
Towards a Malleable Tensorflow
Implementation

Leandro Ariel Libutti1(B) , Francisco D. Igual2 , Luis Piñuel2 ,
Laura De Giusti1 , and Marcelo Naiouf1

1 Instituto de Investigación en Informática LIDI (III-LIDI) Facultad de Informática,
UNLP-CIC, La Plata, Argentina

{llibutti,ldgiusti,mnaiouf}@lidi.info.unlp.edu.ar
2 Departamento de Arquitectura de Computadores y Automática, Universidad

Complutense de Madrid, Madrid, Spain
{figual,lpinuel}@ucm.es

Abstract. The TensorFlow framework was designed since its inception
to provide multi-thread capabilities, extended with hardware accelerator
support to leverage the potential of modern architectures. The amount
of parallelism in current versions of the framework can be selected at
multiple levels (intra- and inter-paralellism) under demand. However,
this selection is fixed, and cannot vary during the execution of train-
ing/inference sessions. This heavily restricts the flexibility and elasticity
of the framework, especially in scenarios in which multiple TensorFlow
instances co-exist in a parallel architecture. In this work, we propose the
necessary modifications within TensorFlow to support dynamic selection
of threads, in order to provide transparent malleability to the infrastruc-
ture. Experimental results show that this approach is effective in the
variation of parallelism, and paves the road towards future co-scheduling
techniques for multi-TensorFlow scenarios.

Keywords: TensorFlow · Malleability · Containers · Resource
management · Co-scheduling

1 Introdution and Motivation

The exponential growth in the interest of Machine Learning in the last decade is
directly related to three fundamental advances, namely: (i) the development of
better algorithms with direct applications in many fields of science and engineer-
ing; (ii) the availability of massive amounts of data and the feasibility of effi-
ciently storing and analyzing it; and (iii) the appearance of novel hardware archi-
tectures, typically parallel and/or homogeneous, that allow a proper exploitation
of both new algorithms on large datasets in an affordable time.

Actually, the application of High Performance Computing techniques and
architectures has renewed the interest on the application of Machine Learning
on a plethora of problems, including applications to image recognition, segmen-
tation, speech recognition, natural language processing or language translation,
c� Springer Nature Switzerland AG 2020
E. Rucci et al. (Eds.): JCC-BD&ET 2020, CCIS 1291, pp. 30–40, 2020.
https://doi.org/10.1007/978-3-030-61218-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_3&domain=pdf
http://orcid.org/0000-0001-5541-4997
http://orcid.org/0000-0003-4480-9517
http://orcid.org/0000-0002-3049-828X
http://orcid.org/0000-0003-2850-801X
http://orcid.org/0000-0001-9127-3212
https://doi.org/10.1007/978-3-030-61218-4_3


Towards a Malleable Tensorflow Implementation 31

among many others. Together with new computing architectures, the evolution
of specific-purpose software frameworks has also contributed to the democrati-
zation of Machine Learning, hiding many of the underlying details in order to
attain high-performance implementations. Many of these frameworks consider
parallelism in general, and heterogeneity exploitation in particular, as a nuclear
feature. Tensorflow [1], Caffe [2], Keras [3] or PyTorch [4], to name a few, offer
optimized versions targeting specific hardware architectures, hiding many of the
details to the final user while keeping performance for both training and inference
near the peak of the underlying systems.

Tensorflow is, currently, one of the most extended frameworks targeting both
training and inference. Its design is based on a dataflow-like execution model, in
which users build an execution graph in which nodes represent operations (typ-
ically mathematical transformations), and edges between them denote dataflow
between operations in terms of multi-dimensional arrays (that is, tensors). The
amount of concurrency among operations is dictated by data dependences, while
internally, each operation can be further parallelized in order to boost perfor-
mance. Regarding parallelism, Tensorflow allows a static, a priori selection of
two different levels of parallelism, namely: inter-node parallelism, denoting the
amount of operations that can be executed in parallel at a given execution point
respecting data dependences; and intra-node parallelism, that determine the
amount of internal parallelism per operation. This double degree of parallelism
is, however, static and must be selected by the user or the runtime software prior
to the launch of a graph session; in other words, the parallelism in Tensorflow
is rigid and cannot be reconfigured while an operation is running, opposed to a
malleable nature other software packages.

