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1 Instituto Carlos I de F́ısica Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain
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Abstract. We investigate the entanglement properties of bound states in an exactly soluble two-electron
model, the Moshinsky atom. We present exact entanglement calculations for the ground, first and second
excited states of the system. We find that these states become more entangled when the relative inter-
particle interaction becomes stronger. As a general trend, we also observe that the entanglement of the
eigenstates tends to increase with the states’ energy. There are, however, “entanglement level-crossings”
where the entanglement of a state becomes larger than the entanglement of other states with higher
energy. In the limit of weak interaction, we also compute (exactly) the entanglement of higher excited
states. Excited states with anti-parallel spins are found to involve a considerable amount of entanglement
even for an arbitrarily weak (but non zero) interaction. This minimum amount of entanglement increases
monotonically with the state’s energy. Finally, the connection between entanglement and the Hartree-Fock
approximation in the Moshinsky model is addressed. The quality of the ground-state Hartree-Fock approx-
imation is shown to deteriorate, and the corresponding correlation energy to grow, as the entanglement of
the (exact) ground state increases. The present work goes beyond previous related studies because we fully
take into account the identical character of the two constituting particles in the entanglement calculations,
and provide analytical, exact results both for the ground and the first few excited states.

PACS. 03.65.-w Quantum mechanics – 03.67.-a Quantum information – 03.67.Mn Entanglement measures,
witnesses, and other characterizations

1 Introduction

The application of information-theoretic ideas to the
study of atomic structure has attracted the attention of
several researchers in recent years [1–9]. This line of in-
quiry provides an interesting and potentially fertile new
channel of cross-pollination between the mature field of
atomic physics and the emerging field of quantum in-
formation theory. These two areas of research also ex-
hibit an intensive interaction, of course, due to the fact
that some of the systems studied by contemporary atomic
physics, such as ion traps, constitute promising candi-
dates for the experimental implementation of quantum
computer technology [10]. Furthermore, the investigation
of information-theoretical aspects of atomic structure has
interesting points of contact with other important areas
of physics, such as the theory of critical phenomena [5].

A key ingredient in quantum information theory is the
phenomenon of quantum entanglement [10,11]. There is
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wide consensus that it constitutes one of (if not the) most
fundamental features of quantum physics. The study of
quantum entanglement has been the focus of intense re-
search efforts in recent years, leading to the discovery of
novel quantum information processes such as quantum
teleportation, superdense coding, and quantum compu-
tation [10,12], that may have important practical applica-
tions. Besides its revolutionary technological implications,
current research in quantum entanglement is providing a
deeper understanding of various basic aspects of quantum
physics, such as, for instance, quantum interference [13],
the foundations of quantum statistical mechanics [14], the
origin of the quantum-to-classical transition [15] and the
limits on the speed of quantum evolution (see [16] and
references therein).

From both fundamental and practical points of view,
it is imperative to investigate in a systematic way all the
facets of the concept of entanglement. It must be real-
ized that quantum entanglement is not just a fashion-
able research subject. Entanglement is a fundamental con-
cept of quantum physics that plays a deep role within all
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applications of quantum mechanics involving composite
systems (e.g., problems involving more than one particle).

The aim of the present contribution is to investigate
some aspects of the relationship between quantum entan-
glement and atomic physics. In order to do this, we are go-
ing to consider the entanglement properties of the energy
eigenstates of the Moshinsky atom [17,18] and its con-
nection with the correlation energy in the framework of
the Hartree-Fock approximation. The Moshinsky system
has in recent years attracted the interest of researchers,
as a testing ground to investigate fundamental aspects of
atomic physics [6,7,18]. In particular, it has been used to
explore the application of ideas from information theory
to this field [6,7]. The Moshinsky atom provides a solv-
able system where some fundamental aspects of atomic
physics (in particular, the role of entanglement) can be in-
vestigated by recourse to detailed, exact analytical compu-
tations. Furthermore, exact information about the eigen-
states of the Moshinsky model can be used to develop
valuable approximation techniques to treat more realistic
models [18]. Some interesting results related to the en-
tanglement properties of the Moshinsky model have been
recently reported by Amovilli and March in [7], but these
authors limited their considerations only to the ground
state of the system. Entanglement in a system similar to
the Moshinsky model has also been studied in connec-
tion with the entropy-area relationship for massless free
fields [19]. However, the results reported in [19] refer only
to the system’s ground state.

The structure of the paper is the following. First, in
Section 2 we briefly review the quantitative measures
of entanglement for pure states, with special emphasis
on measures appropriate for two electrons systems. Sec-
ond, in Section 3, we describe the eigensolutions of the
Hamiltonian of the Moshinsky atom. Then, in Section 4,
the entanglement properties of the ground and various ex-
cited states of this model atom are investigated in detail.
In Section 5 we analyze the entanglement of the Hartree-
Fock ground state of the Moshinsky atom, and its rela-
tionship with the correlation energy and the validity of the
approximation itself. Finally, some conclusions are drawn
in Section 6.

