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The mean-field homogenization scheme proposed by
Lahellec & Suquet (2007 Int. J. Solids Struct. 44, 507–529
(doi:10.1016/j.ijsolstr.2006.04.038)) and revisited in a
companion paper (Idiart et al. 2020 Proc. R. Soc. A
20200407 (doi:10.1098/rspa.2020.0407)) is applied to
random mixtures of a viscoelastic solid phase and a
rigid phase. Two classes of mixtures with different
microstructural arrangements are considered. In the
first class the rigid phase is dispersed within the
continuous viscoelastic phase in such a way that
the elastic moduli of the mixture are given exactly
by the Hashin–Shtrikman formalism. In the second
class, both phases are intertwined in such a way that
the elastic moduli of the mixture are given exactly
by the Self-Consistent formalism. Results are reported
for specimens subject to various complex deformation
programmes. The scheme is found to improve on
earlier approximations of common use and even
recover exact results under several circumstances.
However, it can also generate highly inaccurate
predictions as a result of the loss of convexity of
the free-energy density. An auspicious procedure to
partially circumvent this issue is advanced.

1. Introduction
The mean-field homogenization scheme proposed by
Lahellec & Suquet [1] and revisited in a companion
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paper [2] is applied to random mixtures of a viscoelastic phase and a rigid phase serving
as reinforcement. Two classes of mixtures with different microstructural arrangements are
considered. In the first class the rigid phase is dispersed within the continuous viscoelastic
phase in such a way that the microstructure is of the ‘particulate’ type. In the second class, both
phases are intertwined in such a way that the microstructure is of the ‘granular’ type. The main
purpose of the study is to assess the capabilities and limitations of the homogenization scheme
to generate accurate estimates for complex viscoelastic systems. For conciseness, we begin by
recalling the overall structure of the constitutive framework employed. For further details, the
reader is referred to the companion paper and references therein.

We consider a representative volume element of a composite material made up of two
constituent phases, and denote by Ω and Ω (r) (r = 1, 2) the domains occupied by the element
and the phases within it, respectively, so that Ω = Ω (1) ∪ Ω (2). Also, we denote by χ (r)(x) and
c(r) the characteristic function and volume fraction of each subdomain Ω (r), respectively. In turn,
volume averages over the entire element and over each subdomain are indicated as 〈·〉 and 〈·〉(r).
We restrict attention to material systems with statistically isotropic microstructures.

The local viscoelastic response is described within the framework of generalized standard
materials by constitutive relations of the form

σ = ∂w
∂ε

(x, ε, α) and
∂w
∂α

(x, ε, α) + ∂ϕ

∂α̇
(x, α̇) = 0, (1.1)

where ε and α denote the infinitesimal and inelastic strains relative to a stress-free reference
configuration, σ denotes the Cauchy stress, the dot over a variable denotes a time derivative,
and the potential functions w and ϕ are, respectively, the Helmholtz free-energy density and
the dissipation potential of the heterogeneous system, which can be expressed in terms of the
corresponding phase potentials as

w(x, ε, α) =
2∑

r=1

χ (r)(x)w(r)(ε, α) and ϕ(x, α̇) =
2∑

r=1

χ (r)(x)ϕ(r)(α̇). (1.2)

Henceforth we identify with r = 1 the viscoelastic solid phase and with r = 2 the rigid phase and
we assume that the rheology of the viscoelastic phase is isotropic and Maxwellian. The local
potentials of the viscoelastic phase are thus given by

w(1)(ε, α) = 1
2 (ε − α) · L(ε − α) + 1

2 α · Hα and ϕ(1)(α̇) = 1
2 α̇ · Mα̇ (1.3)

with

L = 3κ J + 2μ K, H = +∞ J and M = 2η K, (1.4)

where J and K are the standard fourth-order isotropic bulk and shear projection tensors,
respectively, κ and μ are the bulk and shear elastic moduli, respectively, and η is the shear viscous
modulus. The form of the tensor H implies that volumetric changes within this phase are purely
elastic. Thus, this material response exhibits a single relaxation time given by the ratio τ = η/μ,
which, in view of the constitutive relations (1.1), can be written as

σ̇mI
3κ

+ σ̇ d

2μ
+ σ d

2η
= ε̇, (1.5)

where σm = trσ/3 and σ d = σ − σmI denote the mean and deviatoric parts of σ , respectively, and
I denotes the second-order identity tensor. In turn, the rigid character of the second phase can be
characterized by potentials of the same form (1.3) and (1.4) but with infinitely large elastic and
viscous moduli.

The homogenized response relates the macroscopic stress σ to the macroscopic strain ε, which
are the averages of the local stress and strain fields, respectively, over the representative volume
element subject to appropriate boundary conditions. This relation can be written in terms of the
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macroscopic free-energy density and dissipation potential as

σ = ∂w
∂ε

(ε, α) and
δw

δα(x)
(ε, α) + δϕ

δα̇(x)
(α̇) = 0, (1.6)

where
w(ε, α) = inf

ε∈K(ε)

〈
w(x, ε, α)

〉
and ϕ(α̇) = 〈

ϕ(x, α̇)
〉
. (1.7)

In these expressions, K(ε) is the set of kinematically admissible strain fields with average ε, and
the δ operator denotes a functional derivative. For the class of material systems considered in this
work, the macroscopic potentials can be written as

w(ε, α) = (1 − c) inf
ε∈Kr(ε)

〈
9
2

κ ε2
m + μ (εd − α)2

〉(1)
and ϕ(α̇) = (1 − c) η

〈
α̇2
〉(1)

, (1.8)

where c = c(2) is the volume fraction of the rigid phase and Kr is the subset of K(ε) such that ε = 0
within that phase, εm and εd denote the mean and deviatoric parts of ε, respectively, the square
of a second-order tensor a2 = a · a has been introduced, and the inelastic strain field α is traceless
(i.e. trα = 0). These macroscopic potentials are isotropic functions of their arguments in view of
the assumed isotropy of the local potentials and of the microstructure. Furthermore, they inherit
the convexity of the local potentials. Thus, homogenization preserves the generalized standard
structure of the local response, with the microscopic inelastic strain field playing the role of a
macroscopic internal variable albeit of infinite dimension.