Experiments have been carried out on the intra-node parallelism and inter-
node parallelism parameters, seeking the definition of the most optimal values
for certain Machine Learning algorithms, running in cpu backend [5]. The quest
of malleability has been previously explored in other fields, mainly in the linear
algebra arena [6–8], with promising results in terms of flexibility, resource usage
and performance. Applied to Machine Learning in general, and Tensorflow in
particular, a fully malleable TensorFlow implementation would allow a dynamic
reconfiguration of the amount and nature of the effective parallelism while a
training session (for example) is on the fly.

This static selection in the degree and type of parallelism allows a proper
exploitation of the underlying hardware by deciding appropriate values for each
parameter depending on the available resources and operation types. However
it is merely static. In scenarios in which multiple TensorFlow instances arise at
any temporal point (e.g. multiple training sessions sharing a common platform),
a flexible and dynamic resource management scheme becomes mandatory; that
is, considering a graph in which inter-parallelism is decided a priori, for example,
the emergence of a second training session needs a re-configuration of the degree
of parallelism in order to properly divide the underlying computing resources.
This feature is, as of today, not possible within TensorFlow.



32 L. A. Libutti et al.

Our final target is a common scenario in which individual TensorFlow
instances are confined inside a container, which is a typical setup on common
cloud services [9]; on shared-resources scenarios, reducing the amount of cores
per container would encompass oversubscription situations provided the Tensor-
Flow instance within is not informed consequently. Our goal, hence, is to inform
the internal TensorFlow instance to reduce/increase the amount of parallelism
according to the reduce/increased amount of resources assigned to the container.

In this paper, we provide the necessary mechanisms and modifications in
TensorFlow to allow malleability, that is, dynamic variation of the number of
threads at any point of the execution. Our approach is general enough to reduce
or expand the level of inter- and intra-parallelism within the framework from
an external entity (e.g. a co-scheduler system software) with no impact for the
user. As of our knowledge, this is the first effort to introduce thread malleability
in the framework, and paves the road towards the development of co-scheduling
schemes that allow an efficient sharing of computing resources in architectures
shared by multiple TensorFlow instances. As far as we are aware, this is the first
effort towards malleability integration within TensorFlow.

The rest of the paper is structured as follows. Section 2 describes the inter-
nal infrastucture of TensorFlow in terms of multithreading support, with special
interest in the deployment of threadpools and queues to support this functional-
ity. Section 3 introduces and deeply describes the necessary modifications within
the framework to support malleability. Section 4 reports execution traces for the
modified malleable TensorFlow implementation. Finally, Sect. 5 closes the paper
with a number of conclusions and future research lines opened by this funda-
mental modification in the framework.

2 Threading Model in Tensorflow

2.1 Execution Components

The computation within Tensorflow is defined by means of a graph composed by
an arbitrary number of compute nodes. Each compute node features zero or more
inputs and outputs, and represents an instance of a kernel operation defined in
the framework, such as a general matrix-matrix multiplication (MatMul). The
values that flow across nodes (input and output values) are called tensors, data
structures of arbitrary dimensions, where the element type is specified at graph
construction time. Additionally, nodes can present dependences that must be
satisfied before the execution of the next node.

Tensorflow defines a client who is responsible for communicating with one
or more workers. Each worker controls a set of devices identified by type and
name. Each device is responsible for handling the execution of ready nodes, that
is, compute nodes whose input dependences have been satisfied.

Hence, the compute nodes of the graph are executed in an order dictated by
their input dependences, following a so-called dataflow execution model. Once
they are fulfilled, the node becomes eligible for execution and it is added to a
ready node queue belonging to a worker, from which it is extracted, scheduled



Towards a Malleable Tensorflow Implementation 33

and finally executed. Upon finishing its execution, the number of dependencies
of the nodes that are linked to it is decreased by one. The ready node queue is
scheduled in an unspecified order, delegating each node to an available computing
worker for execution (itself or another worker).

To handle the execution of the graph nodes, the Tensorflow framework defines
an executor entity in charge of planning and dispatching elements in the task
queues of each thread of a deployed threadpool. Therefore, multiple threads may
be scheduling the tasks of the ready node queue within the executor. Each thread
analyzes whether it can run the nodes by checking various decision criteria. If
they are met, it pushes the node in its own Qinline, which contains all the nodes
that thread can execute. Otherwise, if one of the decision criteria is not met, it
delegates the node to be executed in another thread.