2 Entanglement measure
for two electron systems

It is useful to consider first a quantum system consti-
tuted by two distinguishable subsystems A and B. If HA

and HB denote the Hilbert spaces describing, respectively,
the subsystems A and B, the Hilbert space associated
with the composite system has the tensor-product form
HAB = HA ⊗ HB. Pure states of this composite system
can be classified into separable (factorizable) pure states
and entangled pure states. Separable pure states are those
that can be written as the tensor product of two states,
|φ〉 = |φ〉A ⊗ |φ〉B , where |φ〉k (k = A,B) are pure states
of the k-subsystem. On the other hand we have entangled
states, which are those that cannot be factorized in such

a way. In the case of factorizable states, each subsystem is
described by an individual pure state of its own. On the
contrary, when we have an entangled state it is not possi-
ble to assign an individual pure state to each subsystem,
and the subsystems are in mixed states. In general, if our
bipartite system is in a (pure) state |ψ〉, its subsystems are
described by the (marginal) density matrices ρk given by

ρA = TrB(|ψ〉〈ψ|),
ρB = TrA(|ψ〉〈ψ|). (1)

The degree of mixedness of these marginal density ma-
trices constitute quantitative measures of the amount of
entanglement exhibited by the joint (pure) state |ψ〉. The
larger the mixing of the subsystems, the larger the amount
of entanglement of the (global) pure state. There are
various ways to measure the degree of mixedness of the
marginal density matrices and, consequently, the amount
of entanglement associated with the global pure state of
the composite system. Let us just mention the measure
of entanglement based upon the von Neumann entropy of
either marginal density matrices ρk,

−Tr(ρA ln ρA) = −Tr(ρB ln ρB) (2)

and the measure defined in terms of the traces of the
squared marginal density matrices (see, e.g., [20–23])
which is given by the linear entropies of these density ma-
trices,

E(|ψ〉) = 1 − Tr
(
ρ2

A

)
= 1 − Tr

(
ρ2

B

)
. (3)

It is clear that, according to these two measures (2)
and (3), factorizable pure states have zero entanglement.
In the present work we are going to use the measure (3),
which exhibits various computational advantages from
both analytical and numerical points of view. The quan-
tity (3) constitutes a very useful entanglement measure
for pure states that has been applied by several re-
searchers to the study of various problems related to
quantum entanglement [20–23], particularly in connection
with the entanglement features of systems of two identi-
cal fermions [22,23]. It is useful to write the entanglement
measure (3) in terms of the Schmidt decomposition of the
joint state. For any state |ψ〉 it is always possible to find
orthonormal basis {|φ(A)

i 〉} and {|φ(B)
i 〉} for subsystems A

and B, respectively, such that

|ψ〉 =
∑

i

√
λi|φ(A)

i 〉 ⊗ |φ(B)
i 〉, (4)

where 0 ≥ λi ≥ 1 and
∑

i λi = 1. In terms of the
Schmidt decomposition the entanglement measure (3) can
be cast as

E(|ψ〉) = 1 −
∑

i

λ2
i . (5)

When dealing with systems consisting of two identical par-
ticles it is physically problematic (at least from the con-
ceptual, fundamental point of view) to speak about the
marginal states describing each of the alluded particles
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(even if the corresponding reduced density matrix may be
very useful for many practical purposes). Consequently,
definitions of the amount of entanglement of fermionic sys-
tems based on expressions like (2) or (3) should be handle
with care. However, the Schmidt decomposition does ad-
mit a natural generalization to systems of two identical
particles (see [22] for a detailed discussion) leading to a
physically meaningful definition of entanglement for pure
states of this kind of systems. In the case of two identical
fermions it is always possible to find an orthonormal ba-
sis {|i〉, i = 0, 1, . . .} of the single-particle Hilbert space,
such that the two-particle pure state |ψ〉 can be written as

|ψ〉 =
∑

i

√
λi

2

(
|2i〉|2i+ 1〉 − |2i+ 1〉|2i〉

)
, (6)

with 0 ≥ λi ≥ 1 and
∑

i λi = 1 (if the single-particle
Hilbert space has a finite dimension N , we assume that N
is even and that the sums on the index i go from i = 0 to
i = N

2 − 1). In terms of this fermionic Schmidt decompo-
sition the amount of entanglement exhibited by the pure
state |ψ〉 is [22]

E(|ψ〉) = 1 −
∑

i

λ2
i = 1 − 2Tr (ρ2

1), (7)

where ρ1 = Tr2 (|ψ〉〈ψ|) is the reduced single-particle den-
sity matrix obtained by tracing the global, two-particle
density matrix ρ = |ψ〉〈ψ| over one of the two particles.
The measure (7) has been recently applied to the study of
electron-electron scattering processes [23].

One of the main features of the entanglement mea-
sure (7) for systems of two identical fermions is that cor-
relations between the two particles that are due solely to
the antisymmetric character of the fermionic states do not
contribute to the state’s amount of entanglement. The
amount of entanglement associated with a two-fermions
state corresponds, basically, to the quantum correlations
exhibited by the state on top of the minimum correla-
tions needed to comply with the antisymmetric constraint
on the fermionic wave function [22–26]. For instance, for
a two-fermions state of Slater rank equal to one (that
is, a state whose wave function can be represented as a
single Slater determinant) one of the λ’s appearing in
the fermionic Schmidt decomposition is equal to 1 and
the rest are equal to zero. It is plain from (7) that such
a state has zero entanglement. Indeed, even though the
concept of entanglement in systems of indistinguishable
particles is more controversial than it is in the case of
distinguishable subsystems, there is by now general con-
sensus among researchers working on entanglement the-
ory and on the foundations of quantum mechanics that
two-fermion states of Slater rank one must be regarded as
non-entangled [22–29]. There are profound physical rea-
sons for this. On the one hand, the correlations exhibited
by such states can’t be used as a resource to implement
non-classical information transmission or information pro-
cessing tasks [24]. On the other hand, the non-entangled
character of states represented by one Slater determinant
is consistent with the possibility of associating complete

sets of properties to both parts of the composite system
(see [25,26] for a detailed discussion of this approach).