The ‘transformation field analysis’ of Dvorak [3] simplifies the macroscopic description by
assuming uniform inelastic strain fields within each phase and thus employing a finite number of
macroscopic internal variables (see, for instance, [4]). For the classes of rigidly reinforced solids
considered in this work, that assumption amounts to approximating the macroscopic potentials
(1.8) by

wTFA(ε, α) = 1
2 ε · (L̃ − L

′) ε + 1
2 (ε − α) · L

′(ε − α) and ϕTFA(α̇) = 1
2 α̇ · M

′α̇, (1.9)

where α is an (traceless) overall inelastic strain, and

L̃ = 3̃κ J + 2μ̃ K, L
′ = 2μ

(1 − c)
K, M

′ = 2η

(1 − c)
K. (1.10)

In these expressions, κ̃ and μ̃ are the exact effective moduli of the purely elastic composite. The
potentials (1.9) are convex and therefore constitute a generalized standard material model. They
generate the macroscopic stress–strain relation

σ̇mI
3̃κ

+ σ̇ d

2μ̃
+ σ d

2̃ν
= ε̇ + μ̃ − μ′

ν̃
εd, (1.11)

where ν̃ = τ μ̃ and μ′ = μ/(1 − c). That the transformation field analysis provides overly stiff
predictions as repeatedly observed in the literature (e.g. [4]) follows immediately from this
relation. Indeed, for any deviatoric deformation applied at a constant rate, for instance, the
stress–strain relation (1.11) exhibits linear growth instead of the expected saturation.

An alternative scheme commonly employed in the context of Maxwellian solids consists
in approximating the macroscopic response of the composite as Maxwellian (e.g. [5]) and
characterizing it by macroscopic potentials of the form

wDS(ε, α) = 1
2 (ε − α) · L̃(ε − α) and ϕDS(α̇) = 1

2 α̇ · M̃α̇, (1.12)

where L̃ is still given by (1.10)1 but M̃ = 2η̃K with η̃ being an effective viscosity. Idiart &
Lahellec [6] have shown that this approximation follows from an incremental upper bound
that assumes the inelastic strain field is kinematically compatible. The effective elastic moduli
follow from the purely elastic homogenization problem while the effective viscosity follows from
the purely viscous homogenization problem. Given the mathematical correspondence between
these two problems, the effective viscosity of the rigidly reinforced solid can be computed as
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η̃ = τ limκ→∞ μ̃. Thus, this approximation in effect decouples the viscoelastic homogenization
problem and is hence referred to as the ‘decoupled scheme’. The potentials (1.12) are convex
and therefore constitute a generalized standard material model. They generate the macroscopic
stress–strain relation of the same form (1.5), namely

σ̇mI
3̃κ

+ σ̇ d

2μ̃
+ σ d

2η̃
= ε̇. (1.13)

Unlike the stress–strain relation predicted by the transformation field analysis, this relation is
asymptotically exact for small and large time [5], it does exhibit the expected saturation at
constant strain rates and can therefore be significantly more accurate. However, it completely
neglects macroscopic long-memory effects. An additional purpose of the present study is to assess
the merits of the mean-field homogenization scheme presented in the companion paper vis-à-
vis this popular decoupled scheme. In the sections that follow we specialize the formulae of the
homogenization scheme to rigidly reinforced solids, we then report a collection of sample results
for particulate and granular systems and we close with a summary of the findings and some
concluding remarks.

2. Mean-field homogenization scheme
In the case of rigidly reinforced solids of interest in this work, the mean-field homogenization
scheme of the companion paper generates a reduced-order description in terms of a finite set
of effective internal variables given by the volume average of the inelastic strain field and its
fluctuations over the viscoelastic phase; we denote those internal variables as

α(1) = 〈α〉(1) and α̃(1) =
〈
(α − 〈α〉(1))2

〉(1)
, (2.1)

respectively. The reduced free-energy density and dissipation potential follow from suitable
specialization of the expressions for material systems with isotropic Kelvin–Voigt phases
provided in §4 of the companion paper. This specialization is carried out below for elastically
compressible systems first and for incompressible systems next.

(a) Elastically compressible systems
The reduced free-energy density and dissipation potential take the respective forms

ŵ
(
ε, α(1), α̃(1)

)
= (1 − c) inf

ε∈Kr(ε)

[
9
2
κ ε

(1)2

m + μ
(
ε

(1)
d − α(1)

)2 + μ
(̃
ε

(1)
d − α̃(1)

)2
]

(2.2)

and

ϕ̂
(
α̇

(1), ˙̃α(1)
)

= (1 − c) η

[
α̇

(1)2

+ ˙̃α(1)2
]

, (2.3)

where

ε
(1)
m = 〈ε2

m〉(1) 1/2
, ε

(1)
d = 〈εd〉(1) , ε̃

(1)
d =

(
〈ε2

d〉(1) − 〈εd〉(1) 2)1/2
(2.4)

denote various moments of the mean and deviatoric parts of the strain field over the viscoelastic
phase. It is recalled that the kinematic balance ε = c(1)ε(1) + c(2)ε(2) and the requirement of
vanishing strain in the rigid phase imply the kinematic relation ε(1) = ε/(1 − c) regardless of
the microstructural arrangement. These reduced macroscopic potentials generate the constitutive
relation

σ = ∂ŵ
∂ε

(
ε, α(1), α̃(1)

)
(2.5)

along with the evolution laws

τ α̇
(1) + α(1) = 1

1 − c
εd and τ ˙̃α(1) + α̃(1) = ε̃

(1)
d (2.6)

for the effective internal variables.
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The above expressions require the evaluation of the minimization problem in the reduced free-
energy density (2.2). As discussed in the companion paper, this minimization problem can be
rewritten as a stationary problem of the form

ŵ0 (ε, τ 0, μ0) = (1 − c) stat
ε∈Kr(ε)

[
9
2
κ
〈
ε2

m
〉(1) + μ0〈ε2

d〉(1) + τ 0 · ε
(1)
d

]
(2.7)

= (1 − c) stat
ε∈Kr(ε)

[
9
2
κ
〈
ε2

m
〉(1) + μ0〈ε2

d〉(1)
]

+ τ 0 · εd

= 9
2
κ̃0ε

2
m + μ̃0ε

2
d + τ 0 · εd (2.8)

with

τ 0 = 2μ

(
α̃(1)

ε̃
(1)
d

ε
(1)
d − α(1)

)
and μ0 = μ

(
1 − α̃(1)

ε̃
(1)
d

)
, (2.9)

where κ̃0 and μ̃0 are the effective bulk and shear moduli, respectively, of a rigidly reinforced elastic
solid with the same microstructure as the original solid and with matrix properties κ and μ0. The
tensor τ 0 plays the role of a stress polarization and should not be confused with a relaxation
time. It is easy to show that the strain fields satisfying the minimization conditions in (2.2) and
stationarity conditions in (2.7) agree exactly. But it is now readily seen that the computation of
the comparison energy (2.7) can be carried out using any mean-field homogenization technique
suitable for linearly elastic composites with the microstructure at hand. Indeed, the well-known
identities

〈ε2
m〉(1) = 1

(1 − c)
2
9

∂ŵ0

∂κ
(ε) and 〈ε2

d〉(1) = 1
(1 − c)