2.2 Thread Behavior

Each thread in the thread pool features two main procedures to (i) schedule
and (ii) execute the nodes of the graph. Specificaly, each thread in the pool
features two different task queues, namely Qready, containing nodes ready to be
scheduled, and Qinline, containing nodes ready to be executed.

Node Scheduling Stage. The scheduling of ready nodes is performed by means
of the following steps:

(STEP 1) Check if Qready is not empty. If it is not empty, proceed to the fol-
lowing step. Otherwise, finish scheduling.

(STEP 2) Get the next node Nnext in Qready.
(STEP 3) If Nnext is not an expensive task (that is, expected execution time is

small) queue in Qinline for its execution. Back to step 1.
(STEP 4) If Nnext is expensive and the current thread already has a node of the

same type ready, assign the node execution to another thread. Back
to step 1.

Figure 1 illustrates the per-thread scheduling process.

Node Execution Stage. Second, the node execution procedure proceeds as follows:

(STEP 1) Check if Qinline is not empty. If it is not empty, perform node plan-
ning. Otherwise, it waits for new nodes to be sent to it or for graph
execution to finish.

(STEP 2) Get the next node Nnext in Qinline.
(STEP 3) Verify that it meets the conditions for execution.
(STEP 4) Run the node using the required kernel implementation.
(STEP 5) Decrement the dependencies of the nodes that depend on the execu-

tion of the current node.
(STEP 6) Check for new nodes to schedule. In case it is fulfilled, call the schedul-

ing procedure.
(STEP 7) Back to step 1.

Figure 2 shows the node execution procedure.



34 L. A. Libutti et al.

2.3 Multi-level Parallelism: Intra- and Inter-parallelism

Tensorflow exposes and exploits two independent levels of parallelism, namely
intra- and inter-parallelism. Both can be exploited in conjunction and under
user request.

Intra-parallelism controls the number of threads to be used for the execu-
tion of a kernel operation (MatMul, ConCat, etc.). Obviously, the underlying
implementation of the kernel –task– must support parallelization to leverage
different degrees of intra-parallelism. On the contrary, inter-parallelism controls
the amount of independent kernel operations that can be concurrently executed,
leveraging the strategies depicted in the previous section.

Intra- and inter-parallelism, hence, can exploit per-task and per-graph par-
allelism, provided it is available. The framework provides simple mechanisms to
determine each level of parallelism through its high-level API; the selected val-
ues, however, are valid across the complete task graph, which make Tensorflow
a rigid piece of software from the threading control perspective.

Regarding implementation details, Tensorflow delegates the handling of inter-
parallelism (also referred as non-blocking parallelism in the literature) to the
implementation of the ThreadPool in the Eigen library [10] leveraging its flexi-
bility and efficiency.

Each thread in the threadpool features a third queue of tasks (Qeigen) that
ultimately includes tasks to be executed by the corresponding thread; under
situations without assigned tasks, work stealing between Qeigen queues is inplace
to improve thread occupancy. Under situations in which there are no available
tasks in Qeigen, the thread spins, and in case of being the only thread awake
without tasks, stalls for a certain time waiting for the arrival of new jobs; after
that time the thread falls asleep waiting for another thread to wake it up for
work.

3 Malleability Integration in Tensorflow

The integration of malleability in the threadpool associated with non-blocking
tasks (that is, inter-parallelism), requires a number of modifications both in the
Tensorflow core and the management of the internal threadpool in the Eigen
framework.

3.1 Required Modifications in the Eigen Threadpool

The Eigen library responsible for managing the threadpool does not allow a
dynamic control of the number of active threads at any arbitrary moment. There-
fore, extra information including status information is required on a per-thread
basis in order to activate/deactivate the normal behavior of the thread exposed
in the previous section, effectively stopping the processing of Qeigen.

In addition, the wait operation performed by the threads also requires mod-
ifications. In our modified version, each thread begins the process of waiting



Towards a Malleable Tensorflow Implementation 35

Fig. 1. Thread task scheduler.

for work by evaluating whether it should remain active or not depending on its
current state (which can be modified externally in an asynchronous fashion).