Let us now consider the application of the above mea-
sure to a pure state of a two electrons system. In the
present work we are going to focus mainly on states de-
scribed by wave functions of the form

φ(x1, x2)χ(σ1, σ2), (8)

where the global wave function can be factorized as the
product of a coordinate wave function φ(x1, x2) and a
spin wave function χ(σ1, σ2), x1 and x2 being the coor-
dinates of the two electrons. In general, the eigenstates of
the Moshinsky aton have the factorized form (8). In the
special case of vanishing interaction, however, the degen-
eracy of the eigenenergies of the Moshinsky model allow
for constructing non-factorized eigenstates that have the
form of Slater determinants and, consequently, have no
entanglement.

The density matrix corresponding to a factorized wave
function of the form (8) has the form

ρ = ρ(coord.) ⊗ ρ(spin), (9)

where the matrix elements of ρ(coord.) are

〈x′1, x′2|ρ(coord.)|x1, x2〉 = φ(x′1, x
′
2)φ

∗(x1, x2). (10)

The entanglement measure (7) evaluated on a state with
the wave function (8) (and density matrix (9)) is given by

E = 1 − 2 Tr
[
ρ̃2

]
Tr

[
ρ̃2

s

]
, (11)

where ρ̃ are ρ̃s are, respectively, the single particle reduced
coordinate and spin density matrices. To evaluate (11) we
have now to consider separately the cases of a spin wave
function describing parallel spins or antiparallel spins. If
we have parallel spins (that is, if the coordinate wave func-
tion is antisymmetric and the spin wave function is either
χ++ or χ−−) the entanglement measure (7) correspond-
ing to a two-electrons state of the form (8) (which is given
by (11)) reduces to

ξ(|ψ〉) = 1 − 2
∫

|〈x′1|ρ̃|x1〉|2 dx′1dx1. (12)

On the other hand, if we have anti-parallel spins (that is,
if the coordinate wave function is symmetric and the spin
wave function is 1√

2
(χ+− − χ−+) or, alternatively, if the

coordinate wave function is antisymmetric and the spin
wave function is 1√

2
(χ+− + χ−+)) the amount of entan-

glement is given by

ξ(|ψ〉) = 1 −
∫

|〈x′1|ρ̃|x1〉|2 dx′1dx1. (13)

In equations (12) and (13) we have

〈x′1|ρ̃|x1〉 =
∫ ∞

−∞
φ(x′1, x2)φ∗(x1, x2) dx2. (14)
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Notice that a two-electrons state with a wave function of
the form

1√
2

[
φ1(x1)φ2(x2) − φ2(x1)φ1(x2)

]
χkk, k = ±, (15)

with φ1(x) and φ2(x) orthogonal single-particle (coordi-
nate) wave functions, has zero entanglement. This exam-
ple illustrates an important point already mentioned. The
wave function (15) is a Slater determinant. The associated
correlations between the two electrons, due entirely to the
anti-symmetry requirement on the fermionic state, do not
contribute to the entanglement of the state.

3 The Moshinsky atom

The Moshinsky atom [17,18] is a system formed by two
harmonically interacting particles confined in a common,
external isotropic harmonic potential. In the present work
we shall consider only the one dimensional case. The gen-
eralization of the present results to higher dimensions is
straightforward.

The total Hamiltonian of the system is

H=−1
2
∂2

∂x2
1

− 1
2
∂2

∂x2
2

+
1
2
ω2x2

1 +
1
2
ω2x2

2 +
1
2
λ2(x1 − x2)2

(16)
where x1 and x2 are the coordinates of the two particles,
ω is the natural frequency of the external harmonic field,
and λ is the natural frequency of the interaction harmonic
field. We have used atomic units (m = 1, � = 1) through-
out the paper, unless indicated otherwise.

Introducing the centre of mass and relative coordi-
nates,

R =
1√
2
(x1 + x2) r =

1√
2
(x1 − x2), (17)

the Hamiltonian factorizes in the following form

H =
(
−1

2
∂2

∂R2
+

1
2
ω2R2

)
+

(
−1

2
∂2

∂r2
+

1
2
Λ2r2

)
(18)

where Λ2 = 2λ2 + ω2. The general eigenfunctions of the
system are

Ψ(x1, x2) = Ψ(R, r) = Ψ̂nR(R)Ψ̃nr (r) (19)

with

Ψ̂nR(R) =
(

ω1/2

2nRnR!π1/2

)1/2

e−
1
2 ωR2

HnR(
√
ωR) (20)

and

Ψ̃nr (r) =
(

Λ1/2

2nrnr!π1/2

)1/2

e−
1
2 Λr2

Hnr (
√
Λr), (21)

where Hn(x) denote the Hermite polynomials. The
eigenenergy of this state is

E = ER + Er = ω

(
nR +

1
2

)
+ Λ

(
nr +

1
2

)
. (22)

We will denote by |nR, nr〉Rr the eigenfunctions of the
Hamiltonian (18), which are characterized by the two
quantum numbers nR and nr (to fully define the two-
electron system’s eigenstates we have to specify also the
spin wave function ξ(σ1, σ2)). All the (coordinate) wave
functions |nR, nr〉Rr have definite parity, which is deter-
mined by the quantum number nr: even values of nr cor-
respond to symmetric coordinate eigenfunctions and odd
values of nr to antisymmetric ones. A final remark con-
cerning our notation is in order. A cursory glance at the
ket |nR, nr〉Rr may suggest that it represents a separable
state. However, in general, it represents an entangled state
of the two electron system (remember that the quantum
numbers nR and nr refer, respectively, to the centre of
mass and relative coordinates of the two particles).