∂ŵ0

∂μ0
(ε) (2.10)

for the second moments of the strain field imply the identity

ε̃
(1)
d = 1

1 − c

[
9
2

(1 − c)
∂κ̃0

∂μ0
ε2

m +
(

(1 − c)
∂μ̃0

∂μ0
− 1

)
ε2

d

]1/2
(2.11)

for the intraphase strain fluctuations, which taken in combination with (2.9)2 generates a
nonlinear equation(

1 − μ0

μ

)2 [9
2

(1 − c)
∂κ̃0

∂μ0
ε2

m +
(

(1 − c)
∂μ̃0

∂μ0
− 1

)
ε2

d

]
= (1 − c)2 α̃(1)2

(2.12)

for the comparison modulus μ0. It is noted that this comparison modulus should be such that
μ0 ≤ μ so that it entails positive strain fluctuations through relation (2.9)2; the sign of μ0,
on the other hand, is unrestricted. The functional dependence of the effective moduli κ̃0 and
μ̃0 on μ0 follows from the linear elastic homogenization procedure of choice. In general, the
algebraic equation (2.12) requires numerical treatment. Whenever it exhibits multiple roots,
the root providing the minimum value of the reduced free-energy density (2.2) should be
selected. Once μ0 is determined from this equation, the second moments of the strain field
follow from the identities (2.10), the reduced free-energy density follows immediately from (2.2)
and the macroscopic constitutive relation can then be obtained by differentiation through (2.5).
Alternatively, it can be obtained by differentiation of (2.7) in view of the exact coincidence of the
underlying strain fields. This last differentiation must be taken with respect to ε, keeping the
comparison properties μ0 and τ 0 fixed, thus generating the expression

σ = 3̃κ0εmI + 2μ̃0εd + 2μ

(
1

1 − c
μ − μ0

μ
εd − α(1)

)
, (2.13)

where use has been made of the relation (2.9)2 to eliminate the field fluctuations in favour of μ0.
Knowledge of the strain statistics over the viscoelastic phase also permits the computation of the
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corresponding stress statistics, making use of the identities

σ
(1)
m = 3κ

εm

(1 − c)
, σ

(1)
m = 3κ ε

(1)
m , σ

(1)
d = 2μ

(
ε

(1)
d − α(1)

)
, σ̃

(1)
d = 2μ

∣∣∣̃ε(1)
d − α̃(1)

∣∣∣ , (2.14)

which are similarly defined and follow from suitable specialization of expressions provided in
the companion paper.

It is recalled that the reduced free-energy density (2.2) is non-convex in the Cartesian
product space of macroscopic strains and effective internal variables, and therefore the mean-
field homogenization scheme does not preserve the generalized standard structure of the exact
constitutive relations. The consequences of this non-convexity on the approximate constitutive
relations are discussed in the context of the specific examples considered below. It is noted,
however, that the free-energy density was found to attain its convexification within a range
delimited by certain conditions involving the fluctuations of the total and inelastic strain fields
within the phases. In the present context, these conditions reduce to

ε̃
(1)
d ≥ α̃(1) or equivalently ˙̃α(1) ≥ 0. (2.15)

On the other hand, the reduced dissipation potential (2.3) is always convex.

(b) Incompressible systems
Fully explicit formulae result when the viscoelastic phase—and therefore the two-phase
composite—is incompressible (κ → ∞). In this case, εm = 0 and ∂μ̃0/∂μ0 = μ̃0/μ0 = μ̃/μ in view
of the homogeneity of degree 1 of the effective shear moduli of the composite μ̃ in μ. Equation
(2.12) is thus solved by

μ0

μ
= 1 ± (1 − c) α̃(1)√

(1 − c)μ̃/μ − 1 ‖ε‖ , (2.16)

where ‖·‖ denotes the Euclidean norm of a second-order tensor. The negative root must be
selected in view of the constraint μ0 ≤ μ. The intraphase strain fluctuations (2.11) are then
given by

ε̃
(1)
d =

√
(1 − c)μ̃/μ − 1

1 − c
‖ε‖ , (2.17)

and the reduced free-energy density (2.2) is given by

ŵ
(
ε, α(1), α̃(1)

)
= (1 − c)μ

⎡⎣( 1
1 − c

ε − α(1)
)2

+
(√

(1 − c)μ̃/μ − 1
1 − c

‖ε‖ − α̃(1)

)2
⎤⎦ . (2.18)

The reduced dissipation potential, in turn, is still given by (2.3). Finally, the macroscopic
constitutive relation (2.13) becomes

σ = 2μ̃ ε − 2μα(1) − 2μ
√

(1 − c)μ̃/μ − 1 α̃(1) ε

‖ε‖ − pI, (2.19)

where p is the macroscopic pressure, and the evolution laws (2.6) for the effective internal
variables become

τ α̇
(1) + α(1) = 1

1 − c
ε and τ ˙̃α(1) + α̃(1) =

√
(1 − c)μ̃/μ − 1

1 − c
‖ε‖ . (2.20)

Thus, the macroscopic viscoelastic response is fully characterized by the effective shear modulus
μ̃ only.
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For later reference, it is noted that the evolution laws (2.20) can be used to express the
macroscopic constitutive relation (2.19) in terms of the rates of the internal variables as

σ = 2η

(
α̇

(1) +
√

(1 − c)μ̃/μ − 1 ˙̃α(1) ε

‖ε‖
)

− pI. (2.21)

Together with the rate form of the macroscopic constitutive relation (2.19), this expression implies
an additive composition of the macroscopic strain rate of the form

σ̇ d

2μ̃
+ σ d

2η̃
= ε̇ −

√
(1 − c)μ̃/μ − 1

μ̃/μ
α̃(1)

˙[
ε

‖ε‖
]

, (2.22)

where η̃ = τ μ̃, and ˙[·] denotes time differentiation of the quantity inside the square brackets.

3. Results for particulate systems
For illustrative purposes, results are reported in this section for solids reinforced by a special class
of rigid dispersions whose effective elastic moduli are given by the Hashin–Shtrikman formalism
as (e.g. [7])

κ̃ = κ + c
1 − c

3κ + 4μ

3
and μ̃ = μ + 5

2
c

1 − c
3κ + 4μ

3κ + 6μ
μ. (3.1)

These are material systems of the particulate type whose effective viscoelastic response has been
determined exactly by Ricaud & Masson [8] via the correspondence principle of Mandel [9]. Thus,
this class provides a suitable benchmark to assess the accuracy of the mean-field homogenization
scheme. The exact response is given by

σ = 3̃κ1εmI + 3̃κ2(εm − βm)I + 2μ̃1
(
εd − β1

)+ 2μ̃2
(
εd − β2

)
, (3.2)

where the variables βm and (traceless) β i are initially zero and solve the evolution laws

τ1β̇m + βm = εm, τ1β̇1 + β1 = εd and τ2β̇2 + β2 = εd, (3.3)

the moduli κ̃i and μ̃i are given by

κ̃1 = 1
1 − c

κ , κ̃2 = 4
3

c
1 − c

μ, μ̃1 = μ + 5
3

c
1 − c

μ and μ̃2 = 5
6

c
1 − c

κ

κ + 2μ
μ (3.4)

and the relaxation times τi are given by

τ1 = τ and τ2 = κ + 2μ

κ
τ . (3.5)

Thus, this macroscopic response exhibits a discrete spectrum with two relaxation times. It is
noted that κ̃ = κ̃1 + κ̃2 and μ̃ = μ̃1 + μ̃2, so that the macroscopic constitutive relation (3.2) can
alternatively be written as

σ = 3̃κεmI + 2μ̃εd − 3̃κ2βmI − 2μ̃1β1 − 2μ̃2β2. (3.6)

It is also noted that, even though exact, the above formulae do not reveal the physical meaning of
the internal variables and their relationship to the microscopic internal variable fields.