In case the state is active, the corresponding thread analyzes if it is possible
to continue executing nodes that are in its Qeigen or in the queue of another
thread. If the thread is inactive, it analyzes if it should wake up to another



36 L. A. Libutti et al.

Fig. 2. Execution task procedure.

thread (in case the queue of another thread is not empty and the other threads
are asleep) and if it should not fall asleep because it is the only active thread.
Finally, if tasks are not available (in a proprietary or alien queue), it waits for
another thread to submit work.

3.2 Required Modifications in the Tensorflow Core

The executor entity defined in the core of Tensorflow is in charge of scheduling
and execution of the graph, as stated in the previous Section, and therefore, it
also requires modifications in order to support malleability.

So far, the thread status of the threadpool cannot be controlled from the
executor. Actually, the only possible communication allows delegating the exe-
cution nodes to another thread. To add this type of extra control, the executor
receives information from the thread pool of non-blocking tasks with the possi-
bility of consulting the status of the threads and modifying the number of active
threads.

In our modified TensorFlow version, if the executor receives a change in
the number of active non-blocking threads from an external entity, it invokes a
method of the threadpool so that the number of active threads is increased or
decreased (executing nodes).



Towards a Malleable Tensorflow Implementation 37

In addition, each thread keeps information regarding its activation state
(active or inactive thread). This allows checking whether the thread can run or
delegate new nodes to another thread. All these changes are made in the node
queue scheduling procedure explained in the previous section. Figure 3 depicts
the main steps performed by the new thread task scheduler.

Fig. 3. New thread task scheduler.

4 Experimental Results

Figure 4 report some experimental results obtained on a real malleable Ten-
sorFlow implementation modified to integrate the modifications described in
Sect. 3. These results were extracted on a system based on an Intel Core i7-
8750H processor featuring 6 physical cores (12 logical cores via HyperThread-
ing technology), running at 2.2 GHz of nominal frequency. The system features
32 GBytes of DDR4 RAM memory. From the software perspective, TensorFlow
version 2.0.0 was used as our baseline implementation, running on an Ubuntu
18.04 OS.

The traces report execution timelines (one horizontal line per worker thread)
for a ResNet56 model defined through Keras, trained through 5 epochs, with
20 steps per epoch. Input dataset images were defined for a dimension 32 × 32
and 3 channels. The number of classes is fixed to 10, with a batch size 128.

We report three different scenarios for the aforementioned training process,
namely:



38 L. A. Libutti et al.

– Figure 4a is a typical TensorFlow implementation with 12 worker threads
from the beginning to the end of the execution.

– Figure 4b corresponds to a modified, malleable TensorFlow implementation
in which two different thread count changes are performed: the first one limits
the number of threads to 6 (reducing from the original 12 worker threads),
at the point marked with a vertical red line. Afterwards, worker threads are
again restored to 12, at the point marked with a vertical green line. It is
observed that before the red line, only two threads run. This occurs because
the threads they are running do not delegate operations to others. Operations
are delegated when it is expensive and there are other light operations to
execute. After the green line, thread number 10 does not execute operations
as explained above. It is observed that between the green and red lines, thread
1 becomes inactive and thread 9 begins to run. This is because thread 1 had
no more nodes to run and competes with the other threads to get a new one.
In this case, thread 9 got new nodes, leaving thread 1 idle.

– Figure 4c shows a similar situation, but reducing the number of active threads
to 2 instead of 6, and restoring to full parallelism afterwards. After the green
line, threads 3 and 6 are not activated as explained in the previous trace.

(a) 12 threads.

(b) 12 + 6 threads.

(c) 12 + 2 threads.

Fig. 4. Execution traces for three different threading scenarios. (Color figure online)



Towards a Malleable Tensorflow Implementation 39

Although still general, these results demonstrate the ability of our modi-
fied TensorFlow version to seamlessly achieve malleability, and paves the road
towards the integration or this malleable version with an application co-scheduler
that orchestrates, under demand, the assigned resources to independent Tensor-
Flow implementations.

5 Conclusions and Future Work

In this paper, we have introduced and described the main modifications that
are required to transform a fixed-parallelism TensorFlow implementation into a
malleable implementation, in which the degree of parallelism can be dynamically
selected and varied (reduced or increased) while the application is running.

This functionality is not present nowadays in the default TensorFlow distribu-
tion, and can pave the road towards flexibility and elasticity in shared-resources
scenarios (e.g. cloud servers running multiple TensorFlow instances).