4 Entanglement in the Moshinsky atom

From our previous discussion of quantum entanglement in
a two-particle system, it follows that the integrals,

ρ̃(x′1, x1) =
∫ ∞

−∞
Ψ∗(x1, x2)Ψ(x′1, x2)dx2, (23)

and

Tr[ρ̃2] =
∫ +∞

−∞
|〈x′|ρ̃|x〉|2 dx dx′, (24)

have to be computed in order to evaluate the entangle-
ment associated with a wave function Ψ(x1, x2). Both in-
tegrals can be calculated exactly for a general eigenfunc-
tion (19) of the Moshinsky system. However, since the
resulting expressions becomes rather awkward for highly
excited states, we are going to compute these quantities
only for the ground and first two excited states. Next
we are going to provide the final closed expressions for
Tr[ρ̃2] (arising from the evaluation of the aforementioned
integrals) and discuss the corresponding amounts of en-
tanglement exhibited by each eigenstate. In what follows
Tr[ρ̃2]nR nr denotes value of Tr[ρ̃2] when evaluated on the
wave function |nR, nr〉Rr.

4.1 Ground state |00〉Rr

In this case we have

Tr[ρ̃2]00 =
2
√
Λω

Λ+ ω
=

√
2 4
√

2τ2 + 1
√
τ2 +

√
2τ2 + 1 + 1

(25)

where
τ =

λ

ω
. (26)

The dimensionless parameter τ constitutes a measure of
the relative strength of the interaction between the two
particles in the Moshinsky system. When the system is
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decoupled we have τ = 0. The larger the value of τ , the
larger is the (relative) contribution of the interaction term
in the Moshinsky atom. We see from (25) that the entan-
glement E00 = 1 − Tr[ρ̃2]00 of the ground state depends
upon the parameters of the Moshinsky atom only through
the dimensionless quantity τ .

Decoupling the system, that is, making τ → 0 (which
corresponds, for instance, to λ→ 0 or equivalently Λ→ ω)
makes

lim
τ→0

Tr[ρ̃2]00 = 1 (27)

showing that in the decoupled system the ground state is
not entangled (E00 = 0). On the other hand, with maxi-
mum coupling (τ → ∞) we find that

lim
τ→∞Tr[ρ̃2]00 = 0. (28)

Consequently, in this limit we have E00 = 1−Tr[ρ̃2]00 = 1.
That is, the entanglement measure adopts its maximum
possible value.

4.2 First excited states |10〉Rr and |01〉Rr

In this case we have

Tr[ρ̃2]10 =

√
Λω

(
3Λ2 + 2ωΛ+ 3ω2

)

2(Λ+ ω)3

=
4
√

2τ2 + 1
(
3τ2 +

√
2τ2 + 1 + 3

)

(√
2τ2 + 1 + 1

)3 (29)

and, consequently,

lim
τ→0

Tr[ρ̃2]10 =
1
2
. (30)

showing that, even if we decouple the system, the state
|10〉Rr still exhibits a finite, non-vanishing amount of en-
tanglement. However, when τ = 0 we have ω = Λ and the
energy eigenvalue corresponding to the eigenstate |10〉Rr

becomes four-fold degenerate. It then becomes possible
to choose a new set of four eigenstates (with the same
eigenenergy) exhibiting zero entanglement. If we consider
the Moshinsky atom in the original coordinate system
x1,2, we see that when λ = 0, the Moshinsky system con-
sists of two independent one-dimensional harmonic oscil-
lators with the same natural frequency. Let us denote by
|n〉 (n = 0, 1, 2, . . .) the eigenstates of each of these os-
cillators. The kets |n,±〉 (n = 0, 1, 2, . . .), using standard
self-explanatory notation, constitute a single-particle or-
thonormal basis. For τ = 0 we can choose the four eigen-
states (all with the same energy as |10〉Rr)

1√
2
(|0,+〉|1,+〉 − |1,+〉|0,+〉),

1√
2
(|0,+〉|1,−〉 − |1,−〉|0,+〉),

1√
2
(|0,−〉|1,+〉 − |1,+〉|0,−〉),

1√
2
(|0,−〉|1,−〉 − |1,−〉|0,−〉), (31)

which are represented by a Slater determinant and thus
have zero entanglement. It must be stressed that the case
τ = 0 allows for this particular set of eigenstates because
of the degeneracy exhibited by the energy levels of the
Moshinsky model when there is no interaction between
the particles. On the contrary, eigenstates of zero entan-
glement do not exist for arbitrary values of τ .

In the limit of maximum coupling we have

lim
τ→∞Tr[ρ̃2]10 = 0, (32)

which means maximum entanglement E10 = 1, as ex-
pected.

For the first excited state |01〉Rr the quantity Tr[ρ̃2]01
is also given by expression (29). Therefore, the measures
of entanglement of the states |10〉Rr and |01〉Rr are exactly
the same (and also the conclusions).

4.3 Second excited state |11〉Rr

In this case we have

Tr[ρ̃2]11 =

√
Λω

(
9Λ4 − 4ωΛ3 + 118ω2Λ2 − 4ω3Λ + 9ω4

)

8(Λ+ ω)5

=
4
√

2τ2+1
(
9τ4+68τ2 − 2

(
τ2+1

)√
2τ2 + 1 + 34

)

2
(√

2τ2+1+1
)5

(33)

then
lim
τ→0

Tr[ρ̃2]11 =
1
2
. (34)

We see that, also in this case, the eigenstate |11〉Rr remains
entangled even in the decoupled limit τ → 0. Again, when
τ = 0 and the two particles are non-interacting, the degen-
eracy of the concomitant energy level allows for choosing
a new set of eigenstates exhibiting zero entanglement.