For later reference, two special cases are spelled out in further detail. First, we consider the
limiting case of incompressible specimens (κ → ∞) under isochoric loadings. In this case, the
macroscopic mean strain εm and the variable βm vanish identically, the two variables β1 and β2
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follow the same evolution law
τ β̇ + β = ε (3.7)

and are therefore identical, and the constitutive relation (3.6) can then be written as

σ̇ d

2μ̃
+ σ d

2η̃
= ε̇, (3.8)

where

μ̃ = 1 + (3/2)c
1 − c

μ and η̃ = τ μ̃ (3.9)

represent the effective modulus of elasticity and viscosity of the composite; here, use has been
made of the evolution law (3.7) to eliminate the variables β1 = β2 = β. Second, we consider
elastically compressible specimens under spherical loadings. In this case, the variables β1 and
β2 vanish identically, and the evolution law (3.3)1 can be used together with the rate form of (3.6)
to eliminate βm from that expression to obtain

σ̇m

3̃κ
+ σm

3χ̃
= ε̇m + κ̃ − κ̃2

χ̃
εm, (3.10)

where χ̃ = τ κ̃ .

(a) Estimates for incompressible specimens under isochoric radial deformations
We begin by considering incompressible specimens subject to deformation programmes of the
form ε(t) = ε(t)u with ‖u‖ = 1, tru = 0, and ε(t) such that ε(t ≤ 0) = 0. In this case, the reduced
constitutive relation (2.19) and evolution laws (2.20) become

σ = 2μ̃ ε − 2μ α(1) − μ
√

6c α̃(1)sgn(ε) (3.11)

and

τ α̇
(1) + α(1) = 1

1 − c
ε and τ ˙̃α(1) + α̃(1) =

√
(3/2)c
1 − c

|ε|, (3.12)

and the statistics (2.14) of the deviatoric stress field in the matrix phase are given by

σ (1) = 2μ

(
1

1 − c
ε − α(1)

)
and σ̃

(1)
d = 2μ

∣∣∣∣∣
√

(3/2)c
1 − c

|ε| − α̃(1)

∣∣∣∣∣ . (3.13)

In these expressions, σ , σ (1) and α(1) are the projections of the corresponding tensors onto u. In
turn, these relations imply the corresponding specialization of the additive composition (2.22).
For any deformation programme ε(t > 0) vanishing at a finite set of time instants only, say tz with
z = 1, . . . , Z, that composition becomes

σ̇

2μ̃
+ σ

2η̃
=
[

1 − 2

√
(1 − c)μ̃/μ − 1

μ̃/μ
α̃(1)

Z∑
z=1

δ(t − tz)∣∣ε̇(tz)
∣∣
]

ε̇(t), (3.14)

where μ̃ and η̃ are given by (3.9), the function δ(·) denotes a Dirac mass and the identity should
be understood in the sense of distributions.

Figure 1a displays the exact material response for a specimen with c = 0.25 subject to a
triangular signal ε(t) of amplitude γ0 and period 4T0 with T0 = 20τ , along with the response
predicted by the reduced homogenization scheme—also referred to as the ‘effective internal
variable’ (EIV) scheme—and the response of the unreinforced matrix phase, normalized by γ0 and
σ0 = 2ηγ0/T0. The various responses are computed numerically by integrating in time expressions
(3.8), (3.11) and (3.12) using an implicit Euler scheme with uniform time step. This is a very
special case for which the decoupled scheme (1.13) recovers the exact response (3.8). We begin
by noting that the reduced estimates recover the exact response during the first half-cycle of
the deformation programme. This is confirmed analytically by comparing expression (3.14) with
expression (3.8): during the open time interval (0, T0) the second term within the square brackets
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Figure 1. Predictions for particulate solids with c = 0.25 subject to triangular signals with period 4T0: (a) macroscopic
deviatoric response of an incompressible solid under a signal with T0 = 20τ ; (b) macroscopic spherical response of a
compressible solid with κ = 2μ under a signal with T0 = 1.5τ . (Online version in colour.)

in (3.14) is identically zero and both expressions coincide. Interestingly, this is despite the fact that
the convexity conditions (2.15) cease to hold soon after unloading begins to take place. In turn, this
suggests that such conditions do not constitute a precise delimiter for the range of validity of the
reduced-order approximation. Beyond the first half-cycle, however, the exact response remains
saturated until further reloading while the reduced estimates exhibit a spurious transient when
the strain fluctuations ε̃

(1)
d vanish. During this transient the reduced estimates predict a stress

level for the composite that is even smaller than that sustained by the unreinforced matrix, thus
violating elementary lower bounds. In fact, the reduced estimates exhibit such a transient every
time the applied deformation vanishes. Similar transients have already been reported by Boudet
et al. [10] and Lucchetta et al. [11] in the context of elastoplastic composites. The analytical source
of these transients is clearly seen in the above formulae: the sign function in expression (3.11) and
the delta functions in expression (3.14). The source of these offending terms, in turn, can be traced
to the non-convexity of the reduced free-energy density already identified in the companion
paper. Indeed, for radial deformation programmes the reduced free-energy (2.18) takes the form

ŵ
(
εu, α(1)u, α̃(1)

)
= μ

1 − c

[(
ε − (1 − c)α(1)

)2 +
(√

(3/2)c |ε| − (1 − c)̃α(1)
)2
]

. (3.15)

This function is non-convex on the entire Cartesian product space of ε, α(1) and α̃(1); however, it is
convex on the subspaces with ε of constant sign. On the other hand, if this non-convex free-energy
density is replaced by the convex density

ŵ
(
εu, α(1)u, α̃(1)

)
= μ

1 − c

[(
ε − (1 − c)α(1)

)2 +
(√

(3/2)c ε − (1 − c)̃α(1)
)2
]

