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Abstract. In this paper we apply a numerical method to determine unmodeled perturbations in an 
attempt to explain the observed discrepancies in the motion of Uranus. We find that the estimated 
perturbation shows some significant periods that could be attributed to insufficient knowledge of the 
perturbations from some of the known planets. On the assumption that the gravitational attraction of 
an unknown planet is the origin of the deviations, the best planar solution of the inverse problem is 
a planet of 0.6 Earth masses, with true longitude of 133 ° (1990.5), semi major axis a = 44 AU and 
eccentricity e = 0.007. 
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1. Introduction 

The source of the observed systematic deviations between the theory of motion 
of Uranus and its observations remains an unsolved problem in the outer Solar 
System. 

In two recent works by Gomes and Ferraz-Mello (1987 and 1988a) the orbital 
parameters of Uranus and Neptune have been improved in order to eliminate (or, at 
least, to reduce) the systematic trend of the residuals. The authors have compared 
the observations with Bretagnon's VSOP82 theory (Bretagnon, 1982) and, after 
the improvement was made, some significant periods, close to the synodic period 
of Uranus and Neptune, were still present in the residuals. The authors conclude 
that these deviations from pure white noise could be attributed either to a poor 
determination of perturbations from some known planet or to a presence of a still 
unknown perturbing planet. 

This last hypothesis is also supported by the presence of some problems in the 
orbits of a family of six periodic comets which have had more than one apparition 
near the Sun (Guliev, 1986). The orbits of these comets seem to be perturbed by an 
unmodeled force perpendicular to their orbital plane. A few years ago, Raup and 
Sepkosky (1984) suggested that biological extinction events on the Earth could 
be a consequence of cometary showers from the inner Oort Cloud of comets and, 
later, Matese and Withmire (1986) pointed out that these cometary showers could 
be produced by a trans-Neptunian Tenth planet circulating in an unusual, highly 
inclined orbit. 

Although a variety of factors can contribute to the presence of such irregularities, 
a planet beyond Pluto has been the object of much attention in recent years. In fact, 
some astronomers have tried to find it, without success (Croswell, 1988). 
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Full details of the observational facts that support the possible existence of 
planet X can be read in Seidelmann and Harfington (1988) and Seidelmann and 
Williams (1988). 

There are different ways to predict a hypothetical tenth planet from its pertur- 
bations on Uranus and Neptune. Nevertheless, some a priori assumptions must 
be made in order to reduce the free parameters involved in the problem (e.g. 
small eccentricity and inclination). Indeed, an exhaustive search of the optimum 
solution, leaving free all the parameters, would be impracticable from the compu- 
tational point of view. Moreover, it is difficult simultaneously to make an accurate 
prediction of position and motion (Seidelmann and Harrington, 1988). 

We mention here the early work by Rawlins and Hammerton (1973), and more 
recently Harrington (1988), Powell (1988), Gomes and Ferraz-Mello (1988b) and 
Gomes (1989). The best solution seems to be a planet with about one-half of the 
Earth's mass, at 45 AU from the Sun, presently in Cancer. However, there is a great 
number of possible solutions that improves the residuals of Uranus and Neptune 
(Gomes and Ferraz-Mello 1988b). 

It is interesting to note that, in the case of the discovery of Neptune, although 
the elements computed by Le Verrier were accurate enough to accomplish their 
purpose, when the true orbital elements were avaiable, it was found that the pre- 
dicted orbit was not correct at all (Tisserand, 1888; Brookes, 1970). Neptune was 
discovered within 55 arcminutes of the predicted position because the error in the 
adopted semimajor axis was partially compensated by errors in the eccentricity and 
mass, and the arc of orbit covered by the planet the years before the discovery was 
not too affected. In fact, the position of Neptune could have been predicted using 
any value of a between 30 AU and 40 AU, at any time after 1830 (Brookes, 1970). 