In the limit of maximum coupling we have

lim
τ→∞Tr[ρ̃2]11 = 0, (35)

corresponding to maximum entanglement E11 = 1.

4.4 Second excited states |20〉Rr and |02〉Rr

Now we find

Tr[ρ̃2]20 =√
Λ
√
ω

(
41Λ4 + 60ωΛ3 + 182ω2Λ2 + 60ω3Λ + 41ω4

)

32(Λ+ ω)5

=
4
√

2τ2+1
(
41τ4+132τ2+30

(
τ2 + 1

)√
2τ2 + 1+66

)

8
(√

2τ2 + 1 + 1
)5 .

(36)

In the decoupled limit we have

lim
τ→0

Tr[ρ̃2]20 =
3
8
, (37)
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and, consequently, a non-zero amount of entanglement
E20 = 5

8 . As happens with the eigenstates discussed pre-
viously, when τ = 0 the entangled eigenstate |20〉Rr cor-
responds to a degenerate energy level and due to this de-
generacy it is possible to find another set of eigenstates
exhibiting no entanglement. In the limit of strong cou-
pling we have

lim
τ→∞Tr[ρ̃2]20 = 0, (38)

corresponding to maximum entanglement.
In the case of the second excited state |02〉Rr the ex-

pression for Tr[ρ̃2]02 is again given by (36). Consequently,
the behavior of the entanglement measure E as a func-
tion of the parameter τ is the same for states |02〉Rr and
|20〉Rr. In both cases we have maximum entanglement in
the limit τ → ∞. In the decoupled limit, the state |02〉Rr

still has non-vanishing entanglement. When τ = 0 this
eigenstate corresponds to the same degenerate eigenvalue
as |20〉Rr and, as we already said, there is another set of
eigenstates (for the same energy eigenvalue) endowed with
no entanglement.

An interesting feature of the above analytical expres-
sions for Tr[ρ̃2]nR nr (and, consequently, of the expressions
for the amount of entanglement E exhibited by the eigen-
states of the Moshinsky atom) is that these expressions are
symmetrical in the frequencies ω and Λ. In order to shed
some light on this symmetry let us consider the Moshinsky
Hamiltonian H ′ corresponding to permuted values of the
frequencies ω and Λ. That is, the frequencies ω′ and Λ′
associated with H ′ are related to the frequencies ω and Λ
of H by

ω′ = Λ
Λ′ = ω. (39)

The relations (39) are equivalent to the following rela-
tions between the parameters ω′ and λ′ characterizing the
Hamiltonian H ′ and the parameters ω and λ correspond-
ing to H ,

ω′2 = 2λ2 + ω2

λ′2 = −λ2. (40)

It can be verified that the Moshinsky HamiltonianH ′ with
parameters given by (40) can be written in terms of ω and
λ as,

H ′=−1
2
∂2

∂x2
1

− 1
2
∂2

∂x2
2

+
1
2
ω2x2

1 +
1
2
ω2x2

2 +
1
2
λ2(x1 + x2)2.

(41)
Now, if Ψ(x1, x2) is an eigenfunction of the Moshinsky
Hamiltonian H (given by Eq. (16)) it is clear that

Ψ ′(x1, x2) = Ψ(x1,−x2), (42)

is an eigenfunction of H ′. The quantum numbers n′
R and

n′
r corresponding to Ψ ′(x1, x2) are related to those of
Ψ(x1, x2) by

n′
R = nr; n′

r = nR. (43)

It is also plain from (42) that the quantity Tr[ρ̃2]
has the same value when evaluated upon Ψ(x1, x2)

Fig. 1. Entanglement of the ground, first, and second ex-
cited states (with anti-parallel spins) of the Moshinsky atom
as a function of the parameter τ . All depicted quantities are
dimensionless.

or Ψ ′(x1, x2). Consequently, remembering that the
Moshinsky Hamiltonian H ′ is obtained from H by per-
muting the frequencies ω and Λ, it follows that

Tr[ρ̃2](ω,Λ)
nR nr

= Tr[ρ̃2](Λ,ω)
nr nR

. (44)

An immediate consequence of the last equation is that, for
those eigenstates of the Moshinsky atom with equal quan-
tum numbers, nR = nr, the expression for Tr[ρ̃2]nr nr is
symmetrical in ω and Λ. We have already verified this
property in the particular cases of Tr[ρ̃2]00 and Tr[ρ̃2]11.
The explicit expressions obtained for Tr[ρ̃2]01 and Tr[ρ̃2]02
are also symmetrical in ω and Λ. We conjecture that this
symmetry holds in general for all values of the quantum
numbers nR and nr, but a general proof of this property
has eluded us. Notice that the symmetry that we are con-
jecturing is different from the one given by (44) because it
requires the invariance of Tr[ρ̃2]nR nr under the permuta-
tion of ω and Λ without permuting at the same time the
quantum numbers nR and nr.

The behavior of the amount of entanglement E as a
function of τ for various eigenstates of the Moshinsky atom
is shown in Figures 1 and 2 as a function of the relative
interaction strength τ of its two constituent particles. In
Figure 1 the entanglement E is plotted against τ for eigen-
states with anti-parallel spins (eigenstates with symmetric
coordinate wave functions and eigenstates with antisym-
metric coordinate wave functions, are both represented in
this figure). In Figure 2 we compare (for eigenstates with
anti-symmetric coordinate wave functions) the entangle-
ment exhibited by states with parallel (dashed line) and
anti-parallel (continuous line) spins.