, (3.16)

keeping the reduced dissipation potential (2.3) and reinterpreting the effective internal variable
α̃(1) as a signed quantification of the inelastic strain fluctuations so that it is allowed to become
negative, the spurious transients no longer occur and the exact response for general deformation
programmes ε(t) is obtained. This replacement of the reduced free-energy density—henceforth
referred to as ‘convexification’—is equivalent to the algorithmic correction devised by Idiart &
Lahellec [6], Boudet et al. [10] and Lucchetta et al. [11] on the basis of exploiting the existence of
multiple stationary points in the approximate incremental functionals of Lahellec & Suquet [1,12].
Unfortunately, this remedy can only be carried out when the strain fluctuations are strictly
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proportional to the applied deformation. In any case, it is interesting to note that the potentials
(3.16) and (2.3) are thus seen to constitute the generalized standard structure of the exact relations
of Ricaud & Masson [8] in this case. The connection between the variables β i employed in those
relations and the effective internal variables employed in the ‘convexified’ estimates is

β1 = (1 − c)α(1)u ≡ (1 − c)α(1) and β2 = 1 − c√
(3/2)c

α̃(1)u ≡ α̃(1)

ε̃(1)
ε, (3.17)

where ε̃(1) should be understood as a signed quantification of the strain fluctuations within the
matrix phase. This follows from introducing these relations into the evolution laws (3.7) for the
variables β i and verifying that the ‘convexified’ evolution laws for the variables α(1) and α̃(1) are
obtained. Thus, β1 is the average inelastic strain, and β2 is the average strain weighted by the ratio
of inelastic strain to total strain fluctuations. This is in contrast to the effective internal variables
(2.1) employed by the mean-field homogenization scheme, which represent intraphase statistics
of the inelastic strain field only.

(b) Estimates for compressible specimens under spherical deformations
We now consider compressible specimens subject to spherical deformation programmes of the
form ε(t) = εm(t)I with εm(t ≤ 0) = 0. In this case, the effective internal variable α(1) vanishes
identically throughout the deformation process and the dissipation is entirely due to α̃(1), whose
evolution depends on μ0. Recalling that κ̃0 is given by expression (3.1)1 with μ replaced by μ0,
equation (2.12) for μ0 reduces to(

1 − μ0

μ

)2
6 c ε2

m = (1 − c)2 α̃(1)2
, (3.18)

which is solved by
μ0

μ
= 1 − (1 − c)̃α(1)

√
6 c |εm| (3.19)

within the admissible range μ0 ≤ μ. The reduced constitutive relation (2.13) then becomes

σm = 3̃κεm − 2
3
μ

√
6 c α̃(1) sgn(εm), (3.20)

while the evolution law (2.6) for α̃(1) becomes

τ ˙̃α(1) + α̃(1) =
√

6 c
1 − c

|εm|. (3.21)

In turn, the non-trivial statistics (2.14) of the stress field within the matrix phase are given by

σ
(1)
m = 3κ

|εm|
(1 − c)

and σ̃
(1)
d = 2μ

∣∣∣∣∣
√

6c
1 − c

|εm| − α̃(1)

∣∣∣∣∣ . (3.22)

For any deformation programme εm(t > 0) vanishing at a finite set of time instants only, say tz

with z = 1, . . . , Z, these relations imply that

σ̇m

3̃κ
+ σm

3χ̃
=
[

1 −
√

6c
4μ

9̃κ
α̃(1)

Z∑
z=1

δ(t − tz)∣∣ε̇m(tz)
∣∣
]

ε̇m + κ̃ − κ̃2

χ̃
εm, (3.23)

where χ̃ = τ κ̃ .
The fact that the structure of these formulae resembles those of incompressible solids obtained

in the previous subsection permits a similar analysis. Figure 1b displays the exact material
response of a specimen with κ = 2μ and c = 0.25 subject to a triangular signal εm(t) of amplitude γ0
and period 4T0 with T0 = 1.5τ , along with the response predicted by the reduced homogenization
scheme and the response of the unreinforced matrix phase, normalized by γ0 and σ0 = 2ηγ0/T0.
The various responses are computed numerically by integrating in time expressions (3.10), (3.20)
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and (3.21) using an implicit Euler scheme with uniform time step. Once again, the reduced
estimates recover the exact response during the first half-cycle of the deformation programme.
This can be confirmed analytically by comparing expression (3.23) with expression (3.10): during
the open time interval (0, T0) the second term within the square brackets in (3.23) is identically
zero and both expressions coincide. Up to that point, the reduced estimates are thus able to
capture the correct contribution of local dissipation to the macroscopic spherical response. We
note in passing that this is in contrast to the popular decoupled scheme (1.13)—not shown—which
predicts a purely elastic spherical response. Beyond that point, however, the reduced estimates
exhibit spurious transients every time the applied deformation vanishes, as a consequence of the
sign function in expression (3.20) and the delta functions in expression (3.23). This is yet another
manifestation of the non-convexity of the reduced free-energy density. Indeed, making use of
(3.19) in (2.9), it is easy to verify that the reduced free-energy density (2.2) is given by

ŵ
(
εmI, α̃(1)

)
= 9

2
κ

ε2
m

1 − c
+ μ

(1 − c)

(√
6 c |εm| − (1 − c)̃α(1)

)2
. (3.24)

This function is non-convex on the entire Cartesian product space of εm and α̃(1); however, it is
convex on the subspaces with εm of constant sign. Now, a similar remedy to the one applied in
the previous subsection can also be applied in this case. Indeed, if this non-convex free-energy
density is replaced by the convex density

ŵ
(
εmI, α̃(1)

)
= 9

2
κ

ε2
m

1 − c
+ μ

(1 − c)

(√
6 c εm − (1 − c)̃α(1)

)2
, (3.25)

keeping the reduced dissipation potential

ϕ̂
( ˙̃α(1))= (1 − c) η ˙̃α(1)2

(3.26)

and reinterpreting the effective internal variable α̃(1) as a signed quantification of the viscous
strain fluctuations—so that it is allowed to become negative—the spurious transients no longer
occur and the exact response for general εm(t) is obtained. Furthermore, the potentials (3.25) and
(3.26) provide the generalized standard structure for the exact relations of Ricaud & Masson [8] in
this case. The connection between the variable βm employed in those relations and the local fields
is given by

βm = 1 − c√
6 c

α̃(1) ≡ α̃(1)

ε̃(1)
εm, (3.27)

where ε̃(1) should be understood as a signed quantification of the deviatoric strain fluctuations
within the matrix phase. This follows from introducing relation (3.27) into the evolution law
(3.3)1 for the variable βm and verifying that the ‘convexified’ evolution law for the variable α̃(1)

is obtained. Thus, βm is the average spherical strain weighted by the ratio of inelastic strain to
deviatoric strain fluctuations.