To predict Pluto, an exactly similar procedure was followed (Lowell, 1915). 
Again, the predicted orbit and mass of Pluto were wrong, although it was detected 
by Clyde Tombaugh, within 6 degrees of one of the positions predicted by Lowell. 

At this point, it might be interesting to see whether a method to estimate unmod- 
eled perturbations can be used to investigate the nature of the observed residuals on 
Uranus and Neptune. This is of interest since the only a priori assumption in this 
case is that the residuals features have a dynamical origin. So, if we can compute 
numerical values of the perturbation, it will be possible to conceive some hypothe- 
ses about its nature. The final step is to establish an inverse problem, and try to 
determine the physical parameters in order to give a complete characterization of 
this unknown perturbation. 

The main goal of the present paper, then, is to analyze whether this methodology 
can contribute to the explanation of the nature of the observed discrepancies in the 
outer Solar System. We will center our attention in the residuals of Uranus because 
this planet is a good detector of possible sources of perturbation (Gomes 1989). 
The effects on Neptune are very difficult to differentiate from errors in its orbital 
constants. 

In Section 2 we summarize the method used to estimate the unmodeled pertur- 
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bations. In Section 3, using 260 post-discovery observations of Uranus, we will 
describe the numerical results of the application of the method to the 'discovery of 
Neptune' where the solution is known; thus, our results may be tested. Finally, in 
Section 4, we will apply the same procedure to determine unmodeled perturbations 
on Uranus, covering the period 1781-1980. 

The final section is devoted to some general remarks. 

2. Estimation Algorithm 

Recently, a very simple numerical method to estimate unmodeled forces was pre- 
sented by Zadunaisky (1983) and was successfully used in problems related with 
planetary motion and with other dynamical problems (Zadunaisky and Sanchez 
Pefia, 1988). An improved version of this method was later presented by Ro- 
driguez and Zadunaisky (1986). In Zadunaisky's method, the only assumption is 
that the forces involved in the problem (including the unmodeled perturbations) can 
be developed in Taylor series for a short time span. In addition, Rodriguez (1988) 
developed a complete error analysis of the method. However, some improvements 
to Zadunaisky's methods must be made in order to apply it to real observations. 
This is the purpose of this section. 

Although this method is applicable to any system of ordinary differential equa- 
tions, for the sake of simplicity we will consider a one-dimensional initial-value 
problem (IVP) of the form: 

y'(x) = f ( x , y ( x ) )  + P (x ) . . . y ( xo )  = Yo , (2.1) 

where P(x)  is an unknown perturbation depending generically on the independent 
variable x. We wish to compute this perturbation numerically in order to obtain a 
solution y(x) of the IVP (2.1) which approximates a given data set. 

If we consider that the available data are measurements y,~ of the solution values 
y(xn), (x~ = xo + n h n = 0, 1 , . . . ,  N) affected by small random errors en, i.e. 

y,~ = y ( X n )  -k¢n,  (2.2) 

then Zadunaisky's method can be applied (see Rodriguez, 1988). However, this is 
not the real situation in practice, since, as we have pointed out, the measures are 
commonly nonlinear functions of the y-values. In order to show how we can apply 
the method in this case, let us consider indirect measures of the form 

(2.3) 

where ~n are measurement errors. 
Let us define, in the same way as Zadunaisky, a 'reference problem' as: 

z'(x) = f ( x ,  z(x)) + Po, (2.4) 



132 ADRIAN BRUNINI 

obtained from Equation (2.1) by replacing the unknown perturbation P(x) by a 
constant value Po. 

To obtain estimates of P(x) at the point xo, we must adjust an initial value 
z(xo) and a constant P0 so that the solution of other point xj(xj = xo + jh). In 
Section 2.1 we will show that the Po found in this way is an estimate of P(xo) and 
that this estimation may be combined with estimates from other points to obtain 
improved values of P(xo). 

