 2 J 

- 3)/2 

r:(, - 1)/2 [ (p2 + m~ - m~) 2 ](~-3)/2 
- m~ 

- 4 p  2 J 

which is formally similar to (4) with po e = - p 2 .  

C o m m e n t .  For  the bracket in (4) to be positive it is necessary that  (poe + m ~ -  
- m~)2 > 4po2 m~. It  is easy to see that  then, either pff > (ml + m2)2, or poe < (ml - 
- me )2. We may call ,,physical cut,, the region (ml + m2 )2 < poe < oo, and ,<low energy 
cut,, the interval 0 < po 2 < (ml - m2)2. When the masses are equal the low-energy cut 
disappears. Formula (4) shows tha t  the convolution 8, * 82 has support in both cuts 
(when p2 < 0). 

2"2. P* P. - With the usual definition of Hilbert transform (see ref. [4]) 

i dx 
H o ( f )  = -~ 

the following theorem holds: 

.gV. (JC(f) )  = - f .  

We can then write 

(10) 

c o  

d y P  _ P y _ ~  
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So we have  

(11) 

I ~ p  1 = 
"P1 *P2 = d~qP q 2  + m~ (p _ q)2 + m 2 

id if [ 1 1][ 
= 4-~,~o2 dqo P P P qo + 0), qo - 0)~ 

y d"--~ q- - 
P,*P2=-~  ~0)2 

1085 

1 p 1 ] 
Po - qo + 0)2 Po - qo - 0)2 J ' 

• b'(Po - 0), - 0)2) + ~(Po + 0), + 0)2) - ~(Po + O)1 - -  0 ) 2 )  - -  ~(Po - 0 ) ,  -~ 0 ) 2 ) ]  

(we t ake  m l / >  m2), 

0), + 0)2 = I p o l  

and only the  f i rs t  two ~s  can cont r ibu te  to (11). 
I f  ins tead  p~ < (m,  - m2)2, we ge t  

1 ( p 2 + m  2 _ m 2 )  and 0)2- - 1  (ml 2_m22_p~)  
°)1 - -  21po I 21Po I ' 

0)~ - 0)~ = I P o l  

and only the  las t  two ¢~s can cont r ibu te  in (11). In  any  case  it is easy  to p e r f o r m  the  
in tegra t ion  by  a change  of var iables .  F o r  example ,  for  the  f i rs t  ~-function we have  to 

0)1 - -  O32 = -+ Po, 

The  four  cases  a re  conta ined  in 

(20), 0)2 )2 = (p~ _ 0)~ _ 0)~ )2. 

F o r  the  r e s t  s y s t e m  (when 0 > p2 = _ po 2) we  ge t  f rom (12) 

(13) qe = 4 p ~ [ ( p  ~ _ m~ - m ~ )  2 - 4 m ~ m ~ ] .  

The  condit ions for  the  b r a c k e t  to be  posi t ive a re  the  s a m e  as those  for  (4). W h e n  Po 
be longs  to the  physica l  cut  (po 2 > (ml + m2)2) we have  

_ 1 (p~ + m ~ -  m~)  and 0 )2 -  1 
0)1 2[po I 21po I (p°2 + m~ - m ~ )  

and for  the  las t  two 

0)~ + 0)~ - 20) ,  0)2 = p 3 .  

with 

(12) 0)1 = + V ~  + me,  °)2 = V ( p  - q)2 + m~. 

The  suppo r t s  of  t hese  &functions do not  overlap.  T h e y  are  mutua l ly  exclusive. F o r  
the  f i rs t  two #s  in (11) 

0)1 + 0)2 = -- PO, w2 + 0)2 + 2°)10)2 = p2 



1086 c . G .  BOLLINI and  J. J. GIAMBIAGI 

divide by  

d 1 1 2po 
- -  (Po - 0 ) 1  - 0 ) 2 )  - - -  - dq 2 20)1 20)2 40)10)2 

In this way  we obtain, a f te r  in tegra t ion  over  the  angles, 

{4_~02 2 2 )(v 3)/2 (14) P1 *P2 = - sr~ 7:(~- ~)/2 [(p~ - ml  2 - m~ )]2 _ 4m,  ~rv2 / + , 

whe re  

(15) = + 1 on the  physical  cut  po 2 >I (ml + m2)2, 

(16) = - 1 on the  low-energy  cut po 2 < (ml - m2)2. 