(c) Estimates for compressible specimens under isochoric complex deformations
We now consider compressible specimens subject to isochoric deformation programmes (εm = 0)
of the form

ε(t) = εss(t) (e1 ⊗ e3 + e3 ⊗ e1) + εas(t)
(

e1 ⊗ e1 − 1
2 e2 ⊗ e2 − 1

2 e3 ⊗ e3

)
(3.28)

relative to a fixed orthonormal basis {ei} and a stress-free initial configuration, where the first
term corresponds to a simple shear along the axis e1 and the second term corresponds to an
axisymmetric shear about that same axis. Four different programmes are studied, as follows.
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PROGRAMME 1. A radial axisymmetric deformation consisting of a linear ramp followed by
a sinusoidal signal

εss(t) = 0 and εas(t) =

⎧⎪⎪⎨⎪⎪⎩
γ0

t
T0

0 ≤ t ≤ T0,

γ0

[
1 + 1

2π
sin

(
2π

t − T0

T0

)]
T0 < t.

(3.29)

PROGRAMME 2. A radial deformation followed by a deformation with rotating principal axes
as given by (3.29)2 and

εss(t) =

⎧⎪⎪⎨⎪⎪⎩
γ0

t
T0

0 ≤ t ≤ T0,

γ0

[
1 − 1

2π

(
1 − cos

(
2π

t − T0

T0

))]
T0 < t.

(3.30)

PROGRAMME 3. A radial axisymmetric deformation consisting of a triangular signal given by

εss(t) = 0 and εas(t) = γ0

T0

(
t − 2T0

⌊
t + T0

2T0

⌋)
(−1)

⌊
t+T0
2T0

⌋
, (3.31)

where �x� = max{m ∈ Z | m ≤ x} denotes the floor function.
PROGRAMME 4. A deformation with rotating principal axes given by

εss(t) = γ0

[
1 − cos

(
2π t
T0

)]
and εas(t) = γ0 sin

(
2π t
T0

)
. (3.32)

These programmes are characterized by reference deformation and time constants γ0 and T0. In
all cases, the evolution equations (2.6) with (2.11) are integrated numerically following an implicit
Euler scheme with uniform time step. At each time step in the scheme, equation (2.12) must
be solved numerically for the comparison modulus μ0, where μ̃0 is given by expression (3.1)2
with μ replaced by μ0. During the initial stages of the various deformation programmes, this
equation has only one real root in the admissible range μ0 ≤ μ, but during some intervals multiple
roots appear. In those intervals, it has been verified that the root within the range −κ/2 ≤ μ0 ≤ μ

always furnishes the minimum value of the reduced free-energy density and must therefore
be selected. It can be verified that for this class of composites under isochoric deformations
the comparison modulus μ0 does not depend on reinforcement content c and depends on the
macroscopic deformation through the combination ˙[‖εd‖]/ ‖εd‖ only; the comparison modulus is
thus a homogeneous function of degree zero in the entire history εd[t]. We report predictions
for specimens with matrix bulk modulus κ = 2μ and reinforcement volume fraction c = 0.25,
normalized by γ0 and σ0 = 2ηγ0/T0.

Figure 2 displays the predicted material response under the first deformation programme with
T0 = 2τ . Also displayed for comparison purposes are the exact response of the reinforced solid
and the response of the unreinforced matrix phase. We begin by noting that the reduced estimates
(EIV) are in very good agreement with the exact response for the entire programme. Thus, the
estimates are seen to capture both the transient and steady-state responses very accurately. This
is in line with the earlier comparisons reported in Lahellec & Suquet [1] for cyclic loadings. It is
also, once again, despite the fact that the convexity conditions (2.15) cease to hold periodically
after the first cycle.

Figure 3 displays the predicted material response under the second deformation programme
with T0 = 20τ . In contrast to the previous programme, this programme reveals quantitative
discrepancies between the reduced estimates and the exact response once the applied deformation
ceases to be radial. It is natural to speculate that such discrepancies would be partially due
to the use of an isotropic measure of inelastic strain fluctuations α̃(1) as an effective internal
variable, and that they could be mitigated by using a separate fluctuation measure for each
deformation mode, as already mentioned in the companion paper. Unfortunately, this is not
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Figure 2. Predictions for particulate solids with κ = 2μ and c = 0.25, subject to deformation programme 1 with T0 = 2τ :
(a) macroscopic deformation and (b) macroscopic stress versus time. (Online version in colour.)

2.0

–2.0
–2.04.0 2.0

EIV
EIVL

1.51.00.50–0.5–1.0–1.5

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

s–as——s0

e–
—g0

s–ss s0

matrix

exact

e–as

e–ss

0

0.5

1.0

1.5(a) (b)

3.53.02.52.01.51.00.50
t/T0 /

Figure 3. Predictions for particulate solids with κ = 2μ and c = 0.25, subject to deformation programme 2 with T0 = 20τ :
(a) macroscopic deformation versus time and (b) macroscopic stresses. (Online version in colour.)

the case. Results for specimens subject to simultaneous shear and dilatational deformations—
omitted here for brevity—display similar discrepancies even though the inelastic strain field is
deviatoric. Instead, the discrepancies are a consequence of a spurious non-linearity in the reduced
constitutive relations, which is yet another manifestation of the non-convexity of the reduced
free-energy density. Thus, the exact stress response is identically equal to the additive composition of the
stress responses produced by each deformation mode in (3.28) imposed independently, while the reduced
stress response is clearly not, in view of the non-quadratic form of the reduced free-energy density (2.2).
That this is indeed the source of discrepancy can be exposed by generating a linearized version
of the reduced estimates, additively composing the stress responses predicted by the mean-
field homogenization scheme for each deformation mode applied independently. Such linearized
estimates (EIVL) are now seen to be in very good agreement with the exact response for the entire
loading programme.

Figure 4 displays the material response under the third deformation programme with T0 = 20τ .
We begin by noting that the reduced estimates are in remarkable agreement with the exact
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Figure 4. Predictions for particulate solids with κ = 2μ and c = 0.25, subject to deformation programme 3 with T0 = 20τ :
(a) macroscopic deformation versus time and (b) macroscopic response. (Online version in colour.)

response for most part of the programme. In fact, it can be shown that the reduced estimates
exhibit the exact initial elastic slope and subsequent viscous plateau. This is in line with the earlier
comparisons reported in Lahellec & Suquet [1] for monotonic loadings. However, the estimates
also exhibit spurious transients every time the applied deformation vanishes. These are the
same transients already identified in the context of incompressible composites as a consequence
of the non-convexity of the reduced free-energy density, spread out by matrix compressibility.
Unfortunately, the strain fluctuations are not strictly proportional to the applied deformation
and consequently the ‘convexification’ devised in the previous subsections cannot be carried out.
However, it is still possible to eliminate the transients by linearizing the reduced estimates as in
the previous deformation programme. In this connection, we note that no transients occurred
in the first and second deformation programmes considered previously because the norm of
the macroscopic strain tensor remained always finite and sufficiently large. Then, the applied
deformation εas(t) can always be expressed as an additive composition of various deformations
such that, when applied independently, they produce macroscopic strains with sufficiently large
norms to avoid spurious transients. Figure 4a shows two such deformation programmes, ε

[1]
as (t)

and ε
[2]
as (t), whose additive composition produces the original programme (3.31). The additive

compositions of the corresponding reduced stresses (EIVL) are now seen to be smooth and in
very good agreement with the exact response for the entire deformation programme.