To carry out the indicated procedure numerically, we have used an adaptation 
of the so-called 'simple shooting method' (Isaakson and Keller, 1966), as follows: 

Let us consider the IVP 

(2.5) 

The solution of this IVP is a function of the numerical values of zo and Po. Let us 
then write this solution in the form: 

z(x)  = z(zo, e0, x ) .  (2.6) 

The difference between measured values and computed ones may be written as 
some function of zo and Po. Let us write R for this function, i.e., 

ao - =  (zo, Po)  

(2.7) 

- = RAzo, e0 ) .  

Thus, the problem is reduced to the determination of the roots of  (2.7), which can 
be found by applying some iterative procedure. Of course, in each step of such 
iteration scheme, at least one evaluation of z(zj) is required for each numerical 
value of zo and Po. This may be done only approximately by numerical integration 
of (2.5). 

Let us consider now the more general case, in which we have a system of N 
ODE, M of them perturbed (M < N).  In addition, let us suppose that we have, at 
each time, K independent measurements (K >__ M + N);  then, to estimate P(xo), 
we must solve a nonlinear system of the same form as system (2.7) with at least 
M + N equations. If we form more than (M + N) equations, we can solve the 
nonlinear system by the least- squares method. In as much as we have estimated the 
perturbation in one set of measures, we are able to repeat the process for another 
set. 

2.1. ERROR BOUNDS 

The conditions that must be fulfilled by the functions of the problem, in order to 
prove the existence and uniqueness of the solution of the system (2.7), as well as a 
complete numerical analysis of the estimation, lie outside the scope of the present 
paper. However, to complete this presentation, we wish to show the main results 
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concerning the error bounds of the estimation. Here, it is sufficient to assume that 
_P and f are regular functions; we particularly suppose that the function a has at 
least continuous first derivatives. 

Whenever the reference problem is integrated numerically, computational errors 
arise from the determination of z(x). However, these errors may be made small 
enough to be negligible just by solving the problem with a suitable numerical 
method. 

In this situation, it may easily be proved that there are some values of zo and P0 
which satisfy the nonlinear system (2.7). 

Under the imposed conditions, the solution of Equation (2.1) may be developed 
in Taylor series: 

y(xj) = y(xo) + [fyo + P(xo)]jh+ 

rOho ago (fyo q- P(zo)) + -~x + P'(xo)] (jh)2/2 + . . .  (2.8) + [--~-y 

where jh  = (xj - xo), and the subscript yo means that the functions are evaluated 
at y(xo). 

The same development can be performed for the solution of the 'reference 
problem', leading to: 

r Ofzo °f~,o 1 z(xj) = z(xo) + [fzo + Po]jh + L--~-z (f~o + Po) + --~--x ] (jh)2/2 + . . . .  (2.9) 

Subtracting (2.9) from (2.8), we may write: 

( Of O f ) ( j h ) 2 / 2 +  Y J -  Z J = Y ° -  Z ° + ( A f ° +  AP°)hJ + A f -O-yy +-~z o 

(O fro Ofzo ) +Pt(x°) (jh)2/2 + \ Oy P(xo) - ~ Po (jh)2/2 +. . .  (2.10) 

where A means the difference of the functions evaluated at y(xo) and z(xo), and 
APo = Po(x) - Po. In the last bracket, we may write: 

O f yo O f zo 02 f zo 
O--y- -- Oy + ~ (Yo - zo) + . . . .  (2.11) 

With the aid of similar developments for the terms involving differences of f and 
its derivatives, we may write: 

- zj = (Yo- zo) (1 + L h j  + (M + N P(xo))(hj)2/2)+ Yj 

+P'(xo) (jh)2/2 + APo(hj) (1 + K hj/2) +. . .  (2.12) 

where 
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L =  Ofyo . 0 ( O f  O f )  ; N = O2fzo and K =  Ofz° 
Oy ' M = ~y f -~y + ~x  yo OY 2 Oy 