A compar i son  with (4) shows tha t  

(17) P1 * P 2  = - eTz2~1 *~2 i f  p2 < O. 

When  p2 is spacelike we go back to (11) assuming tha t  the  only componen t  of p ,  is P l .  
In  this case we have 

f v--1 
d q 

(18) P1 *P2 = 2 ~  -7-----8(0)1 - 0)2) 
awl 0) 2 

as the  f i rs t  two ~-functions do not  
equal. 

Besides,  when  0)1 = 0)2 (cf. (12)) 

cont r ibute  (Po = 0) and the  last  two are  

pl  2 + m~ - m~ 

ql = 2pl 

and 

d(0)1 - 0)2) ] 

I to 1 = o 2 

q1(0)2 -~_~0)1) + Pl0)I I ~1 = o2 _ Pl t 
0)2 

In tegra t ion  of  (18) over  the  angles (in the  (v - 2)-dimensional space of qt) gives 

P1 * P2 = 2r~ 7:(~- 2)/2 I dqt2 (qt2)(~- 4)/2 dql ~ ( 0 ) 1  - -  0 ) 2 )  = 

F o -¢0 

r~ rc<~-2)/2 ;dq~(qt2)<v-4)/2 [ 
2]p1 ] P ( ~ - ~ )  0 o , 0)_~ q2+ 

pl ~ + . q  - m? 
4p~ 

11/2 

+ ml ~] • 
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And, using (7), 

(19) P1 *P2 = ~rr(~ 3)/21" ~ ? -  (p2 + m~4p ~- m~) 2 + me 1 ] (p2 > 0). 

Compar ing  with (8) we see tha t  

(20) P1 *Pz = ~ l  *d2 (p2 > 0).  

Comment.  I t  is pe rhaps  unexpected  to find out  t ha t  P1 * P2 has, up to a sign, the  
same value as ~ ~1 * ~2 on the  same  cuts. Fu r the r ,  on the  physical  cut  P1 * P2 = (izr) 2 ~1 * ~2" 

This has relat ion with unitari ty.  

2"3. ~ F. - H e r e  we shall use the  decomposi t ion 

(21) 1 
~(p2 + m e) = ~ - [ ~ ( P o  - 0)) + 3(Po + 0))] 

and 

1_111+ 1] 
(22) F - p2 + m e 20) co - Po 0) + p----~ ' 

where  in (22) the  mass  is supposed  to have a small negat ive  imag ina ry  part .  

(23) ~1 *F2 = [~(qo - -  0)1 ) q- ~(qo + CO1 )]  1 + 1 _ 
~0)10)2 0)2 - Po + qo 0)2 + P2 - qo 

= Id~ lq[ 1 _ _  + 1 + 1 + 1 ] 
40)10)2 0)1 q- 0)2 - -  P0 0)1 + 0)2 + Po 0)2 - 0)1 - Po 0)2 - 0)1 + Po 

" 2(0)2 -- 0)1 ) [ d ~ - l q [ 2(o) 1 q- 0) 2 ) 
+ 

) 40)10)z [ (0)1 + 0)2 )2 _ p~ (0)e - 0)1 )2 _ po e 

(24) 
d ~ - l q [ 4wz (we z - 0)z _ _ p~ ) f * r  2 

J 4o)1092 [ " 2 - - - - -2  - - - ~ 2  - - 2  2 (0)1 -~- 0)2 - -  Po ) - 40)10)z 

where  0)1 and 0)2 are  given by  (12). I n  the  res t  sy s t em (pZ< 0) we can use (3): 

( 2 5 )  ~1 * F2 = 

c o  

z:(~ - 1)/2 I dqz  (q2)(~ - 2)/2 

F o p~ - 2po z (2q 2 + m~ + me z ) + (m~ - m~ )2 

The in tegrat ion can be carr ied  out with the aid of 

c o  

f ( ) (26) dssb_ l (1  + s)a-c(1 + SZ) -a F(b)F(c - b) - aF  c b, c; 1 - 1 
= I'(c) z a, - z • 

o 

71 - II Nuovo Cimento A 
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The result of (25) is 

(27) 81 * F  2 --  

= "(~-2)/2F 2p~ (P~ + m~ - m ~ ) F  1, 4 - v .  3 .  
' 2 '  

(po 2 + m~ - m~)2 / 

4po2 m~ ] 
(F(a, b, c; z) is the hypergeometric function). 