We encounter two general trends: (i) the entangle-
ment increases monotonically with τ and, consequently,
with the strength of the interaction between the parti-
cles and (ii) the amount of entanglement also tends to
increase when we consider higher excited states (that is,
it increases with the energy). There are, however, excep-
tions to this last rule. For large enough values of the in-
teraction parameter τ the state |11〉Rr (with anti-parallel
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Fig. 2. Entanglement of the first and second excited states
of the Moshinsky model with antisymmetric coordinate wave
function. Solid lines correspond to eigenstates with anti-
parallel spins and dashed lines to eigenstates with parallel
spins. All depicted quantities are dimensionless.

spins) has higher entanglement than the state |02〉Rr (also
with anti-parallel spins). In point of fact, as the param-
eter τ increases, these two states exhibit an interesting
“entanglement level-crossing”.

It can be appreciated in Figure 2 that, for eigenstates
sharing the same anti-symmetric coordinate wave func-
tions, the eigenstates with parallel spins have less entan-
glement than the eigenstates with anti-parallel spins. In
fact, this is a general property of the eigenstates with
anti-symmetric coordinate wave functions, not restricted
to the states considered in Figure 2. This property follows
directly from equation (11). The eigenstates with parallel
spins have Tr

[
ρ̃2

s

]
= 1, while the eigenstates with anti-

parallel spins have Tr
[
ρ̃2

s

]
= 1/2 and, as a consequence

of (11), are endowed with a larger amount of entangle-
ment.

It is also interesting that, as already mentioned, the en-
tanglement of excited eigenstates with anti-parallel spins
does not go to zero in the limit τ → 0. This means that an
arbitrarily weak (but non-zero) interaction already leads to
excited eigenstates exhibiting a considerable amount of en-
tanglement. On the other hand, as already explained, in
the decoupled system corresponding to τ = 0 these states
correspond to degenerate eigenenergies and the degener-
acy enables one to find an alternative set of non-entangled
eigenstates with the same energies. However, when τ > 0
the degeneracy is lifted by the interaction and the afore-
mentioned eigenstates are now necessarily entangled. It
is worth stressing that the finite amount of entanglement
corresponding to the limit τ → 0 is not due to the corre-
lations arising exclusively from the antisymmetric nature
of the (global) fermionic states. As already mentioned,
these correlations do not contribute to the entanglement
of the state. The amount of entanglement exhibited by
the excited states (with anti-parallel spins) in the limit of
weak interaction increases monotonically with the energy

Fig. 3. Entanglement in the limit of weak interaction, as a
function of the quantum number n2, exhibited by the eigen-
states |0, n2〉, |1, n2〉, and |2, n2〉 (with anti-parallel spins). All
depicted quantities are dimensionless.

of the states. This behavior can be clearly observed in Fig-
ure 3, where the entanglement corresponding to the limit
τ → 0 is plotted as a function of the quantum number n2

for states of the form |0, n2〉, |1, n2〉, and |2, n2〉, all with
anti-parallel spins. It is remarkable that the entanglement
exhibited by these states (which is clearly a non-classical
feature) increases with n2 in spite of the fact that various
important properties of states with large quantum num-
bers yield to a semiclassical description.

As a final remark on the entanglement properties of the
eigenstates of the Moshinsky atom it must be noticed that,
due to degeneracy, the energy eigenbasis of the Moshinsky
atom that we have considered is not unique. We have
discussed energy eigenstates of the form (8), where the
spin wave function is equal to 1√

2
(χ+− − χ+−) when the

coordinate wave functions is symmetric, and it is equal
to either χ++, χ−−, or 1√

2
(χ+− + χ+−) when the coor-

dinate wave function is anti-symmetric. Now, the eigen-
states with a symmetric coordinate wave function are in
general non-degenerate and consequently unique. On the
contrary, the eigenstates with anti-symmetric coordinate
wave functions are three-fold degenerate, since the three
eigenstates corresponding to the three above mentioned
spin wave functions (and having the same coordinate wave
function) share the same eigenenergy. Consequently, any
(normalized) linear combination of these three eigenstates
is still a legitimate eigenstate of the Moshinsky atom shar-
ing the alluded eigenenergy. Any of these possible eigen-
states still has the factorized form (8), even if the spin
wave function is not χ++, χ−−, or 1√

2
(χ+− + χ+−). The

entanglement E associated with any of these eigenstates
having the same anti-symmetric coordinate wave function
(and the same eigenenergy) is within the range

1 − 2Tr[ρ̃2]nRnr ≤ E ≤ 1 − Tr[ρ̃2]nRnr , (45)

where the upper bound corresponds to anti-parallel spins
( 1√

2
(χ+− + χ+−)) and the lower bound corresponds to
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parallel spins (χ++ or χ−−). It is worth stressing that, ex-
cepting the cases of |01〉Rr and |11〉Rr with parallel spins,
all these eigenstates share the property that their entan-
glement tends to a finite, non-zero value when τ goes to
zero. However, as already mentioned, in the case of strictly
zero interaction (that is when τ = 0) an extra degeneracy
appears, and it is then possible to construct eigenstates of
zero entanglement, which are no longer of the factorized
form (8). One more comment is here in order. Having the
factorized form is not a sufficient, nor a necessary condi-
tion for being entangled. A state of two spin-1/2 particles
having the factorized form (8) may be separable or entan-
gled. The same happens with non-factorized states.

It would be interesting to investigate which of the en-
tanglement properties exhibited by the excited states of
the Moshinsky model are shared by the excited states
of other, more realistic two-electron models. A promising
way to pursue this line of research would be to investigate
the entanglement properties of the (semi-analytic) approx-
imate wave functions for the eigenstates of many-electron
systems obtained by recourse to the generalized Sturmian
technique developed by Avery and Avery [30].