Considering the relations (2.3), we may write, to first order: 

Oaj 
a(z j )  = c~(yj) + -~y (zj - yj) (2.13) 

and by virtue of (2.3), we have: 

1 
yj - zj = - r j  O~j/Oy " (2.14) 

In this way, we have proved that the principal term in the asymptotic error expansion 
is: 

P(xo) - Po = - P ' ( x o )  j h / 2  - (Aj - A o ) / j h  . (2.15) 

where 

1 
, s j  = 6j oo, j /Ov  " 

In addition, we can compute the optimum step size, for which the error bound 
reaches the minimum, as: 

(hj)op = [2 IAj - A01 /IPd[] 1/2 . (2.16) 

Equation (2.15) shows that the error in the estimation of P(xo) has two principal 
components. However, the computational evidence shows that the principal source 
of error is not the truncation error coming from the representation of P(x)  by 
a constant value over the whole interval, but the measurement error, which is 
magnified by a factor 1/h. 

In order to minimize the effects of  the measurement errors, let us suppose that 
we have two independent estimates of P(xo) (i.e. for j = 1 and j = -1) ;  

• X j = -  1 ( • X j =  0 > • X j =  1 • 

The average/5 o of both estimations has an error 

Po - P(xo) = O(h 2) + (Aj  - A _ j ) / 2 h .  (2.17) 

This scheme of estimation (hereafter called 'three point scheme') has a mea- 
surement error roughly one half of that of  a single estimate, as is usual in this class 
of centered numerical schemes. 

It is interesting to note that, by means of suitable linear combinations of estimate 
from different points, improvements in the order of magnitude of the truncation er- 
ror can be obtained (Rodriguez, 1988). This shows that it is unnecessary to consider 
higher-order representations for the perturbation in the 'reference problem'. 
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TABLE I 

Accuracy in the estimation of  P(t). 

year I P ~ I  IP~,~I 
1786 0.83 x 10 -11 0.69 x 10 - n  

1822 10.62 " 10.67 " 

3. An Application: The Discovery of Neptune 

In this section we will present an application of the method to an old and classical 
problem of celestial mechanics whose solution is known: the search for Neptune 
from the disturbances that it causes on Uranus. 

To do this we have used a collection of 260 observed apparent geocentric 
coordinates of Uranus, in the J2000 system, between the years 1781 and 1845. 
Pre-discovery observations were discarded. 

At each instant, nine unknowns must be determined: six initial conditions and 
three components of the perturbation. So, as we have two independent measures 
at each instant (right ascension and declination), to apply our proposed three-point 
scheme we must use, for each estimation, five forward instants and five backward 
ones (we need at least nine independent measures for each forward estimation and 
another nine observations for each backward one). We have preferred to perform 
the estimation in the least-square sense, computing one averaged observation with 
all the observations of each opposition, instead of computing P(t) and initial 
conditions fitting individual observations. In this way we may compute a backward 
estimation and a forward one for every mean date of opposition, and with both 
estimations we may apply the three-point scheme to finally obtain one average 
perturbation. 

Previous simulations suggest that the best step size lies between 500 and 2000 
days. So, for our estimation, we have used a step size equal to (or greater than) three 
consecutive oppositions of Uranus. It is worth noting that even when observations 
have unequal weights, this numerical method can still work. 

To carry out the iterative process, one must determine starting conditions that 
guarantee convergence. As perturbations are small quantities, we have adopted 
zero as the initial value. Initial conditions for Uranus were taken from VSOP82. 
Starting with these values we have obtained convergence in all the points. The 
results are summarized in Table I, where we give the best estimation and the worst 
one on the whole interval. 

These results look rather good. In all cases we have estimated at least one 
significant digit of  the perturbation. This probably is due to the fact that the relative 
motion of the planets is slow, so the truncation error, which depends on P~(t), is 
small in comparison to the component arising from the measurement errors. 