Comment. According to the remark made just after (22), the mass me in (27) has a 
small negative imaginary part. The argument of the hypergeometric function in (27) 
has then a small positive imaginary component. As F(s, b; c, z) has a cut for z real > 1 
(cf. [5]), the real axis should be approached from above. If the limit is taken from 
below, the convolution of 81 with the anticausal Green's function F2 is obtained. 

2"4. P*F.  - We shall use (22) and, instead of (21), the principal-value 
decomposition 

0)1 --  PO (01 + Po ' 

which was already utilized in (11): 

40)10)2 [ 0)1 -- q0 0)1 + qo 0)2 + po + qo 0)2 + Po - qo 

Consulting now a table of Hilbert transforms, taking into account the small 
imaginary part of 0)2 (due to that of m2), we obtain 

(29) P1 *F2 -- 

f d r -  l q [  1 + 1 1 1 ] _  
= i=  4~- -~-~[  0)1 + 0)2 - Po 0)1 + 0)2 + Po 0)2 - -  O ) 1  - -  Po (02 - 0)1 + Po 

-- i7~ 
I d~-lq [ 2(0)1 +0)2) _ 2(0)2-0)1) ] 

[ (0 )1  + 0)2)  - - , o l ) e  _ , 

(3O) 
d ~ - 1 2 2 2 

40)10)2 [ (0)~ + 0)~ - P3 )e - 40)12 0)~ 

A comparison of (29) with (23), or (30) with (24), shows that we have the 
equality 

(31) 
Ii~82 *F1 on the physical cut, 

P1 * F2 -- [ i= 82 * F1 on the low-energy cut. 
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So we can immediately write (cf. (27)) 

(32) P1 * F2 = 

( ) =ir:q2F 2p3] (P~ + m ~ - m ~ ) F  1, 4 - v .  3 (P~ + m ~ - m ~ )  z - -  , • 

4po me 

Comment. Relation (31) can also be deduced from the identity P1 *F2 = irzF~ *~2 + 
+ P~ */)2 + 7~ 81 * 8 2 . A l s o ,  in (32) the limit of the argument  of the hypergeometric 
function should be taken from above on the physical cut and from below in the 
low-energy cut. Of course, P1 *F2 can be obtained by complex conjugation. 

2"5.8*P. - For  this convolution we shall follow the same steps as with 8 .F .  We take 
(21) and (22), but this time the mass m2 will be taken as real, and the principal value 
will be adopted at the singularity. Formulae (23), (24) and (25) are still valid, but for 
the principal-value evaluation of (25) we go again to the table of Hflbert transforms 
and find (see ref. [6]) 

c¢ 

I 1 1 -~ dxx~- l (x  + a)l-zP x _ y 
0 

_ y : - l ( y  + a ) l - z  c t g [ ( f l -  a) r:] - 

F ( f l - a - 1 ) F ( a ) a  1 ~+~ ( ~ - ~ )  
F 2 - f i ,  1; 2 - / ~  + ~; a 

7:F(/~ - 1)(y + a) 
y > 0 ,  

o r  

(33) 
-F(~ - zt)F(a) ( -Y)~-  1 ( Y) 

F f l - l , a ,  f l ; l +  
=r(~) a z - 1 y < 0 .  

Now we write (25) in the form 

(34) 81 *P2 - 
~(v - 1)/2 ml 2 - m~ + p~ 

[ ] J " x (~ - 3)/2 po 4 - 2po 2 (m~ + m~) + (mi 2 - m~ )2 - 1. 
_ _ P x -  

• dx V ~ + m  2 4p~ 
0 

To use (33) we choose a = ( v -  1)/2, fl = 3/2, a = m~, y = (1/(4p~))[(p~- (m~ + 
2 2 2 + m~))2 _ 4m~ m~ ], y + a (1/(4p0))(Po - m2 + ml z)2. 
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For  positive y we have 

~(v + 1)/2 
(35) 8, */)2 - (y + a).  