5 Hartree-Fock approximation,
correlation energy, and entanglement

The Hartree-Fock approximation has played a distin-
guished role in atomic and nuclear physics, and in quan-
tum many-body physics in general. The validity of this
approximation is closely related to the entanglement
exhibited by the (exact) eigenstates of a given quan-
tum many body-system. Indeed, in contemporary quan-
tum mechanical parlance, the Hartree-Fock approxima-
tion can be described, basically, as a “zero entanglement
approximation”. The aim of the present section is to ex-
plore quantitatively, in the context of the exactly soluble
Moshinsky model, the connection between entanglement
and the Hartree-Fock approximation, emphasizing that
the amount of entanglement of an exact eigenstate is the
main property determining how good the corresponding
Hartree-Fock approximation is.

Let us now consider the relationship between the
Hartree-Fock approximation and the entanglement of the
energy eigenstates of the Moshinsky atom. The Hartree-
Fock ansatz is

Φ(x1, x2) = φ(x1)φ(x2) (46)

where φ(x1) verifies

− 1
2
d2φ(x1)
dx2

1

+
1
2
ω2x2

1φ(x1)

+
λ2

2

(∫ +∞

−∞
φ2(x2)(x1−x2)2dx2

)
φ(x1) = εφ(x1). (47)

By parity considerations, this equation reduces to:

− 1
2
d2φ(x1)
dx2

1

+
1
2
(ω2 + λ2)x2

1φ(x1)

+
λ2

2

(∫ +∞

−∞
φ2(x2)x2

2dx2

)
φ(x1) = εφ(x1). (48)

The ground state solution of the above equation is

φ(x1) =

(√
ω2 + λ2

π

)1/4

e−
1
2

√
ω2+λ2x2

1 (49)

with

ε =
2ω2 + 3λ2

4
√
ω2 + λ2

. (50)

So the Hartree-Fock solution for the ground state is [17]

Φ(x1, x2) =

(√
ω2 + λ2

π

)1/2

e−
1
2

√
ω2+λ2(x2

1+x2
2) (51)

with Hartree-Fock energy:

EHF =
√
ω2 + λ2. (52)

The correlation energy is defined as the difference between
the exact and the Hartree-Fock energies of a given eigen-
state, so that for the ground state one has

Ec = E − EHF =
ω + Λ

2
−

√
ω2 + λ2

=
ω +

√
2λ2 + ω2 − 2

√
ω2 + λ2

2
. (53)

In terms of τ = λ
ω this expression can be written as

Ec =
1
2
ω

(
1 +

√
2τ2 + 1 − 2

√
τ2 + 1

)
. (54)

Another important quantity indicating the quality of the
Hartree-Fock approximation is given by the overlap be-
tween the exact wave function and the Hartree-Fock wave
function,

O = 〈Ψ |Φ〉

=
2
√

2 4
√
ω 4
√
λ2 + ω2 8

√
2λ2 + ω2

√
ω +

√
2λ2 + ω2

√
ω + 2

√
λ2 + ω2 +

√
2λ2 + ω2

.

(55)

In the Moshinsky system, the overlap O can be expressed
in terms of τ ,

O =
2
√

2 4
√
τ2 + 1 8

√
2τ2 + 1

√√
2τ2 + 1 + 1

√
2
√
τ2 + 1 +

√
2τ2 + 1 + 1

. (56)

It can be verified that the limits of the overlap (for τ → 0
and τ → ∞) are

lim
τ→0

O = 1, (57)
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Fig. 4. Overlap between the exact ground state wave function
and the corresponding Hartree-Fock approximation, plotted as
a function of the parameter τ . All depicted quantities are di-
mensionless.

Fig. 5. Overlap between the exact ground state wave function
and the corresponding Hartree-Fock approximation, plotted as
a function of the ground state’s entanglement E . All depicted
quantities are dimensionless.

and
lim

τ→∞O = 0. (58)

The above limiting values are physically sensible. For the
decoupled system the Hartree-Fock approximation yields
an exact eigenfunction. On the other hand, as the interac-
tion term in the Hamiltonian becomes dominant the qual-
ity of the Hartree-Fock approximation deteriorates and
the overlap tends to zero. This behavior can be seen in
Figure 4, where the overlap is plotted against τ .

Finally, it is instructive to consider the relationship
between the overlap, the correlation energy, and the en-
tanglement of the Moshinsky atom ground state. In Fig-
ures 5 and 6 the overlap and the correlation energy, re-
spectively, are depicted as a function of E , we take ω = 1
without any loss of generality. As physically expected, the
overlap decreases while the correlation energy increases

Fig. 6. Correlation energy of the ground state (in atomic units)
plotted as a function of the ground state’s entanglement E (this
quantity is dimensionless).

with the the amount of entanglement exhibited by the
ground state. The results presented by us in this section
concerning the relationship between entanglement and the
Hartree-Fock approximation in the Moshinsky model are
fully consistent with the results reported by Amovilli and
March (AM) in [7]. The difference between our study and
the one performed by AM is that we have done exact en-
tanglement calculations using an entanglement measure
based upon the linear entropy, while AM did approximate
calculations using an entanglement measure based on the
von Neumann entropy.