The next step will be to make some hypothesis about the origin of the pertur- 
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TABLE II 

Coordinates of Neptune. 

rca]c robs (Xcalc (~obs (~ca]c ~obs 

1786 36.27 30.32 200 °.5 197 °.4 - 6 ° . 7  - 5  °.6 

1822 33.00 30.22 2750.8 2750.9 - 2 2 ° . 1  - 2 2 0 . 4  

TABLE III 

Orbital elements for the year 1800. 

a e i w f~ 

hue 30.03 0.01 220.3 45°.25 30.47 

estimated 33.19 0.04 22°.7 336°.24 3°.71 

Le Verrier 36.15 0.11 - -  284°.10 * - -  

• Not in J2000 system 

bation. In this case, from the mathematical model of the three body problem, we 
may write an inverse problem of the form: 

[ ru -- rN rlv ] 
= - G m N  l i r a -  r-~[ 3 ilK-]nil 3 . (3.1) 

At each instant we may write a nonlinear system of three equations for the 
position vector and the mass of the unknown planet. A numerical value for the mass 
of the unknown planet must be adopted in order to make the system determinate. 
Following the same criterion of Le Verrier, we have adopted for Neptune a mass 
which is double the true one. 

It is interesting to note that Equation (2.15) allows us to see that the direct 
problem of determining the perturbations by our proposed numerical method is 
not an ill-posed problem, in the sense that small perturbations in the data cannot 
introduce changes of great amplitude in the estimated perturbations. However, the 
practical inversion of (3.1) is ill-posed, and we have found that the iterative process 
sometimes oscillated around a local minimum far from the solution of the nonlinear 
system. 

The results are summarized in Table II, where we give the best and the worst 
computed positions of Neptune. 

Finally, we have calculated orbital elements from these coordinates. In Figure 1 
we can see our computed orbit, the true one and the orbit predicted by the Le 
Verrier. 

In Table III we compare the orbital elements of these three orbits. 
The computed values show a good agreement with the tree ones. The relatively 

small differences show that the position of the planet is predicted with the proposed 
procedure. 
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Le Verr ier  

-f 

Fig. 1. Representation of the predicted orbit of Neptune by Le Verrier, the computed orbit in the 
present paper and the true one. The dots represent the location of the planets at the moment of the 
discovery. The thick lines represent the arcs covered by the planets Uranus and Neptune in the period 
1781-1846. 

4. Application to the Present Anomalies in the Residuals of Uranus 

In this section we consider the observed discrepancies in the motion of Uranus 
as having a dynamic origin, using the same methodology used in the preceding 
section. 

The data used are a collection of apparent geocentric longitudes of Uranus 
in the J2000 system, covering the period from the discovery up to 1980, which 
were provided by the U.S. Naval Observatory. The observations made before 
the discovery were not included in this analysis because of their relatively low 
precision. 

The situation is certainly more complex here than in the case of the discovery 
of Neptune: the present observed residuals of Uranus are nearly 10 times smaller 
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Fig. 2. Computed perturbations on Uranus in AU days -2 Radial (thin) and Tangential (thick) 
compared with the perturbation introduced by a planet of 0.6 Earth masses at 44 AU (dotted and 
dashed lines). 

than those of Uranus before the discovery of Neptune. So the choice of  the step size 
of  estimation deserves some care. We have carried out several estimations using 
different step sizes. For step sizes lower than 3 and greater than 5 consecutive 
oppositions, the estimated perturbations were not at all distinguishable from white 
noise. This is due to the relative magnitude of  observational errors and truncation 
ones (see Equation (2.13)). Using a step size of  4 consecutive oppositions the 
estimated perturbations have shown a clear systematic behavior, particularly in 
the period 1835-1975. We have plotted the tangential and radial components of 
the estimated perturbation in Figure 2 (solid lines). The estimated values before 
1834 are rather wrong, due perhaps to the low precision of  the observations of  this 
period, as well as their low density (there is a significant gap of good observations 
prior to this year). Both the radial and tangential components show some significant 
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periods. We have not found any peculiar feature in the out-of-plane component. 