• - r ~ , 1 ;  ~ ;  - -  y(~-3)/2(y+a)-l/ectg 7: r~F[l~(y+a)l-2) y + a  ' 

while for negative y we get  

7~(v + 1)/2 
(36) 81 */)2 - (y + a)- 

3 ) all2 
v - l . 3 ; Y  +a  ) 

2 ' a " 

Comment. In sect. 3 we will learn how to evaluate the imaginary par t  of the 
hypergeometr ic  function. With this knowledge it is possible to find 8*P  by taking the 
real par t  of 8* F  or also by taking the imaginary par t  of P*F. 

2"6. F *  F. - The convolution of two Feynman propagators  can be computed in the 
usual way by means of dimensional regularization: 

Id~qq2 1 1 (37) F1 *F2 = + ml 2 (p _ q)2 + m 2 

1 

:Id fdx  q2 
0 

+ m~)x  + ((p - q)2 + m~)(1 - x)] -2 = 

1 

: i J2F( ) Idx p2x i 
0 

+ ml 2 x + mi 2 (1 - x)] (~- 4)/2 

The masses are both supposed to have a small negative imaginary part .  The roots of 
the quadratic form in (37) are 

p2 + 1 + p2 + p2 ' 



C O N V O L U T I O N S  OF P A R T I C L E  G R E E N ' S  F U N C T I O N S  1 0 9 1  

(39) 

1 

F 1 ,  F2 = iTS2 I'( ~ ) f dx [ - p 2 (x - xl ) (X - X2 )] (~ - 4)/2 = 

0 

){ xl 
= i T S 2 F ( ~  --~ I d x [ - p 2 ( x i - x ) ( x 2 - x ) ] ( ~  

O" 

- 4)/2 _~_ 

X2 

+ f d x [ p ~ ( x  - xi 
Xl 

(x2 - x)] (~ - 4)/2 + I dx [ _ p 2  (x - xl ) (x - x2 )](~ - 4)/2 

X2 

E a c h  of the  in tegra l s  in (39) can be  wr i t t en  down wi th  the  aid of  a t ab le  ref. [3] 

(40) 
F(v - 2) 

(p2)(~ - 4)/2 (x2 - xl )~ - 3 + 

+ 2  
( _ p 2 )(~ - 4)/2 x ~  - 2)/2 x2(~ - 4)/2 

~ - 2  
' ~ ;  + 

( _ p 2 ) ( ~  4)/2(1 _ x2)(~-2)/2(1 _ xl )(~-4)/2F[1, 4 - v . v 
+ 2 

~ - 2  [ 2 ' 2 '  

i x) ]  
X2 - -  X l  

And, a f t e r  a quadra t i c  t r a n s f o r m a t i o n  of the  h y p e r g e o m e t r i c  function, 

( 4 1 )  F1 * F 2  = 

+ -p-~ + 4 m  2 + 

+ i= ~/21" 2 ~,,~2 J 1 + + 
v -  2 (_p2 )  p2 

• F -~, 2 ' (p2+m~---m~)----2+4m~p2 +iT~V/2F v - 2  (_p2 )  

• 1+  ~ + ~ ]  F -~, 2 ' -2' ( p 2 + m ~ _ m ~ )  2 + 4 m ~ p  2 " 

Comment. The  condit ions for  the  roo t s  (38) to be  rea l  a re  the  s a m e  as those  for  the  
square  b r a c k e t  in (4) or  (8) to be  positive. 
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h 
2"7. F * F .  - This convolution can be computed by using (1) and its complex 

conjugate 

(42) FI * F2 = (P1 + i7:81 )* (P2 - ir~82 ) = P1 * P2 + 7:2 81 * 82 ÷ i7r(81 * P2 - 82 * P1 ). 