Finally, figure 5 displays the material response under the fourth deformation programme
with T0 = 20τ . As the second deformation programme, this programme reveals quantitative
discrepancies between the reduced estimates and the exact response once the applied deformation
deviates considerably from a radial history. Unlike the second deformation programme, on
the other hand, this programme produces vanishing macroscopic strains at t = T0, 2T0, etc.
At those instants, the reduced estimates exhibit the spurious transients generated by the
non-convexity of the reduced free-energy density already described in the context of radial
deformations. Once again, these transients can be eliminated by linearization. Given that both
applied deformations εss(t) and εas(t) vanish periodically, both deformations must be expressed
as additive compositions of non-vanishing deformations. Figure 5a shows two pairs of such
deformation programmes ε

[1]
ss (t), ε

[2]
ss (t), ε

[1]
as (t) and ε

[2]
as (t). The additive compositions of the

corresponding pairs of reduced stresses (EIVL) are now seen to be smooth and in very good
agreement with the exact response for the entire deformation programme. This linearization
procedure emerges then as a plausible alternative to remedy the spurious effects introduced by
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Figure 5. Predictions for particulate solids with κ = 2μ and c = 0.25, subject to deformation programme 4 with T0 = 20τ :
(a) macroscopic deformation versus time and (b) macroscopic stresses. (Online version in colour.)

the non-convexity of the reduced free-energy density. Moreover, the procedure can be used to
generate estimates not only for the macroscopic response but also for the first- and second-order
intraphase statistics of the microscopic fields. A formal exposition of the procedure is advanced
in appendix A.

4. Results for granular systems
We now consider a special class of two-phase granular systems with microgeometries such that
their effective elastic moduli are given by the self-consistent formalism as (e.g. [7])

κ̃ = κ

1 − c
+ 4

3
c

1 − c
μ̃ and μ̃ = μ

1 − c
+ c

1 − c
9̃κ + 8μ̃

6̃κ + 12μ̃
μ̃. (4.1)

Note that these expressions define the effective moduli implicitly. In the limiting case of
incompressible systems (κ → ∞), however, the shear modulus is explicitly given by

μ̃ = μ

1 − (5/2)c
. (4.2)

Unlike the previous class of particulate systems, this class of granular systems exhibits a
macroscopic response with a continuous spectrum [13] and, furthermore, is percolative. The
percolation threshold depends on whether the systems are compressible or incompressible: if κ

is bounded, percolation occurs at a reinforcement content c0 = 0.5; if κ is unbounded, percolation
occurs at the lower reinforcement content c0 = 0.4. At such reinforcement contents, the above
moduli become unbounded and the composite is elastically rigid. A few results for this class of
granular systems are already available in the literature. For instance, Beurthey & Zaoui [13] have
derived the exact relaxation spectrum when both phases are viscoelastic but incompressible, while
Laws & McLaughlin [14] have computed approximate results via the collocation method when
one of the phases is purely elastic. To the best of our knowledge, no exact analytical description is
available for the compressible systems considered here. On the other hand, the reduced estimates
can be computed as easily as in the previous case of particulate systems. Once again, the evolution
equations (2.6) with (2.11) can be integrated numerically following an implicit Euler scheme
with uniform time step. At each time step in the scheme, equation (2.12) must be solved for the
comparison modulus μ0, where κ̃0 and μ̃0 are given by expressions (4.1) with μ replaced by μ0.
However, given that these self-consistent expressions are not explicit in the effective moduli, it is
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more convenient to rewrite them as

κ̃0 = 1
1 − c

κ + c
1 − c

4
3

μ̃0 and μ0 =
[

1 − 5
2

c
3κ + 4μ̃0

3κ + 2(3 − c)μ̃0

]
μ̃0 (4.3)

and take μ̃0 as the unknown to be determined numerically rather than μ0. When the equation
exhibits multiple roots, the root such that −κ/2 ≤ μ0 ≤ μ must be selected. We report below
predictions for specimens with κ = 2μ, normalized by γ0 and σ0 = 2ηγ0/T0.

Figure 6 displays the predicted material responses for specimens under the third deformation
programme introduced in the previous section with T0 = 20τ and two different reinforcement
contents c = 0.25 and c = 0.45. Also displayed for comparison purposes are the response of the
reinforced composite predicted by the decoupled scheme (DS) as given by (1.13) with μ̃ given
by (4.1), and the response of the unreinforced viscoelastic phase. Several observations are in
order. We begin by noting that the reduced estimates (EIV) for both reinforcement contents
exhibit the expected behaviour during the initial loading ramp but exhibit the spurious transients
already observed in the context of particulate systems, which seem to be exacerbated by the
granular microstructures. Once again, these transients can be eliminated by linearly composing
the predictions for multiple deformation programmes whose composition is equivalent to the
original programme. The linearized estimates reported in the figure were generated with the
same deformation programmes displayed in figure 4a. However, a deformation step ε

[2]
as of twice

the magnitude was required to eliminate the transients completely. The linearized estimates
(EIVL) are now seen to exhibit the expected trends for the entire deformation programmes.
At the moderate reinforcement content (c = 0.25), the predicted response exhibits the expected
saturation but with a more pronounced viscoelastic transition than that observed in particulate
systems. This is in contrast to the response predicted by the decoupled scheme, which exhibits
a much more abrupt transition as a result of neglecting long-memory effects. At the high
reinforcement content (c = 0.45), however, these differences between the two schemes are not only
quantitative but also qualitative. It is recalled that the effective viscosity of the decoupled scheme
can be expressed as η̃ = τ limκ→∞ μ̃ and, therefore, exhibits the same percolation threshold as
the incompressible shear modulus (4.2). Thus, the decoupled scheme predicts a purely elastic
response for any reinforcement content above that percolation threshold. By contrast, the reduced
estimates still display dissipative behaviour. This behaviour is seen to exhibit linear growth
instead of the typical saturation observed for moderate reinforcement content. Whether these
predictions are accurate or not remains to be confirmed via comparisons with full-field numerical
simulations. Now, it should be noted that, while certainly auspicious, this linearization procedure
requires additional effective internal variables, it may not provide a clear thermodynamic
meaning of the approximate constitutive relations and its application to nonlinear rheologies
is not straightforward. In any case, the mere fact that it can capture the strong influence of
microstructure on macroscopic behaviour and field fluctuations with such a reduced number of
effective internal variables is already a positive result, as no other mean-field homogenization
method to date seems to share this capacity.