Our work, however, is still a fundamental step towards more advanced func-
tionality proposed as future work, among which we can name:

1. Integration with a co-scheduler. A malleable library/framework infrastruc-
ture only makes real sense when combined with a higher-level resource man-
ager (or co-scheduler), that leverages malleability of the underlying mal-
leability (in this case within TensorFlow) and dynamically modifies the
amount of resources assigned to them in a co-ordinated fashion. We are
working in this type of resource orchestrator to support efficient co-existence
of TensorFlow instances in the same machine.

2. Creation of a malleability API. As of today, the malleability is internally
selected on specific execution points as proof of concepts. Its management,
however, must be transparent and externally selectable, on demand. For that
to happen, an ad-hoc API to select the number of active/inactive threads
will become mandatory, together with an infrastructure to support thread
variation by means of OS signal reception. Both functionalities are in our
roadmap.

3. Management through containers. Containers allow a dynamic reduction of
resources in terms of number of cores, amount of memory and external
devices, among others. However, externally reducing the number of assigned
cores without a proper reduction of internal software threads derives in
a non-acceptable oversubscription effect. As TensorFlow training/inference
processes are usually confined within Docker containers, it is mandatory
to support malleability in the framework. The interaction between per-
container resource management and mallebility in TensorFlow is thus a
primary goal of our research.

4. Intra-task malleability. The introduced techniques only affect inter- paral-
lelism. Malleability within nodes/tasks (intra-) is also of interest for us to
create a completely malleable parallelism. For that to happen, malleable
underlying libraries are mandatory (e.g. malleable BLIS [7] for BLAS tasks
–e.g. MatMul for fully connected layers–).



40 L. A. Libutti et al.

5. Heterogeneity support (use of GPUs). The integration of worker threads
associated with hardware accelerators –mainly GPUs–, and its dynamic acti-
vation/deactivation is also in our roadmap, so that graphics processors can
also be assigned or unassigned to existing TensorFlow instances at runtime.

6. Test with real-world problems. Obviously, the evaluation of the overhead
and benefits introduced by malleable TensorFlow implementations on real
models and workloads is mandatory and will be of interest in the near future.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). Software available from tensorflow.org

2. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the 22Nd ACM International Conference on Multimedia, MM 2014,
New York, NY, USA, 2014, pp. 675–678. ACM (2014)

3. François Chollet et al. Keras (2015). https://keras.io
4. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning

library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates Inc. (2019)

5. Hasabnis, N.: Auto-tuning tensorflow threading model for CPU backend. In: 2018
IEEE/ACM Machine Learning in HPC Environments (MLHPC), pp. 14–25. IEEE
(2018)

6. Catalán, S., Herrero, J.R., Quintana-Ort́ı, E.S., Rodŕıguez-Sánchez, R., van de
Geijn, R.A.: A case for malleable thread-level linear algebra libraries: the LU fac-
torization with partial pivoting. IEEE Access 7, 17617–17633 (2019)

7. Rodŕıguez-Sánchez, R., Igual, F., Quintana-Orti, E.S.: Integration and exploitation
of intra-routine malleability in blis. J. Supercomput. 11 (2019)

8. Rey, A., Igual, F.D., Prieto-Mat́ıas, M.: Variable intra-task threading for power-
constrained performance and energy optimization in DAG scheduling. J. Super-
compu. 75(3), 1717–1731 (2019). https://doi.org/10.1007/s11227-019-02760-6

9. Xu, P., Shi, S., Chu, X.: Performance evaluation of deep learning tools in docker
containers. In: 3rd International Conference on Big Data Computing and Com-
munications, BIGCOM 2017, Chengdu, China, August 10–11, 2017, pp. 395–403.
IEEE Computer Society (2017)

10. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org

https://keras.io
https://doi.org/10.1007/s11227-019-02760-6
http://eigen.tuxfamily.org

	Towards a Malleable Tensorflow Implementation
	1 Introdution and Motivation
	2 Threading Model in Tensorflow
	2.1 Execution Components
	2.2 Thread Behavior
	2.3 Multi-level Parallelism: Intra- and Inter-parallelism

	3 Malleability Integration in Tensorflow
	3.1 Required Modifications in the Eigen Threadpool
	3.2 Required Modifications in the Tensorflow Core

	4 Experimental Results
	5 Conclusions and Future Work
	References