We see that  the real par t  is symmetric, while the imaginary par t  is antisymmetric 
under the interchange of ml and me. Of course for F1 * F2 both parts are symmetric in 
the masses: 

(43) F1 * F2 = P1 * P2 - r~ 81 * 82 + i7:(81 * P2 + #2 * P1 ) .  

The real par t  of (43) has support  on the physical cut only, while the real par t  of 
F~ • F2 is zero on the physical cut (it has suppor t  on the low-energy cut and in p 2 
space-like). 

For  the actual value ofF1 *F2 it is enough to use (4) or (8), (14) or (20) and (35) or 
(36) in (42). 

C o m m e n t .  I t  is equally possible, instead of (42), to use the equality Fe = F ~ -  
- 2i~82, to obtain F1 *F2 = F1 *F2 - 2ircF1 *82. Of course, there are other  equivalent 
expressions. I f  mi = m2, F × F -- 0 in the physical cut and it is 2=z~.8 otherwise. 

3. - A b s o r p t i v e  parts .  

The so-called ,,absorptive pa r t ,  of a convolution can easily be obtained from the 
hypergeometric function when its first or second parameter  is equal to unity (or can 
be reduced to unity by an appropriate transformation). In such a case we take the 
integral representation (see ref. [5]) 

1 
F(c) I t b - l ( 1 - t )  c - b - 1  

(44) F(1, b; c; z) - F (b )F(c  - b) 1 - tz d t .  
0 

The physically interesting imaginary par t  of (44) is developed at the singularity 
which appears when z = x + i¢; x I> 1, ~ ~ 0. 

As Im(1 - tz) -1 = _+r:8(1 - tx), we have 

(45) f ImF(1,  b; c; z) = +- 

ImF(1 ,  b, c; z) + 

1 

rcF(c) I t b - l ( 1  - t ) c - b - l $ ( 1  -- t x ) d x ,  
r(b~fi-~--- b) 

0 

=F(c) 
x l - c ( x  - 1)~ - b - 1  z ~ x  +- i¢. 

F (b )F(c  - b) 

With (45) we can take the imaginary part  of (27), which is seen to coincide with 
Im81 *F2 -- =81 *82. Also, the imaginary part  of iP1 *F2 (cf. eq. (32)) is seen to coincide 
with - P1 * P2. 
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Equation (45) cannot be applied directly to (41), but after the transformation 

F(a, b; c; z) = (1 - z)-aF(a,  c - b; c; z / (z  - 1)). 

We have 

/ 
F ~ I ,  ~ - 2 .  ~ .  

2 ' 2 '  
4m~ p_~2 I = 

(p2 + m~ - m~)  2 + 4m~p 2 ] 

:[ 
(p2 + m21 _ m~)2 + 4m~p2 2 '  (p2 + m~ - m~) 2 

whose imaginary part is different from zero for p2 timelike and (p2 + ml 2 _ m~)2 < 
< - 4 m ~ p  2. 

Comment.  When the fu'st parameter of the hypergeometric function is an integer 
n, eq. (44) has the denominator (1 - tz) n instead of just (1 - tz). The imaginary part is 
then proportional to ~(n)(1- tx) and (45) is modified by taking the ( n -  1)-th 
derivative of the x-dependent factors. 

4 .  - D i s c u s s i o n .  

Whenever a propagator can be presented as the addition of two interesting parts, 
like principal value and J-function, its convolutions can also be decomposed in pieces 
whose actual computation can shed some light on aspects of the original one. 
Moreover, in field theories with higher-order equations of motion some of these 
partial convolutions appear as fundamental and have to be computed independently 
of the more usual ones. This is the motivation behind the present work. Anyway it is 
interesting, or amusing, to find out that the structure of P* P is very similar to that of 

~* 3. They have the same support and the same absolute values. They have different 
signs outside the physical cut. In this way they only leave the physical cut in the 
convolution F* F. Of course, this is related to unitarity as the imaginary part of F* F 
has to do with the scattering cross-section of bradyons. 

Something similar happens with the convolution of ~*F and P*F.  As a matter of 
facts we will see in the forthcoming second part of this work that ~ and P are 
distributions whose structures are similar and can both be represented as integral 
functionals that differ in the domain of integration on the energy plane, one of them 
(~) being closed and the other (P) open. 
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