5. Concluding remarks
The capabilities and limitations of the mean-field homogenization scheme of Lahellec &
Suquet [1] for viscoelastic composites have been assessed in light of the mathematical structure
exposed in the companion paper. The scheme entails in effect a model reduction that identifies
effective internal variables with the first moments of the inelastic strain field and its fluctuations
over each phase, and therefore endows them with a clear physical meaning. The reduced
constitutive behaviour preserves the two-potential structure of the exact constitutive behaviour
being approximated but does not preserve its global convexity. Still, the scheme was found to
generate highly accurate and even exact descriptions of the macroscopic response whenever
stress-free specimens were subject to deformations lying within the convex range of the reduced
free-energy density. Beyond that range, predicted responses can remain accurate but can also
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Figure 6. Predictions for granular solids with κ = 2μ, subject to deformation programme 3 with T0 = 20τ : (a) macroscopic
response for c = 0.25, (b) macroscopic response for c = 0.45. (Online version in colour.)

exhibit spurious transients and non-linearities. In the simplest cases considered, ‘convexified’
free-energy densities delivering the exact response were realized. In the more general cases,
a linearization procedure capable of delivering highly accurate predictions with minimal
computational cost was devised. These results pave the way to generating reduced-order models
for viscoelastic systems with more complex microstructural arrangements and local rheologies.
Some of the results can be extended to nonlinear rheologies as already indicated in the first part
of this work. Other results can be exploited in studies of reinforced polymers exhibiting thermo-
viscoelastic local rheologies characterized by multiple branches that are sensitive to temperature,
or in studies of polycrystalline media where other incremental homogenization schemes have
proved of limited use (e.g. [15]). These studies are on-going and will be reported upon completion.
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Appendix A. Linearization procedure
The effective response of linear viscoelastic composites satisfies the superposition principle. Thus,
the macroscopic stress at a given instant depends on the entire macroscopic strain history in such
a way that

σ (t) = F [ε[t]] = F [ε1[t]] + F [ε2[t]] = σ 1(t) + σ 2(t) (A 1)

for any pair of strain histories ε1[t] and ε2[t] such that ε[t] = ε1[t] + ε2[t]. This superposition is
also satisfied by the underlying microscopic fields of the various strain histories; thus,

ε(x, t) = ε1(x, t) + ε2(x, t) and σ (x, t) = σ 1(x, t) + σ 2(x, t). (A 2)

The first and second moments of these fields over each phase are thus related by

〈ε〉(r) = 〈ε1〉(r) + 〈ε2〉(r) , 〈ε2〉(r) = 〈ε2
1〉(r) + 〈ε2

2〉(r) + 2 〈ε1 · ε2〉(r) , (A 3)
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and similarly for the stress fields. These compositions can be carried out with an arbitrary number
of independent strain histories.

By contrast, the reduced free-energy density generated by the mean-field homogenization
scheme of Lahellec & Suquet [1] is non-convex and therefore the ensuing macroscopic response
does not satisfy this linear superposition. However, the superposition can be imposed by applying
the scheme to each strain history separately and taking the composition as a linearized estimate,
that is,

σ (t) = Fred [ε[t]] ≈ Fred [ε1[t]] + Fred [ε2[t]] . (A 4)

Given that the reduced estimates have been found to be very accurate for certain strain histories
but not for others, accurate estimates for the disfavoured strain histories can be generated by
decomposing them into two or more favoured strain histories and composing the corresponding
stress histories following (A 4). Estimates for the first moments of the underlying strain and stress
fields over each phase can also be computed by composing the corresponding moments following
(A 3)1. Estimates for the second moments, on the other hand, require a further approximation in
view of the cross-moment in expression (A 3)2. Making use of the Cauchy–Schwarz inequality as
in the companion paper, this cross-moment can be bounded by

〈ε1 · ε2〉(r) � 〈ε1〉(r) · 〈ε2〉(r) ± C(r)1/2

ε1 C(r)1/2

ε2 , (A 5)

where C(r)
εi refers to the second moments of the intraphase fluctuations of the field εi. The sense

of the bound depends on the sign adopted on the right-hand side. In any case, the right-hand
side can be used to approximate the cross-moment and generate a decomposition for the reduced
second moments of the form

〈ε2〉(r) ≈ 〈ε2
1〉(r) + 〈ε2

2〉(r) + 2 〈ε1〉(r) · 〈ε2〉(r) ± 2 C(r)1/2

ε1 C(r)1/2

ε2 , (A 6)

and similarly for the second moments of the stress field. Of course, analogous identities can be
written for the mean and deviatoric parts or any other set of orthogonal projections of fields taken
independently, as in (2.4).

In the particular case of rigidly reinforced solids considered in this study, the approximation
(A 5) can be dispensed with by exploiting Hill’s lemma. Indeed, this lemma implies that

ε1 · σ 2 = 〈ε1 · σ 2〉 = (1 − c)
(

9κ〈ε1mε2m 〉(1) + 2μ02 〈ε1d · ε2d 〉(1) + τ 02 · 〈ε1d 〉(1)
)

, (A 7)

where μ02 and τ 02 are the comparison modulus and stress polarization, respectively, associated
with the reduced estimates for the strain history ε2[t]. By the same token,

ε2 · σ 1 = 〈ε2 · σ 1〉 = (1 − c)
(

9κ〈ε1mε2m 〉(1) + 2μ01 〈ε1d · ε2d 〉(1) + τ 01 · 〈ε2d 〉(1)
)

. (A 8)

These two equations can be used to compute the cross-moments 〈ε1d · ε2d 〉(1) and 〈ε1mε2m 〉(1) in
terms of the known macroscopic strains and stresses exactly. Now, these exact relations can be
used to assess the accuracy of the approximation (A 6) being proposed for more general material
systems.

We conclude this exposition by noting that the results reported in §§3 and 4 suggest Heaviside
steps may constitute strain histories of particular relevance for this linearization procedure.
Indeed, those results suggest that the reduced estimates are particularly problematic when the
norm of the macroscopic strain tends to vanish. In such cases, a possible remedy is to decompose
the strain history as ε(t) = [ε(t) + H(t) ε′] + [−H(t) ε′], where H(t) denotes the Heaviside function
and ε′ is a constant strain such that the norm ||ε(t) + H(t) ε′|| is sufficiently large for the entire
history. Interestingly, the contribution of the second term to the stresses decays exponentially with
a certain characteristic time. After a few such characteristic times, the stresses are thus entirely due
to the first strain history, and hence do not require additional computational effort.
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