As the identification of the main periods can help our knowledge about the 
nature of the perturbation, we have performed a least-squares fit of  a sinusoidal 
wave on the estimated values (Ferraz-Mello, 1980) and we have found two main 
associated periods: one of 152 y (reliability >_ 98%) not very far from the Uranus- 
Neptune synodic period, and another period of 51 y (reliability _> 87%) that is close 
to the synodic period between Saturn and Uranus. The presence of these periods 
in the perturbations suggests that the best explanation of the observational facts 
could be a poor determination of the perturbations from the known planets, as was 
suggested by Gomes and Ferraz-Mello (1988). 

The advantage of this indirect methodology in this class of problems is clear: 
several alternative models are actually proposed to explain the features in the 
residuals of  Uranus. After the estimation process, we can select the physical model 
which best represents the computed perturbations. 

If we assume theplanetX hypothesis as the source of the perturbation, an inverse 
problem, such as those of Section 3 may be written. It is worth remarking that it is 
an ill-posed problem, but, in fact, this is a common characteristic of  problems of 
inversion in general (Craig and Brown, 1986). 

As before, we have one solution for each adopted numerical value of the mass 
of the unknown planet. It is clear, that if we adopt a wrong value of the mass of 
the unknown planet it will have a greater effect on the predicted distance than the 
direction, so, still adopting a wrong numerical value for the mass, we can expect 
good information about the region where the planet could be. 

We have solved the inverse problem for 20 different numerical values of the 
planetX's mass, between 0.1 to 2.0 Earth masses. We have limited our search to this 
range of numerical values because the out-of-plane component of the perturbation 
must be small. So our hypothetical planet would be near the orbital plane of Uranus; 
a region of the sky well examined by C. Tombaugh. A planet greater than 2.0 Earth's 
masses would have been detected by him. 

In Table IV we show some solutions of the inverse problem, as well as some 
numbers related with the goodness of fit: m = adopted mass value, a = semimajor 
axis, e = eccentricity, ~ = argument of the perihelion, ¢ = true longitude for 1990.5, 

= standard deviation of the residuals, ~ = condition number of the nonlinear 
system, and N = a number related to the trend of the residuals (see explanation 
below). 

It is interesting to note that all the solutions almost equally fit the computed 
perturbations. In fact, the slow variation of the standard deviation cr means that the 
prediction of an orbit from a relatively short arc is an ill-posed problem. As the 
variance-covariance matrix of the estimate gives an intuitive feeling of the degree 
to which the various parameters are well determined, we show its eigenvalues (for 
the case m = 0.6) which define the axis of  the ellipsoid of uncertainty: 
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TABLE IV 

m a e ~ ¢ a(lO -~') g(lO ~) N 
0.2 15.6 0.22 90 110 8.20 9.2 0.81 
0.4 48.1 0.1 76 130 7.02 5.9 0.76 
0.6 44.0 0.007 180 133 6.65 4.9 0.94 
0.8 52.3 0.03 10 100 7.18 6.9 0.81 
1.0 55 0.00 0 98 9.81 10.1 0.73 
2.0 76 0.25 90 81 12.61 107 0.61 

a e ~ ¢(1990.5) 
0.3 25.2 500.0 0.007 

The most ill-determined parameter is the true longitude ¢ for 1990.5. This 
reflects the fact that there is a wide range of  longitudes where the unknown planet 
could be with almost the same probability. We recall that this ill-determination of 
the parameters is inherent to this prediction problem, and not merely the result of 
poor data or inadequate methodology. This fact is also reflected in the condition 
number ~ of  the nonlinear least-squares system (computed in the L1 norm). The 
prediction of  a whole orbit is very sensitive to errors in the determination of  the 
perturbations, and the fact that the condition number increases with planet X's 
mass, arises from the relation between the arc of orbit covered by the observations, 
and the whole planet X's orbit, which decreases with the mass of the perturbing 
planet. 