6 Conclusions

In the present effort we have considered the entanglement
properties of various energy eigenstates of the Moshinsky
atom. The amount of entanglement contained in these
eigenstates depends solely upon a dimensionless param-
eter τ that measures the (relative) weight of the interac-
tion term in the Hamiltonian. We computed exactly the
entanglement of the aforementioned bound states, obtain-
ing closed analytical expressions for the entanglement as
a function of τ . As a general trend we found that, as τ
increases (that is, as the interaction becomes more impor-
tant) the amount of entanglement exhibited by the atomic
states increases as well. Moreover, entanglement tends to
increase when more highly excited states are considered.
There are, however, “entanglement level-crossings” where
the entanglement of a state becomes larger than the en-
tanglement of another state of higher energy.

Excited states with anti-parallel spins exhibit a con-
siderable amount of entanglement even in the case of an
arbitrarily weak (but non-zero) interaction. This amount
of entanglement increases monotonically with the energy
of the concomitant eigenstates. It is worth stressing that
this “minimum” entanglement appearing in the limit of
weak interactions is not due to the minimum correlations
required to comply with the antisymmetric character of
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the fermionic wave functions: these correlations do not
contribute to the entanglement associated with the two-
electrons states.

The connection between the entanglement of the
atomic states and the celebrated Hartree-Fock approxi-
mation was also addressed. The quality of this approx-
imation can be estimated by recourse to the overlap O
between the exact wave functions and the Hartree-Fock
ones. Another physically relevant quantity is the correla-
tion energy, defined as the difference between the exact
eigenenergies of the system and the energies provided by
the Hartree-Fock scheme. For the Moshinsky atom both
quantities depend on the system’s parameter only through
τ . This allows us to determine functional relationships be-
tween the entanglement of the atomic states, on the one
hand, and the overlap and correlation energy, on the other
one. We found that the overlap decreases when the entan-
glement increases, while the correlation energy increases
with entanglement.

This work was partially supported by the Project FQM-2445
of the Junta de Andalucia (Spain, EU).

References

1. C. Das, K. Bhattacharyya, Phys. Rev. A 79, 012107 (2009)
2. E. Romera, A. Nagy, Phys. Lett. A 372, 6823 (2008)
3. F. Carlier, A. Mandilara, A. Sarfati, J. Phys. B: At. Mol.

Opt. Phys. 40, S199 (2007)
4. J.S. Dehesa, R. Gonzalez-Ferez, P. Sanchez-Moreno, J.

Phys. A: Math. Theor. 40, 1845 (2007)
5. O. Osenda, P. Serra, Phys. Rev. A 75, 042331 (2007)
6. A. Nagy, Chem. Phys. Lett. 425, 154 (2006)
7. C. Amovilli, N.H. March, Phys. Rev. A 69, 054302 (2004)
8. R. Gonzalez-Ferez, J.S. Dehesa, Phys. Rev. Lett. 91,

113001 (2003)

9. A.R. Plastino, A. Plastino, Phys. Lett. A 181, 446 (1993)
10. N. Nielsen, I.L. Chuang, Quantum Computation and

Quantum Information (Cambridge, University Press,
Cambridge 2000).

11. I. Bengtsson, K. Zyczkowski, Geometry of Quantum
States: An Introduction to Quantum Entanglement
(Cambridge University Press, Cambridge, 2006)

12. V. Aquilanti, A.C.P. Bitencourt, C.D.S. Ferreira, A.
Marzuoli, M. Ragni, Phys. Scr. 78, 058103 (2008)

13. S. Luo, Z. Zhang, Phys. Lett. A 315, 189 (2003)
14. J. Gemmer, M. Michel, G. Mahler, Quantum

Thermodynamics (Berlin, Springer-Verlag, 2004)
15. M. Schlosshauer, Decoherence and the Quantum-to-

Classical Transition (Berlin, Springer-Verlag, 2007)
16. C. Zander, A.R. Plastino, A. Plastino, M. Casas, J. Phys.

A: Math. Theor. 40, 2861 (2007)
17. M. Moshinsky, Am. J. Phys. 36, 52 (1968); Erratum: M.

Moshinsky, Am. J. Phys. 36, 763 (1968)
18. C. Amovilli, N.H. March, Phys. Rev. A 67, 022509 (2003)
19. M. Srednicki, Phys. Rev. Lett. 71, 666 (1993)
20. P. Zanardi, C. Zalka, L. Faoro, Phys. Rev. A 62, 030301

(2000)
21. Y.S. Weinstein, C.S. Hellberg, Phys. Rev. Lett. 95, 030501

(2005)
22. J. Naudts, T. Verhulst, Phys. Rev. A 75, 062104 (2007)
23. F. Buscemi, P. Bordone, A. Bertoni, Phys. Rev. A 75,

032301 (2007)
24. K. Eckert, J. Schliemann, D. Bruss, M. Lewenstein, Ann.

Phys. 299, 88 (2002)
25. G. Ghirardi, L. Marinatto, Phys. Rev. A 70, 012109 (2004)
26. G. Ghirardi, L. Marinatto, T. Weber, J. Stat. Phys. 108,

49 (2002)
27. V.C.G. Oliveira, H.A.B. Santos, L.A.M. Torres, A.M.C.

Souza, Int. J. Quantum Inf. 6, 379 (2008)
28. A. Borras, A.R. Plastino, M. Casas, A. Plastino, Phys.

Rev. A 78, 052104 (2008)
29. A.R. Plastino, D. Manzano, J.S. Dehesa, Europhys. Lett.

86, 20005 (2009)
30. J. Avery, J. Avery, Generalized Sturmians and Atomic

Spectra (World Scientific Publishing Co., 2007)


	Introduction
	Entanglement measure for two electron systems
	The Moshinsky atom
	Entanglement in the Moshinsky atom
	Hartree-Fock approximation, correlation energy, and entanglement
	Conclusions
	References