The presence of systematic trends in the residuals is another important question 
to examine. To detect systematic features, we have also tested the number of  'runs' 
(i.e. the sequence of residuals of equal sign). If n I and n2 are the number of 
positive and negative residuals, respectively, then the more probable number of 
runs is (Acton, 1959): 

Np = 2nln2 / (hi + n2) + 1 (4.1) 

and, as a measure of  the degree of deviation from pure white noise, we have 

computed: 

N = No/Np (4.2) 

where No is the number of runs of the residuals in both components of the pertur- 
bation, obviously N = 0 corresponds to the worst case and N = 1 to the best one. 
N is also shown in Table IV. 

All our tests indicate that the solution of  the inverse problem which best fits both 
components of the perturbation, in the least-square sense, is a planet of 0.6 Earth 
masses, with true longitude 133 ° 
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Fig. 3. Orbits of some actual predictions of planet X projected on the Ecliptic. The dots represent 
the location of the hypothetical planets for 1990.5. 

(1990.5) at 44 AU from the Sun and with eccentricity e = .007, not far from 
the planet X proposed by Gomes (1989). Its perturbations on Uranus are shown in 
Figure 2 (dotted and dashed lines), where we can see a reasonable good fit with the 
computed ones. 

It is important to bear in mind that our search for the planet from the best fit 
of the computed unmodeled perturbations was not exhaustive, but based on an 
iterative algorithm to solve the inverse problem. We have started the algorithm 
with e = 0 also assuming i = 0, because of the bad estimation of the out-of-plane 
component of the perturbation. This last is a strong condition for the planet X's 
mass and the solution of the inverse problem and, perhaps, explains the difference 
from the solution proposed by Harrington (1988), and the good accordance with 
Gomes (1989) as well as with Powell (1988). 

In Figure 3 we show some of the actual predicted orbits of planet X. 
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5. Concluding Remarks 

We must recall that the perturbations obtained in this way are affected by errors in 
the dynamical parameters involved in the problem, such as in the initial conditions 
of the known planets (Jupiter, Satum and Neptune) as well as in the masses, which 
are usually computed from mutual planetary perturbations, and are thus affected by 
the unknown perturbation. This last problem could be partially solved by adopting 
determinations of the masses from the theory of motion of the best observed natural 
satellite of each planet (Rawlins and Hammerton, 1973). However, in spite of an 
obvious circularity, we have adopted masses from VSOP82 (Bretagnon, 1982), 
because there are serious discrepancies between different determinations of the 
masses from satellite observations. This is certainly a point that deserves more 
detailed study. 

The numerical results of Section 3 indicate that the numerical scheme can be 
considered as a proposal to be used in the problem of the perturbations in the 
motion of Uranus, contributing to a better understanding of the dynamical nature 
of the problem. The estimated perturbations on Uranus present some significant 
periods, which, in some sense, means that the perturbation has been successfully 
estimated. 

These periods indicate that errors in the masses of some of the known planets 
may be a possible source of the observed systematic residuals. 

On the other hand, a relatively good fit of the computed perturbations can be 
made on the hypothesis that these are due to an unknown body beyond Pluto. 
However, a good fit does not prove that the model is correct. 

It is interesting to note that, in 1930, our tentative planet X (that is in fact the 
same planet proposed by Gomes (1989)), and Lowell's planet X were within a 
few degrees of Pluto in the celestial sphere. Assuming for the planet a chemical 
composition similar to that of the bodies of the outer Solar System, a planet of 
0.6 Earth masses at 44 AU from the Sun would be brighter than Pluto, and the real 
puzzle is that Clyde Tombaugh would have found it. If it was really there, it could 
be rocky rather than icy, with matter darker than normal. 
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